An Introduction to
Smart NICs
and their use cases

Mina Tahmasbi Arashloo
Cornell University

Fall 2019

What is a smart NIC?

What is a (dumb) NIC?

What is a (dum \

Network Interface Card

| Implements:
- the physical layer (L1)

Any packet from the ,
) | end host to the network |

What is a (dumb) NIC?

End Host

CPU

Transport

Network

Physical

What is a (dumb) NIC?

End Host On transmit (egress)

CPU * The host CPU generates

packets on application
Transport reg uest

Network e Packets are sent to the
NIC over PCle

e The NIC transforms

packets to bits and sends
them over the link

Physical

What is a (dumb) NIC?

End Host On receive (ingress)

CPU e The NIC turns bits into
packets

Transport

e Packets are sent to the
host CPU over PCle

Network

* The host CPU processes
Physical packets and delivers them
to applications

What is a (dumb) NIC?

Great division

End Host ' of Iabor' ,
CPU
general-purpose T e
processor

running software
Network

reasonable #cycles

_———— e e e

NIC

fixed-function
hardware

What is a (dumb) NIC?

.~ Not so great
End Host | _anymore |

general-purpose T e
processor

running software
Network

reasonable

NIC

fixed-function
hardware

Limits of Software Packet
Processing

for min-sized
packets

Line Rate

for max-sized
packets

Single-Core Throughput in Mpps

CPU cycles per packet

Limits of Software Packet
Processing

Line Rate

Single-Core Throughput in Mpps

===/ ———1pU cvycles per packet
| line rate for y y per p
| all packet sizes |

—
Tt

Limits of Software Packet
Processing

Line Rate

Single-Core Throughput in Mpps

per packet

line rate for
some packet sizes

Limits of Software Packet
Processing

Line Rate

Single-Core Throughput in Mpps

CPU cycles per[. .

i for any packet size |
————]

e
—_—————

Limits of Software Packet
Processing

Line Rate

Single-Core Throughput in Mpps

CPU cycles per packet

Limits of Software Packet
Processing

Line Rate

Single-Core Throughput in Mpps

CPU cycles per packet

Limits of Software Packet
Processing

If CPUs stayed the same,
we could do less
processing per-packet
at line-rate

Single-Core Throughput in Mpps

CPU cycles per packet

Limits of Software Packet
Processing

f
l
|

. But CPUs have been |

Line Rate

Single-Core Throughput in Mpps

CPU cycles per packet

Limits of Software Packet
Processing

' Line rate is increasing ;(
to 100-400 Gbps |

— e s — =

Line Rate

Single-Core Throughput in Mpps

CPU cycles per packet

Limits of Software Packet
Processing

e

But CPUs are not
| getting better as fast

i,_,
{

Physical limits of

i End of Moore’s law and
Dennard’s scaling

1 e ——— e = T

= Single-Core Throughput in Mpps

~~____ #CPU cycles per packet

| semiconductor technology |

Solution?

————— e e

\

S T ,, «» operators can
’\' I

1; A | deC|de what part of |

R e | | packet processing
S ‘ ‘ TJ .

\ 1 is offloaded to |

| As opposed to u Programmable ~I 1 hardware and how ,

| general-purpose CPUs | —

= Domain-Specific

| can be optimized for f | : :Taglkes over (or |
| network processing | | ;‘ even all) of packet |
——J | Hardware Processor-= |

processing that is
~currently done by

e —— e

Co-location with the
{ NIC provides extra
benefits!

| A *

Solution?

Programmable

- Hardware Processor

——————— - —— —— — = —q———

! Domain-Specific
|

| e = S ——

So, what is a smart NIC?

| You can think of it as
a dumb NIC

So, what is a smart NIC?

End Host
CPU
Transport
general-purpose
processor
running software Network
dumb NIC

Physical

fixed-function
hardware

So, what is a smart NIC?

End Host

Transport

| Tansoor |
Smart NIC
P

Physical

A Closer Look at the Hardware

Field Programmable Gate Arrays

* An FPGA is a collection of small
configurable logic and memory
blocks

* Programmers can write code to
assemble these blocks to
perform their desired processing

e el e ol e ol e e e -

ol el L L.

S e e e e e o e e e e e e
"TEEEEE X

-

H

" T T E T E LR E"

Configurable Logic Block (CLB)

Embedded Memory or
Block RAM (BRAM)

1/0 Block

Field Programmable Gate Arrays

LALLLLLLLLLLL
. ‘ e 4l

Why is an FPGA a popular hardware 44| - -
choice for smart NICs? ol S alnsil
g L L el

- 4

e FPGA hardware resources (logic ¥ e
. g 5

and memory) can be highly " -
customized for the intended . R

" T T E T E LR E"

computation | |
Configurable Logic Block (CLB)

' ' - Embedded M
e Great fit for highly-parallelizable H Embedded Memory or

computation
1/0 Block

Multi-Core Systems on Chip

e A “small” computer on a single chip

e Includes (light-weight) processing cores and a memory
hierarchy

e Why is it a popular hardware choice for smart NICs?

* Programming model is close to software

 (Cores (and the architecture) can be specialized for network
processing

FPGAs vs Multi-Core SoCs for
Network Processing

Reconfigurable hardware
and therefore can be highly
customized for the
Intended packet processing

Hardware
Architecture

Multi-Core SoCs

The cores’ instruction set and
memory architecture is fixed
and is therefore less customizable

Hardware description languages
(e.g., Verilog)
]
Harder to program

Programming
Model

C-like languages
!
Easier to program

Higher throughput
lower latency *

Performance

Lower throughput
higher latency *

* For most kinds of network processing

What are smart NICs used for?

* Acceleration across the stack
 Hypervisor vSwitch: AccelNet (NSDI’18)
 Scheduling: PIEO (SIGCOMM’19), Loom (NSDI’19)
 Network functions: ClickNP (SIGCOMM’16), FlowBlaze (NSDI’19)
* Transport: Tonic (NSDI’20)
* Even applications: iPipe (SIGCOMM’19), KV-Direct (SOSP’17), Bing web
search ranking (ISCA’14)
e Optimizing network I/0O
* e.g., smart steering of packets to cores (FlexNIC, ASPLOS’16)

What are smart NICs used for?

e Acceleration across the stack

¢ H reEs e —_— it L
. ,‘ |
* N The Catch? |
. Resource constraints! et
" ﬂ we
} both for computation and memory H
* Opfj L

= —_——— ——
——a’_%.g—“x’\ — —_———

°* e. g smart steerlng of packets to cores (FIexNIC SPLOS 16)

Enabling Programmable Transport
Protocols on High-Speed NICs

Mina Tahmasbi Arashloo?, Alexey Lavrov?,
Manya Ghobadi?2, Jennifer Rexford?,
David Walker!, and David Wentzlaff?

1 Princeton University, 2 MIT

34

The Transport Layer

send-data send-data send-data
(addr,length) (addr,length) (addr,length)

Network Stack

The Transport Layer

Flow 1 Flow 2 Flow m
- Byte status - Byte status - Byte status

sent, in-flight, sent, in-flight, sent, in-flight,
lost, ... lost, ... lost, ...

- Credit - Credit - Credit

‘ flow id, segment address
IP and Below

The Transport Laver

App 1

send-data

|
|
|

‘. Transport Logic

- Credit Management:
App |

'v
’f

'
i

How many bytes can | send?

!

l

Salis | © Segment Selection:
ELLlge) Which bytes do | send?

(addr,length)

P ———

— 7' = e

\
|

‘s | J"
W
W

~
i

Network Stack

The Transport Layer

Flow 1 Flow 2 Flow m

- Byte status - Byte status - Byte status
sent, in-flight, sent, in-flight, sent, in-flight,
lost, ... lost, ... lost, ...

- Credit - Credit - Credit

‘ flow id, segment address

IP and Below

.

]

35

Overview

Host

Application Layer

Transport Layer - on the host

- Connection Management

 Credit Management
- Segment Selection

add/remove connection

send N bytes from memory address A

Transport Logic
(Tonic)

NIC

Outgoing
Link

35

Overview

Host

Application Layer

Transport Layer - on the host

- Connection Management

add/remove connection

send N bytes from memory address A

NIC

Transport Layer - on the NIC
- Data Transfer

Transport Logic
(Tonic)

Next
Segment

—

Outgoing
Link

36

Challenges of Implementing
Transport Logic on High-Speed NICs

Timing Constraints
Median packet size in data centers is 200 bytes
At 100 Gbps, one 128-byte packet every ~10 ns

Back-to-back stateful event processing

Memory Constraints
A few megabytes of high-speed memory
More than a thousand active flows

A few kilobits of per-flow state

37

Challenges of Implementing
Transport Logic on High-Speed NICs

Tonic

- A programmable hardware architecture
* running at 100 Gbps
- within memory limits of commodity NICs

* to iImplement transport logic
- with modest development effort

38

Main Observation

Common transport patterns as reusable components

e drive the design of an efficient hardware “template” for
transport logic

* reduce the functionality users must specify

39

The Two Engines

- Generates segment IDs

- Queues up the

generated segments IDs
- sends them out based
on each flow’s credit

for active flows -
Tonic

flow ID,

Segment segment ID

> Selection

>

Credit >

Management |-

segment transmitted

Segment Selection Patterns

Segment

Selection
(reliable delivery)

Update Byte
Status
Pick Bytes for
Next Segment

Cannot maintain per-byte
state on the NIC

Segment Selection Patterns

Segment

Selection
(reliable delivery)

re-Calculate
Segment Boundaries

Toni :

Update
Segment Status

'

Select Next
. Segment

1. Only a few bits of state per segment

* acked, rtxed, lost
e fixed function modules for common state updates

e programmable modules only for loss detection

2. Loss detection: acks and timeouts

e only two programmable modules

e mutually exclusive — fewer concurrent state updates

3. Lost segments first, new segments next

e fixed-function module for segment generation

Tonic’s Segment Selection Engine

Segment Selection

Memory for per-flow state:
segment status, window size, ...

—> Select Next Segment |—>

Incoming

—P- Common | Loss Detection | [—p
Segment Updates and Recovery
Periodic Updates
—| (Timeout-based loss detection <
and recovery)

| ﬁ

Merge

42

42

Tonic’s Segment Selection Engine

o

Segment Selection

segment status, window size, ...

Memory for per-flow state:

@

Select Next Segment |—>

Common
Segment Updates

Merge

Periodic Updates
(Timeout-based loss detection
and recovery)

Credit Management Patterns

Rate Control

Control Loop

@ Adijust
Params

window/rate

Calculate
Credit

43

1. Common credit management schemes

* Rate control: congestion window, data rate

* Admission control: grant tokens

2. Two main parameter adjustment signals

* external signals, e.g., acks and CNPs
e periodic internal signals, .e.g., counters
* aligns with existing programmable modules for

segment selection

Tonic’s Credit Management Engine

(Flow ID,
Segment ID)
Received

44

Credit Management

Memory for per-flow state

Flow ID SegmentID Queue @ Credit O_ther
? i Variables
0 13 | 12 [2 100 B
1 90 [109 [110 200 B 1
flows with
enough credit Enqueue
— Transmit |—>

Merge

45

Hardware Implementation Challenges

- Consistent stateful operations

Bitmap Operations
Per-flow rate limiting

More details in the paper

46

Evaluation - Programmability

Implemented six representative protocols

Reno, New Reno

SACK (Selective ACK)

NDP (Receiver-driven data-center transport)
DCQCN, IRN (Improved RoCE NIC)

All meet timing for 100 Gpbs (10-ns clock)

Implemented within 200 lines of Verilog code

uses 0.5% of total logic resources

Re-usable modules are 8K lines of Verilog code

uses 35% of total logic resources

47

Evaluation - Scalability

Metric Results

Complexity of | (0,31] meets timing |
User-Defined Logic logic levels | (31, 42] d.epends (?n .operatlons

(42,65] violates timing

256 grant token
User-Defined State | bytes 340 rate

448 congestion window
Window Size segments 256
Concurrent Flows | count 2048

140

Evaluation - End-to-End Simulations

Cycle-accurate hardware simulator for Tonic within NS3

Compared existing protocols with Tonic implementations
TCP New Reno (plots shown below) and DCQCN

Congestion Window
(KiloBytes)

48

120;

=
5 O 00 O
Q2 9 ©

N
e

= Tonic

- Hard-Coded| |

Time (milliseconds)

Transmitted Sequence

Number (x10°)

92

— Tonic
- Hard-Coded

AN

W

N

=

S

0 1 2 3 4
Time (milliseconds)

What’s Next for Smart NICs?

* More acceleration in each layer of the stack
 application acceleration

 Hardware-efficient transport

What’s Next for Smart NICs?

* Generalizing network processing over heterogenous
hardware

Given a network function, and

a server with a CPU, and some accelerators on the NIC (FPGA,
SoC, maybe even a GPU?)

what is the best offloading strategy?

iIPipe (SIGCOMM’19): distributed applications over CPU and
SoC-baed NICs

Can we add programmable switches into the picture?

