
Modular Switch Programming Under Resource Constraints

Mary Hogan1, Shir Landau-Feibish2, Mina Tahmasbi Arashloo3, Jennifer Rexford1, and David Walker1

1Princeton University
2The Open University of Israel

3Cornell University

Abstract
Programmable networks support a wide variety of applica-
tions, including access control, routing, monitoring, caching,
and synchronization. As demand for applications grows, so
does resource contention within the switch data plane. Cram-
ming applications onto a switch is a challenging task that
often results in non-modular programming, frustrating “trial
and error” compile-debug cycles, and suboptimal use of re-
sources. In this paper, we present P4All, an extension of P4
that allows programmers to define elastic data structures that
stretch automatically to make optimal use of available switch
resources. These data structures are defined using symbolic
primitives (that parameterize the size and shape of the struc-
ture) and objective functions (that quantify the value gained or
lost as that shape changes). A top-level optimization function
specifies how to share resources amongst data structures or ap-
plications. We demonstrate the inherent modularity and effec-
tiveness of our design by building a range of reusable elastic
data structures including hash tables, Bloom filters, sketches,
and key-value stores, and using those structures within larger
applications. We show how to implement the P4All compiler
using a combination of dependency analysis, loop unrolling,
linear and non-linear constraint generation, and constraint
solving. We evaluate the compiler’s performance, showing
that a range of elastic programs can be compiled to P4 in few
minutes at most, but usually less.

1 Introduction

P4 has quickly become a key language for programming net-
work data planes. Using P4, operators can define their own
packet headers and specify how the data plane should parse
and process them [7]. In addition to implementing traditional
forwarding, routing, and load-balancing tasks, this flexibility
has enabled new kinds of in-network computing that can accel-
erate distributed applications [26, 27] and perform advanced
monitoring and telemetry [10, 11, 17, 30].

All of these applications place demands on switch re-
sources, but for many, the demands are somewhat flexible:

additional resources, typically memory or stages in the PISA
pipeline, improve application performance, but do not neces-
sarily make or break it. For instance, NetCache [27] improves
throughput and latency for key-value stores via in-network
computing. Internally, it uses two main data structures: a
count-min sketch (CMS) to keep track of popular keys, and
a compact key-value store (KVS) to maintain their corre-
sponding values. Increasing or decreasing the size of those
structures will have an impact on performance, but does not af-
fect the correctness of the system—a cache miss may increase
latency, but the correct values will always be returned for a
given key. Other applications, such as traffic-monitoring in-
frastructure, have similar properties. Increasing the size of the
underlying hash tables, Bloom filters, sketches, or key-value
stores may make network monitoring somewhat more precise
but does not typically result in all-or-nothing decisions.

Because resource constraints for these components are flex-
ible, network engineers can, in theory, squeeze multiple differ-
ent applications onto a single device. Unfortunately, however,
doing so using today’s programming language technology is
a challenging and error-prone task: P4 forces programmers
to hardcode their decisions about the size and shape of their
data structures. If the data structure is too large, the program
simply fails to compile and little feedback is provided; if it is
too small, it will compile but the resources will be used subop-
timally. Moreover, structures are not reuseable: a cache, that
fits just fine on a switch alongside a table for IP forwarding,
is suddenly too large when a firewall is added. To squeeze
the cache in, programmers may have to rewrite the internals
of their cache, manually adjusting the number or sizes of the
registers or match-action tables used. To test their work, they
resort to a tedious trial-and-error cycle of rewriting their ap-
plications, and invoking the compiler to see if it can succeed
in fitting the structures into the available hardware resources.

This manual process of tweaking the internal details of data
structures, and checking whether the resulting structures sat-
isfy global constraints, is inherently non-modular: Program-
mers tasked with implementing separate applications cannot
do so independently. Indeed, while the same data structures

Data Structure Used in
Key-value store/ hash table Precision [6], Sonata [17], Network-

Wide HH [19], Carpe [20], Sketchvi-
sor [23], LinearRoad [25], NetChain [26],
NetCache [27], FlowRadar [30], Hash-
Pipe [41], Elastic Sketch [46]

Hash-based matrix
(Sketch)

AROMA [4], Sketchvisor [23], Sketch-
learn [24], NetCache [27], Nitros-
ketch [31], UnivMon [32], Sharma et
al. [38], Fair Queueing [39], Elastic
Sketch [46]

Bloom filter NetCache [27], FlowRadar [30],
SilkRoad [34], Sharma et al. [38]

Multi-value table BeauCoup [10], Blink [22]
Sliding window sketch PINT [5], Conquest [11]
Ring buffer NetLock [47], Netseer [48]

Figure 1: PISA data structures

appear again and again (see Figure 1 for a selection), the
varying resource constraints makes it difficult to reuse these
structures for different targets or applications.

Elastic Switch Programming. We extend P4 with the abil-
ity to write elastic programs. An elastic program is a single,
compact program that can “stretch” to make use of available
hardware resources or “contract” to squeeze in beside other
applications. Elastic programs can be constructed from any
number of elastic components that each stretch arbitrarily to
fill available space. An elastic NetCache program, for exam-
ple, may be constructed from an elastic count-min sketch and
an elastic key-value store. The programmer can control the
relative stretch of these modules by specifying an objective
function that the compiler should maximize. For example, the
NetCache application could maximize the cache “hit rate” by
prioritizing memory allocation for the key-value store (to store
more of the “hot” keys) while ensuring that enough remains
for the count-min sketch to produce sufficiently accurate es-
timates of key popularity. In addition to memory, programs
could simultaneously maximize the use of other switch re-
sources such as available processing units and pipeline stages.

To implement these elastic programs, we present P4All,
a backward-compatible extension of the P4 language with
several additional features: (1) symbolic values, (2) symbolic
arrays, (3) bounded loops with iteration counts governed by
symbolic values, (4) local objective functions for data struc-
tures, and (5) global optimization criteria. Symbolic values
make the sizes of arrays and other state flexible, allowing
them to stretch as needed. Loops indexed by symbolic val-
ues make it possible to construct operations over elastic data
structures. Objective functions provide a principled way for
the programmer to describe the relative gain/loss from grow-
ing/shrinking individual data structures. Global optimization
criteria make it possible to weight the relative importance of
each structure or application residing on a shared device.

We have implemented a compiler for P4All that operates

M
at

ch
 A

ct
io

n
R

ul
es

Stateful
ALUs

Stateless
ALUs

Pipeline Stages

Pa
ck

et
 H

ea
de

r
Ve

ct
or

Register
Arrays

...

Pa
rs

er

D
ep

ar
se

r

Figure 2: Protocol Independent Switch Architecture (PISA)

in two main stages. First, it computes an upper bound on the
number of possible iterations of loops, so it can produce a
simpler optimization problem over unrolled, loop-free code.
This upper bound is computed by conservatively analyzing the
dependency structure of the loop bodies and their resource uti-
lization. Next, the compiler unrolls the loops to those bounds
and generates a constraint system that optimizes the resource
utilization of the loop-free code for a particular target. We use
the Intel Tofino chip as our target. We evaluate our system
by developing a number of reusable, elastic structures and
building several elastic applications using these structures.
Our experiments show that the P4All compiler runs in a mat-
ter of minutes (or less) and produces P4 programs that are
competitive with hand-optimized code. This paper builds on
our earlier workshop paper [21] by extending the language for
nonlinear objective functions over multiple variables. We also
implement the optimization problem and compiler outlined
in the workshop paper, along with evaluating it with a variety
of data structures.

In summary, we make the following contributions.

• The design of P4All, a backward-compatible extension to
P4 that enables elastic network programming.

• The implementation of an optimizing compiler for P4All.

• A library of reusable elastic data structures, including their
objective functions, and examples of combining them to
create sophisticated applications.

• An evaluation of our system on a range of applications.

2 P4 Programming Challenges

Programming PISA devices is difficult because the resources
available are limited and partitioned across pipeline stages.
The architecture forces programmers to keep track of implicit
dependencies between actions, lay out those actions across
stages, compute memory requirements of each task, and fit the
jigsaw pieces emerging from many independent tasks together
into the overall resource-constrained puzzle of the pipeline.

2.1 Constrained Data-Plane Resources

P4 is designed to program a Protocol Independent Switch Ar-
chitecture (PISA) data plane (Figure 2). Such an architecture
contains a programmable packet parser, processing pipeline,
and deparser. When a packet enters the switch, the parser
extracts information from the packet and populates the Packet
Header Vector (PHV). The PHV contains information from
the packet’s various fields, such as the source IP, TCP port,
etc. that are relevant to the switch’s task, whether it be routing,
monitoring, or load balancing. The PHV also stores additional
per-packet data, or metadata. Metadata often holds temporary
values or intermediate results required by the application. Fi-
nally, the deparser reverses the function of the parser, using
the PHV to reconstitute a packet and send it on its way.

Between parser and deparser sits a packet-processing
pipeline. A program may recirculate a packet by sending
it back to the beginning, but too much recirculation decreases
throughput. Each stage contains a fixed set of resources.

• Pipeline stages. The processing pipeline is composed of a
fixed number (S) of stages.

• Packet header vector (PHV). The PHV that carries infor-
mation from packet fields and additional per-packet meta-
data through the pipeline has limited width (P bits).

• Registers. A stage is associated with M bits of registers (of
limited width) that serve as persistent memory.

• Match-action rules. Each stage stores match-action rules
in either TCAM or SRAM (T bits).

• ALUs. Actions are performed by ALUs associated with a
stage. Each stage has F stateful ALUs (that perform actions
requiring registers) and L stateless ALUs (that do not).

• Hash units. Each stage can perform N hashes at once.

The P4 language helps manage data-plane resources by
providing a layer of abstraction above PISA. A P4 compiler
maps these higher-level abstractions down to the PISA archi-
tecture and organizes the computation into stages. However,
experience with programming in P4 suggests, that while a
good start, the language is simply not abstract enough. It asks
programmers to make fixed choices ahead of time about the
size of data structures and the amount of computation the pro-
grammer believes the compiler can squeeze onto a particular
PISA switch. To do this well, programmers must recognize de-
pendencies between actions, estimate the stages available and
consider the memory layout and usage of their programs—in
short, they must redo many of the jobs of the compiler. These
are difficult jobs to do well, even for world-experts, and next
to impossible for novices. Inevitably, attempts at estimating
resource bounds leads to some amount of trial and error. In
summary, the current development environment requires a lot
of fiddly, low-level work and takes human time and energy
away from innovating at a high level of abstraction.

2.2 Example: Implementing NetCache in P4

To illustrate some of the difficulties of programming with P4,
consider an engineer in charge of upgrading their network to
include a new caching subsystem, based on NetCache [27],
which is designed to accelerate response times for web ser-
vices. NetCache contains two main data structures, a count-
min sketch (CMS) for keeping track of the popularity of the
keys, and a key-value store (KVS) to map popular keys to
values. Like any good programmer, our engineer constructs
these two data structures modularly, one at a time.

First, the engineer implements the CMS, a probabilistic
data structure that uses multiple hash functions to keep ap-
proximate frequencies for a stream of items in sub-linear
space. Intuitively, the CMS is a two-dimensional array of
w columns and r rows. For each packet (x) that enters the
switch, its flow ID (fx) is hashed using r different hash func-
tions ({hi}), one for each row, that range from (1 . . .w). In
each row, the output of the hash function determines which
column in the row is incremented for fx. For example, in the
second row of the CMS, hash function h2 determines that
column (h2(fx)) is incremented. To approximate the number
of times flow fx has been seen, one computes the minimum
of the values stored in columns hi(fx) for all r rows.

The CMS may overestimate the number of occurrences of a
packet x if there are hash collisions. Increasing the size of the
sketch in any dimension—either by adding more rows (i.e.,
additional, different hash functions) or by increasing the range
of the hash functions—can improve accuracy. Our engineer
must decide how to assign resources to the CMS, including
how much memory to allocate and how to divide memory into
rows. This allocation becomes even harder when grappling
with dividing resources between multiple structures.

Figure 3 presents a fragment of a P4 program that imple-
ments a CMS. Lines 1-7 declare the metadata used by the
CMS to store a count at a particular index (a hash of a flow
id). Lines 10-12 declare the low-level data structures (regis-
ters) that actually make up the CMS—four rows (r = 4) of
columns (w = 2048) that can each store values represented by
32 bits. Lines 14-16 and 18-20 declare the actions for hash-
ing/incrementing and for updating the metadata designed to
store the global minimum. Both actions use metadata, another
constrained resource that must be accounted for. The hashing
action is a complex action containing several atomic actions:
(1) an action to hash the key to an index into a register array,
(2) an action to increment the count found at the index, and (3)
an action to write the result to metadata for use later in finding
the global minimum. Such multi-part actions can demand a
number of resources, including several ALUs. As our engi-
neer adds more of these actions to the program, it becomes
increasingly difficult to estimate the resource requirements. In
the apply fragment of the P4 program (lines 22-30), the pro-
gram first executes all the hash actions, computing and storing
counts for each hash function, and then compares those counts

1 struct custom_metadata_t {
2 bit<32> min ;
3 bit<32> index0 ;
4 bit<32> count0 ;
5 . . .
6 bit<32> index3 ;
7 bit<32> count3 ; }
8 control Ingress (. . .) {
9 /* a register array for each hash table */

10 register<bit<32> >(2048) counter0 ;
11 . . .
12 register<bit<32> >(2048) counter3 ;
13 /* an action to update each hash table */
14 action incr_0 () { . . . }
15 . . .
16 action incr_3 () { . . . }
17 /* an action to set the minimum */
18 action min_0 () {meta . min = meta . count0 ; }
19 . . .
20 action min_3 () { . . . }
21 /* execute the following on each packet */
22 apply {
23 meta . min = 0 ; /*initialize global min*/
24 /* compute hashes */
25 incr_0 () ; . . . incr_3 () ;
26 /* compute minimum */
27 if (meta . count0 < meta . min) { min_0 () ; }
28 . . .
29 if (meta . count3 < meta . min) { min_3 () ; }
30 } }

Figure 3: Count-Min Sketch in P416

to each other looking for the minimal one.
Upon reviewing this code, some of the deficiencies of P4

should immediately be apparent. First, there is a great deal
of repeated code: Repeated data-structure definitions, action
definitions, and invocations of those action definitions in the
apply segment of the program. Good programming languages
make it possible to avoid repeated code by allowing program-
mers to craft reusable abstractions. Avoiding repetition in
programming has all sorts of good properties including the
fact that when errors occur or when changes need to be made,
they only need to be fixed/made in one place. Effective ab-
stractions also help programmers change the number or nature
of the repetitions easily. Unfortunately, P4 is missing such
abstractions. One might also notice that the programmer had
to choose magic constants (like 2048) and test whether such
constants lead to programs that can be compiled or not.

3 Elastic Programming in P4All

P4All improves upon P4 by making it possible to construct
and manipulate elastic data structures. These data structures
may be developed modularly and combined, off-the-shelf, to
build efficient new applications. In this section, we illustrate
language features by building an elastic count-min sketch and
using it in the NetCache application (see also Figure 4).

1 /* Count -min sketch module */
2 symbolic rows ;
3 symbolic cols ;
4 assume cols > 0 ;
5 assume 0 <= rows && rows < 4 ;
6 struct custom_metadata_t {
7 bit<32> min ;
8 bit<32 >[rows] index ;
9 bit<32 >[rows] count ; }

10 register<bit<32> >(cols) [rows] cms ;
11 action incr () [int index] { . . . }
12 action min () [int index] { . . . }
13 control hash_inc (. . .) {
14 apply {
15 for (i < rows) { incr () [i] ; } } }
16 control find_min (. . .) {
17 apply {
18 for (i < rows) {
19 if (meta . count [i] < meta . min) {
20 min () [i] ; } } } }
21 objective cms_obj {
22 function : scale (3 . 0 / cols) ;
23 step : 100 ; }
24
25 /* Key-value module */
26 symbolic k ; /* number of items */
27 assume k > 0 ;
28 control kv (. . .) { }
29 /* NetCache module */
30 control NetCache (. . .) {
31 apply {
32 hash_inc .apply () ;
33 find_min .apply () ;
34 kv .apply () ; } }
35 objective kvs_obj {
36 function : scale (sum (map (lambda y : 1 . 0 /

y,range (1,k+1)))) ;
37 step : 100 ; }
38 maximize 0 . 8*kvs_obj−0 . 2*cms_obj

Figure 4: NetCache and Count-Min Sketch in P4All

3.1 Declare the Elastic Parameters
The first step in defining an elastic data structure is to declare
the parameters that control the “stretch” of the structure. In the
case of the count-min sketch there are two such parameters:
(1) the number of rows in the sketch (i.e., the number of hash
functions), and (2) the number of columns (i.e., the range of
the hash). Such parameters are defined as symbolic values:

symbolic rows ;
symbolic cols ;

Symbolic integers like rows and cols should be thought of
as “some integer”—they are placeholders that are determined
(and optimized for) at compile time. In other words, as in other
general-purpose, solver-aided languages like Boogie [29],
Sketch [42], or Rosette [43], the programmer leaves the choice
of value up to the P4All compiler.

Often, programmers know constraints that are unknown
to the compiler. For instance, programmer experience might
suggest that count-min sketches with more than four hash

functions offer diminishing returns. Such constraints may be
written as assume statements as follows:

assume 0 <= rows && rows < 4 ;

An assume statement is related to the familiar assert statement
found in languages like C. However, an assert statement fails
(causing program termination) when its underlying condition
evaluates to false. An assume statement, in contrast, always
succeeds, but adds constraints to the system, guaranteeing the
execution can depend upon the conditions assumed.

3.2 Declare Elastic State
The next step in defining an elastic data structure is to declare
elastic state. P4 data structures are defined using a combina-
tion of the packet-header vector (metadata associated with
each packet), registers (updated within the data plane), or
match-action tables (rules installed by the control plane). The
same is true of P4All. However, rather than using constants
to define the extent of the state, one uses symbolic values, so
the compiler can optimize their extents for the programmer.

In the count-min sketch, each row may be implemented
as a register array (whose elements, in this case, are 32-bit
integers used as counters). The number of registers in each
register array is the number of columns in a row. In P4All, we
define this matrix as a symbolic array of register arrays:

register<bit<32> >(cols) [rows] cms ;

In this declaration, we have a symbolic array cms, which
contains rows instances of the register type. Each register
array holds cols instances of 32-bit values.

One can also define elastic metadata. For instance, for each
row of the CMS, we need metadata to record an index and
count for that row. To do so, we define symbolic arrays of
metadata as follows. Each element of each array is a 32-bit
field. The arrays each contain rows items.

bit<32 >[rows] index ;
bit<32 >[rows] count ;

3.3 Define Elastic Operations
Because elastic data structures can stretch or contract to fit
available resources, elastic operations over those data struc-
tures must do more or less work in a corresponding fashion.
To accommodate such variation, P4All extends P4 with loops
whose iteration count may be controlled by symbolic values.

The count-min sketch of our running example consists
of two operations. The first operation hashes the input rows
times, incrementing the result found in the CMS at that lo-
cation, and storing the result in the metadata. The second
iterates over this metadata to compute the overall minimum
found at all hash locations. Each operation is implemented
using symbolic loops and is encapsulated in its own control
block. The code below illustrates these operations.

/* actions used in control segments */
action incr () [int i] { . . . }
action min () [int i] { . . . }
/* hash and increment */
control hash_inc (. . .) {
apply {

for (i < rows) {
incr () [i] ; } } }

/* find global minimum */
control find_min (. . .) {
apply {
for (i < rows) {

if (meta . count [i] < meta . min) {
min () [i] ; } } } }

These simple symbolic iterations (for i < rows) iterate from
zero up to the symbolic bound (rows), incrementing the index
by one each time. The overarching NetCache algorithm can
now call each control block in the ingress pipeline.

control NetCache (. . .) {
apply {

hash_inc .apply (. . .) ;
find_min .apply (. . .) ;
. . . } }

3.4 Specify the Objective Function

Data structures written for programmable switches are valid
for a range of sizes. In the CMS example above, multiple
assignments to rows and cols might fit within the resources
of the switch. Finding the right parameters becomes even
harder when a program has multiple data structures. In the
case of NetCache, after defining a CMS, the programmer still
needs to define and optimize a key-value store.

To automate the process of selecting parameters, P4All
allows programmers to define an objective function that ex-
presses the relationship between the utility of the structure
and its size (as defined by symbolic values). For example, the
CMS gains utility as one increases the cols parameter, because
CMS error rate decreases. The P4All compiler should find
instances of the symbolic values that optimize the given user-
defined function subject to the constraint that the resulting
program can fit within the switch resources.

For example, we can define the hit ratio for the key-value
store as a function of its size for a workload with a Zipfian
distribution. Suppose the key-value store has k items. The
probability of a request to the ith most popular item is 1

iα [9]. In
this case, α is a workload-dependent parameter that captures
the amount of skew in the distribution. Then, for k items, the
probability of a cache hit is the sum of the probabilities for
each item in the key-value store: ∑

k
i=1

1
iα . Hence, in P4All, for

α = 1, we might define the following objective function.

sum (map (lambda y : 1 . 0 / y,range (1,k+1)))

In practice, we have found that non-linear optimization
functions that use division can generate poor quality solu-
tions, perhaps due to rounding errors (at least for the solver,

Gurobi [18], that we use). Hence, we scale such functions up,
which results in the following optimization function.

scale (sum (map (lambda y : 1 . 0 / y,range (1,k+1))))

Because we supply programmers with a library of reusable
structures and optimization functions for them, non-expert
programmers who use our libraries do not have to concern
themselves with such details.

Similarly, we can define CMS error, ε, in terms of the num-
ber of columns, w, in the sketch. For a workload with parame-
ter α, we can set w = 3(1/ε)1/α [13]. The number of rows in
the CMS does not affect ε, so we may choose to leave it out
of the objective function. However, we can incorporate con-
straints to guarantee a minimum number of rows. The number
of rows, d, in a CMS is used to determine a bound on the confi-
dence, δ, of the estimations in the sketch (d = 2.5ln1/δ) [13].
For α = 1, this objective function is 3.0/cols.

In NetCache, the programmer must decide if either data
structure should receive a higher proportion of the resources.
If the CMS is prioritized, it can more accurately identify heavy
hitters. However, the key-value store may not have sufficient
space to store the frequently requested items. Conversely, if
the CMS is too small, it cannot accurately measure which
keys are popular and should be stored in the cache.

To capture the balance between data structures, a program-
mer can combine the objectives of each data structure into
a weighted sum. For the NetCache application, this means
creating an objective function that slightly prioritizes the hit
rate of the key-value store over the error of the CMS:

maximize 0 . 8*kvs_obj−0 . 2*cms_obj

Figure 5 presents the symbolic values and possible objec-
tive functions for different data structures. Each structure has
symbolic values and an objective function derived from the
purpose of the structure, which may vary across applications.
For example, the key-value store used in NetCache [27] acts
as a cache, and the main goal of the algorithm is to maximize
the cache hits. In the case of a collision in the hash table used
in BeauCoup [10], only one of the values is kept , and the
other is discarded, resulting in possible errors. Therefore, the
main goal of the algorithm is to minimize collisions. The pro-
grammer can define the objective function of each structure
based on the specific needs of the system. Existing analyses of
common data structures can assist in defining these functions.
For example, for the Bloom filter, the probability for false
positives in Zipfian-distributed traffic has been analyzed by
Cohen and Matias [12].

Complex Objectives. Some objective functions (e.g.,
CMS) may only include a single symbolic variable, while
others are a function of multiple variables (e.g., Bloom fil-
ter in Figure 5). Because our compiler uses Gurobi [18] in
the back end to solve optimization problems, it is bound by

Gurobi’s constraints. In particular, Gurobi cannot solve com-
plex, non-linear objectives that are functions of multiple vari-
ables directly. As a consequence, we tackle these objectives in
two steps. First, we transform objectives in multiple variables
(say, x and y) into objectives in a single variable (say x), by
choosing a set of possible values of y to consider. We create
a different Gurobi instance for each value of y, solve all the
instances independently (a highly parallelizable task) and find
the global optimum afterwards. Second, we use Gurobi to
implement piece-wise linear approximations of the non-linear
functions. Both of these steps benefit from some user input,
and we have extended P4All to accommodate such input.

To reduce objectives with multiple variables to a single
variable, we allow users to provide a set of points at which
to consider evaluating certain symbolic values. Doing so pro-
vides users some control over the number of Gurobi instances
generated and hence the compilation costs of solving complex
optimization problems. Such sets can be generated via “range
notation” (optionally including a stride, not shown here). For
example, a possible objective function for a Bloom filter de-
pends on the number of bits in the filter as well as the number
of hash functions used. To eliminate the second variable from
the subsequent optimization objective, a programmer can de-
fine the symbolic variable hashes as follows.

symbolic hashes [1 . . 10]

On processing such a declaration, the compiler generates ten
separate optimization problems, one for each potential value
of the hash functions. The compiler chooses the solution
from the instance that generated the optimal objective, and
it outputs the program layout and the concrete values for the
number of hashes and number of bits in the filter.

To reduce non-linear functions to linear ones, piecewise
linear approximations are used. By default, the compiler will
use the simplest such approximation: a single line. Doing
so results in fast compile times, but can lead to suboptimal
solutions. To improve the quality of solution, we allow pro-
grammers to specify the number of linear pieces using a “step”
annotation on their objective function. For instance, on lines
21-23 of Figure 4, the objective for the CMS is defined with
a simple function and a “step” of 100, indicating that a linear
component is created between every 100th value. Increas-
ing the number of linear components in the approximation
can increase the cost of solving these optimization problems.
By providing programmers with optional control, we support
a “pay-as-you-go” model that allows programmers to trade
compile time for precision if they so choose.

4 Compiling Elastic Programs

Inputs to the P4All compiler include a P4All program and a
specification of the target’s resources (i.e., the PISA resource
parameters defined Section 2.1 and the capabilities of the
ALUs). The compiler outputs a P4 program with a concrete

Module Symbolic values Intuition Objective Function
Key-value store/
hash table

Number of rows k NetCache [27]: Maximize cache hits maximize ∑
k
i=1

1
iα

Hash-based
matrix (Sketch)

Num rows d, num columns w NetCache [27] (CMS): Minimize heavy hitter
detection error

minimize ε = (3
w)

α

Bloom filter Num bits m, num hash functions k NetCache [27]: Minimize false positives. Ex-
pected number of items in stream n

minimize (1− e−
kn
m)k

Multi-value table Number of rows k BeauCoup [10]: Minimize collisions. BeauCoup
parameter set B; Probability to insert to table p =
f (α,B); Expected number of items in stream n

minimize (1
k)

n·p

Sliding window
sketch

Num rows d, num columns w, num
epochs t

ConQuest [11]: Maximize epochs and minimize
error

maximize t(1− (3
w)

α)

Ring buffer Buffer length b Netseer [48]: Maximize buffer capacity maximize b

Figure 5: Symbolic values and objective functions for Zipfian distributed traffic with (constant) parameter α.

assignment for each symbolic value, and a mapping of P4 pro-
gram elements to stages in the target’s pipeline. The output
program is a valid instance of the input when the concrete
values chosen to replace symbolic ones satisfy the user con-
straints (i.e., assume statements) as well as the constraints
of the PISA model that is targeted. In addition, loops are
unrolled as indicated given the chosen concrete values. The
output program is an optimal instance, when in addition to
being valid, it maximizes the given objective function.

The P4All compiler first analyzes the control and data de-
pendencies between actions in the program to compute an
upper bound on the number of times each loop can be un-
rolled without exhausting the target’s resources (§4.1). For
example, a for-loop with a dependency across successive it-
erations cannot run more times than the number of pipeline
stages (S). The unrolled program also cannot require more
ALUs than exist on the target ((F +L)∗S).

Next, the compiler generates an integer linear program
(ILP) with variables and constraints that govern the quantity
and placement of actions, registers, and metadata relative to
the target constraints (§4.2). The upper bound ensures this in-
teger linear program is “large enough” to consider all possible
placements of program elements that can maximize the use of
resources. However, the ILP is more accurate than the coarse
unrolling approximation we use. Hence, it may generate a
solution that excludes some of the unrolled iterations—some
of the later iterations may ultimately not “fit” in the data plane
or may not optimize the user’s preferred objective function
when other constraints are accounted for. The resulting ILP
solution is a layout of the program on the target, including
the stage placement and memory allocation, and optimal con-
crete assignments for the symbolic values. Throughout this
section, we use the CMS program in Figure 4 as a running
example. For the sake of the example, we assume that the
target has three pipeline stages (S = 3), 2048b memory per
stage (M = 2048), two stateful and two stateless ALUs per
stage (F = L = 2), and 4096 bits of PHV (P = 4096).

incr_1

incr_2

incr_3

min_1

min_2

min_3

Figure 6: An example dependency graph used for computing upper
bounds for loop unrolling (§4.1).

4.1 Upper Bounds for Loop Unrolling

In its first stage, the P4All compiler finds upper bounds for
symbolic values bounding the input program’s loops. To find
an upper bound for a symbolic value v governing the number
of iterations of some loop, the compiler first identifies all of
the loops bounded by v. It then generates a graph Gv that
captures the dependencies between the actions in each itera-
tion of each loop and between successive iterations. It uses
the information represented in Gv and the target’s resource
constraints to compute the upper bound.

Determining dependencies. When a loop is unrolled K
times, it is replaced by K repetitions of the code in its body
such that in repetition i, each action a in the original body of
the loop is renamed to ai. The compiler constructs the depen-
dency graph Gv based on the actions in the unrolled bodies
of for-loops bounded by v. Each node n in the dependency
graph Gv represents a set An of actions that access the same
register and thus must be placed in the same stage.

Dependency graphs can have (1) precedence edges, which
are one-way, directed edges, and (2) exclusion edges, which
are bidirectional. There is a precedence edge from node n1
to node n2 (indicated with the notation n1 −→ n2) if there
is a data or control dependency from any of the actions rep-
resented by n1 to any of the actions represented by n2. The
presence of the edge n1 −→ n2 forces all actions associated
with n1 to be placed in a stage that strictly precedes the stage
where actions of n2 are placed. In contrast, an exclusion edge
(n1←→ n2) indicates the actions of n1 must be placed in a

separate stage from the actions of n2 but n1 need not precede
n2. In general, when actions are commutative, but cannot
share a stage, they will be separated by exclusion edges. For
instance, if actions a1 and and a2 both add one to the same
metadata field, they cannot be placed in the same stage, but
they commute: a1 may precede a2 or a2 may precede a1.

Figure 6 shows the dependency graph for rows from our
CMS example. Only the incr_i actions access register arrays,
and they all access different arrays. Thus, each node represents
only one action. There is a precedence edge from incr_i to
min_i as the former writes to the same metadata variable read
by the latter. Thus, incr_i must be placed in a stage preceding
min_i. There are exclusion edges between each pair of min_i
and min_j because they are commutative but write to the same
metadata fields: min_i sets the metadata variable tracking the
global minimum meta.min to the minimum of its current value
and the ith row of the CMS (meta.count[i]).

Computing the upper bound. To compute an upper
bound for loops guarded by v, our compiler unrolls for-loops
bounded by v for increasing values of K, generating a graph
Gv until one of the following two criteria are satisfied:

1. the length of the longest simple path in Gv exceeds the
total number of stages S, or

2. the total number of ALUs required to implement actions
across all nodes in Gv exceeds the total number of ALUs
on the target (i.e., (F +L)∗S).

Once either of the above criteria are satisfied, the compiler can
use the current value of K, i.e., the number of times the loops
have been unrolled, as an upper bound for v. This is because
any simple path in Gv represents a sequence of actions that
must be laid out in disjoint stages. Hence, a simple path longer
than the total number of stages cannot be implemented on
the switch (i.e., criteria 1). Likewise, the switch has only
(F+L)∗S ALUs and a computation that requires more cannot
be implemented (i.e., criteria 2).

Figure 6 presents an analysis of a CMS loop bounded by
rows. Notice that the length of the longest simple path in
Grows will exceed the number of stages (S = 3) when three
iterations of the loop have been unrolled. On the other hand,
when only two iterations of the loop are unrolled, the longest
simple path has length 3 and will fit. Thus, the compiler com-
putes 2 as the upper bound for this loop.

Nested loops. To manage nested loops, we apply the algo-
rithm described above to each loop, making the most conser-
vative assumption about the other loops. For instance, suppose
the program has a loop with nesting depth 2 in which the outer
loop bounded by vout and the inner loop is bounded by vin.
Assume also the valid range of values for both vin and vout
is (1,∞]. The compiler sets vin to one, unrolls the inner loop,
and computes an upper bound for vout as described above.
Next, the compiler sets vout to one, unrolls the outer loop, and
proceeds to compute the upper bound for vin as described

Variables
Actions #1 {xai ,s | 0≤ s < S}
Registers #2 {mri ,s | 0≤ s < S}
Match-Action Tables #3 {tmti ,s | 0≤ s < S}
Metadata #4 {di | i≤Uv}

Constraints
Dependencies

Same-Stage #5 xai ,s = xbi ,ss < S
Exclusion #6 xai ,s ≤ 1− xbi ,s

s < S
Precedence #7 xbi ,y ≤ 1− xai ,z

y,z < S,y≤ z
Conditional #8 ∑0≤s<S xai ,s = ∑0≤s<S xbi,s

0≤ i≤Uv
Resources

Memory #9 ∑i mri ,s ·wri ≤M ∀s < S
#10 mri ,s ≤ xai ,s ·M 0≤ s < S
#11 mri ,s ·w0 = m0,s ·wri

∀s < S,r ≥ 1
TCAM #12 ∑i tmti ,s · twti ≤ T ∀s < S
Stateful ALUs #13 ∑i H f (ai) · xai ,s ≤ F

∀0≤ s < S
Stateless ALUs #14 ∑i Hl(ai) · xai ,s ≤ L

∀0≤ s < S
PHV #15 ∑i di ·bitsd ≤ P−Pfixed

#16 di = ∑0≤s<S xai ,s
if accesses(a,d)

Hash Functions #17 ∑i hhai ,s ≤ N ∀s < S
Others

At Most Once #18 ∑0≤s<S xai ,s ≤ 1
Inelastic Actions #19 ∑0≤s<S xane,s = 1

Figure 7: ILP Summary

above. In theory, heavily nested loops could lead to an explo-
sion in the complexity of our algorithm, but in practice, we
have not found nested loops common or problematic. Only
our SketchLearn application requires nested loops and the
nesting depth is just 2, which is easily handled by our system.

4.2 Optimizing Resource Constraints
After unrolling loops, the compiler has a loop-free program
it can use to generate an integer linear program (ILP) to opti-
mize. Figure 7 summarizes the ILP variables and constraints.
Below, we use the notation #k to refer to the ILP constraint or
variable labeled k in Figure 7.

Action Variables. To control placement of actions, the
compiler generates a set of ILP variables named xai,s (#1).
The variable xai,s is 1 when the action ai appears in stage s of
the pipeline and is 0 otherwise. For instance, in the count-min
sketch, there are two actions (incr and min). If we unroll a
loop containing those actions twice and there are three stages
in the pipeline, we generate the following action variable set.

{xai,s | a ∈ {incr,min}, 1≤ i≤ 2, 0≤ s < S}

Register Variables. In a PISA architecture, any register
accessed by an action must be placed within the same stage.
Thus placement (and size) of register arrays interact with
placement of actions. For each register array r and pipeline

stage s, the ILP variable mr,s contains the amount of memory
used to represent r in stage s (#2). This value will be zero in
any stage that does not contain r and its associated actions.
For instance, to allocate the cms registers, the compiler uses:

{mcmsi,s |1≤ i≤ 2, 0≤ s < S}

Match-Action Table Variables. These variables represent
the resources used by match-action tables. Similar to register
variables, the variable tmti,s represents the amount of TCAM
used by table ti in stage s (#3). Note that in our current ILP, we
assume that all tables, ones with and without ternary matches,
use TCAM. We plan to extend the ILP so that it can choose
to implement tables without ternary matches in SRAM.

Metadata Variables. The amount of metadata needed is
also governed by symbolic values. If Uv is the upper bound
on the symbolic value that governs the size of a metadata
array, then the compiler generates a set of metadata variables
di for 1≤ i≤Uv (#4). Each such variable will have value 1
in the ILP solution if that chunk of metadata is required and
constraints described later will bound the total metadata to
ensure it does not exceed the target size limits. In our running
example, the bound Uv corresponds to the number of iterations
of the loop that finds the global minimum value in the CMS.

Dependency Constraints. If a set of actions use the same
register, they must be placed on the same stage. To do so,
the compiler adds a same-stage constraint (#5). Similarly,
if an action has a data or control dependency on another
action, the two must be placed in separate stages. If there is
an exclusion edge between actions ai and bi, the compiler
creates a constraint to prevent these actions from being placed
in the same stage (#6). If there is a precedence edge between
actions ai and bi, the compiler creates a constraint forcing ai
to be placed in a stage before bi (#7).

Conditional Constraints. In some cases, as it happens
in our CMS example, multiple loops are governed by the
same symbolic values. Hence, iterations of one loop (and
the corresponding actions/metadata) exist if and only if the
corresponding iterations of the other loop exist. Moreover, if
any action within a loop iteration cannot fit in the data plane,
then the entire loop iteration should not be instantiated at all.
Conditional constraints (#8) enforce these invariants.

Resource Constraints. We generate ILP constraints for
each of the resources listed in §2.1. Our ILP constraints reflect
the memory limit per stage (#9) and the fact that memory and
corresponding actions must be co-located (#10). The compiler
also generates constraints to ensure that each register array in
an array of register arrays has the same size (#11). Moreover,
the ILP includes a constraint to guarantee that the TCAM
tables in a stage fit within a stage’s resources (#12).

To enforce limits on the number of stateful and stateless
ALUs used in each stage, we assume that the target provides
two functions H f (ai) and Hl(ai) as part of the target speci-
fication. These functions specify the number of stateful and
stateless ALUs, respectively, required to implement a given

action ai on the target. Given that information, the compiler
generates constraints to ensure that the total number of ALUs
used by actions in the same stage do not exceed the available
ALUs in a stage (#13, #14).

To track the use of PHV, constraint #15 ensures di is 1
whenever the action ai (which accesses data di) is used in
loop iteration i. To limit the total number of PHV bits, con-
straint #16 sums the size in bits (bitsd) of the metadata d
associated with iteration i and enforces it to be within the
PHV bits available to elastic program components (P−Pfixed,
where Pfixed is the amount of metadata not present in elastic
arrays). Finally, each stage in the PISA pipeline can perform
a limited number of hash functions. To capture that, the com-
piler generates constraint #17, which ensures that the number
of actions including a hash function h in each stage does not
exceed the available number of available hashing units N.

Other Constraints. The compiler generates a constraint so
that each action ai is placed at most once (#18). Moreover, the
compiler ensures that each inelastic action ane (i.e., an action
not encapsulated in a loop bounded by a symbolic value) must
be placed in the pipeline (#19). Finally, any assume statements
appearing in the P4All program are included in the ILP.

4.3 Limitations
Our current ILP formulation assumes each register array and
match-action table can be placed in at most one stage. How-
ever, a PISA target could conceivably spread a single array
or table across multiple pipeline stages. To accommodate
multi-stage arrays or tables, we can relax the ILP constraint
on placing actions in at most one stage (#18).

Moreover, some compilers further optimize the use of the
PHV. For example, after a metadata field has been accessed,
the PHV segment storing that field could be overwritten in
later stages if the metadata were never accessed again. Our
prototype does not yet capture PHV field reuse.

P4All optimizes with mostly static criteria. We do not con-
sider any dynamic components, unless a programmer incor-
porates a workload-dependent parameter in their objective
function. P4All also does not support elastic-width fields or
parameterized packet recirculation. We leave these features,
as well as PHV reuse, for future work.

5 Prototype P4All Compiler

In this section, we describe our prototype P4All compiler,
written in Python.

Target specification. We created a target specification for
the Intel Tofino switch, based on product documentation. The
specification captures the parameters in Section 2.1 and the
H f and Hl functions that specify the number of ALUs re-
quired to implement a given action. Since the Tofino design
is proprietary, our specification unquestionably omits some
low-level constraints not described in the documentation; with

Applications P4All Compile ILP
Code Time (sec) (Var, Constr)

Linear Objective
IPv4 Forwarding + 217 0.4 (192, 1026)
Stateful Firewall

BeauCoup 541 0.1 (672,7511)
Precision 166 25.7 (1316, 18969)
NetChain 242 27.9 (252, 3278)

Elastic Switch.p4 804 0.2 (1080, 21581)
Non-Linear Objective

Key-value 127 15.4 (168, 857)
store (KVS)
Count-min 82 1.8 (396, 1994)

sketch (CMS)
KVS + CMS 170 27.9 (586, 2815)
(Section §3)
Non-Elastic 853 17.5 (1498, 23575)

Switch.p4 + CMS
SketchLearn 445 2.4 (768, 880)

ConQuest 362 5.8 (612, 3734)
Multivariate Objective

Bloom filter 70 513.6 (longest) (240, 308)
170.0 (avg) (132, 191)

CMS + Bloom 223 67.3 (longest) (658, 2266)
38.1 (avg) (550, 2149)

Figure 8: P4All applications, showing the lines of code in the P4All
implementation. For structures with multiple instances, the last two
columns give statistics for the single instance with the longest com-
pile time and the average of all instances.

knowledge of such constraints, we could augment our target
specification and optimization framework to handle them.

Compute upper bounds for symbolic values. To com-
pute upper bounds and unroll loops, our prototype must an-
alyze P4 dependencies. To facilitate this, we use the Lark
toolkit [1] for parsing. We have also written a Python pro-
gram that finds dependencies between actions and tables and
outputs the information in a format our ILP can ingest. At
the moment, we only produce precedence edges. As a re-
sult, we do not process exclusion edges, treating all edges as
precedence edges. We plan to upgrade this in the future.

Generate and solve ILP. Our prototype generates the ILP
with variables and constraints in Figure 7, as well as the ob-
jective function. We then invoke the Gurobi Optimizer [18]
to compute a concrete assignment for each symbolic value.
We then use these values to generate the unrolled P4 code.

P4 compiler. After the compiler converts the P4All pro-
gram into a P4 program, we invoke the (black box) Tofino
compiler to compile the P4 program for execution on the
underlying Tofino switch. If our experiments initially fail
to compile to the Tofino switch because of proprietary con-
straints, we adjust our target specification and added assume

statements to further constrain the memory allocated to reg-
ister arrays. Ideally, the P4All compiler would be embedded
within a target-specific compiler to automatically incorporate
the proprietary constraints, without our needing to infer them.

Tofino sta
ges

1.25xTofino stg
s

1.67xTofino stg
s

2xTofino stg
s

0
2000
4000
6000
8000

10000
12000
14000
16000
18000

IL
P

Co
m

po
ne

nt
s

Dependency Constraints
Other Constraints
Resource Constraints
Variables

(a) Number of ILP variables and constraints for CMS as stages increase.
Num Stages ILP Time (s)

Tofino 1.8
1.25xTofino 4.5
1.67xTofino 53.1

2xTofino 216.0

(b) ILP completion time for CMS as stages increase.

Figure 9: ILP performance as number of available stages increases.

6 Performance Evaluation

6.1 Compiler Performance

Figure 8 reports the sizes of the constraint systems, and the
compile times, for benchmark applications when compiled
against our Tofino resource specification. We choose appli-
cations with a variety of features, including elastic TCAM
tables (Switch.p4), multivariate objectives (Bloom filter), elas-
tic and non-elastic components (IPv4 forwarding and stateful
firewall), and multiple elastic components (KVS and CMS,
CMS and Bloom filter). In our experiments, we found that the
choice of objective function greatly impacts performance. For
example, a non-convex objective function results in a mixed
integer program (MIP) instead of an ILP, which significantly
increases solving time. On the other hand, our applications
with linear objective functions (e.g., Switch.p4, BeauCoup)
typically had smaller compile times. Additionally, increasing
the step size for an objective (i.e., reducing the number of
values provided to the ILP) decreases compile time.

For the data structures we evaluated with objective func-
tions with multiple variables (e.g., Bloom filter), our compiler
created multiple instances of the optimization problem. We
report the average compile time and the average number of
ILP variables and constraints for each instance, along with the
statistics for the largest instance. Our prototype compiler is
not parallelized, but could easily be in the future, allowing us
to solve many (possibly all) instances at the same time. Com-
pile times of each ILP instance for the Bloom filter application
range from roughly one second to 8.5 minutes.

Compile time increases as we increase the number of elastic
elements in a P4All program. We evaluate ILP performance
by observing the solving time as we increase the number of
elastic elements in a program. Compilation for a single elastic
sketch completed in about 10 seconds, while compilation for

(a) CMS error rate as memory increases.

10000 20000 30000 40000 50000 60000 70000 80000
Registers per Stage (bits)

0

20

40

60

80

100

Da
ta

 st
ru

ct
ur

e
siz

e(
Kb

)

CMS (objective 1)
KV (objective 1)
CMS (objective 2)
KV (objective 2)

(b) CMS and KVS sizes for different objectives. (c) Bloom filter false positive vs. # hash functions.

Figure 10: Elasticity of P4All

four sketches took over 30 minutes.
The number of constraints also affects compile time. The

Bloom filter had the fewest ILP constraints, as it had no de-
pendent components, and it alone had the largest compilation
time. The reason for this is that the smaller number of con-
straints may lead to a more difficult optimization problem.

When we increase the available resources on the target, we
generate a larger optimization problem, with more variables
and constraints. Figure 9a the change in the number of con-
straints and variables as we increase the number of available
stages on the target. Most of the resource and other constraints
(e.g., TCAM size, hash units, at most once, etc.) are linearly
proportional to the stages. The dependency constraints are
the only constraints that do not increase linearly with the
stages. For a single P4All action, we create an ILP variable
for each stage. However, the variables for CMS are not lin-
early proportional to the stages because as we increase stages,
the upper bound on the actions also increases, resulting in
more variables. Similarly, the ILP completion time increases
super linearly with the number of stages (Figure 9b).

Some applications may have both elastic and non-elastic
components. In our evaluations, we found that this did not sig-
nificantly impact compile time. When we combined an elas-
tic CMS and Switch.p4 (with fixed-size TCAM tables), the
compile time was 17 seconds. Our compiler requires that all
non-elastic portions of the program get placed on the switch,
or the program will fail to compile.

Hand-written vs P4All-generated P4 To investigate
whether P4All-generated P4 was competitive with hand-
written P4, we examined a few P4 programs written by hand
by other programmers and compared those programs with
the P4 code generated from P4All. When we compare the
number of registers used by the manually-written BeauCoup
and the P4All-generated BeauCoup, we find they are exactly
the same. ConQuest is made up of sketches, so we use the
same objective function described in §3. With that function,
our compiler tries to allocate as many registers as possible,
and allocates all available space to sketches, as more registers
means lower error. Examining the ConQuest paper in more
depth, however, shows that the accuracy gains are minimal

after a certain point (2048 columns). To account for this, we
easily adjust the objective function, and as a result, the com-
piled code uses exactly 2048 columns as in the original. This
experiment illustrates the power of P4All beautifully. On one
hand, our first optimization function is highly effective—it
uses up all available resources. On the other hand, when new
information arrives, like the fact that empirically, there are
diminishing returns beyond a certain point, we need only ad-
just the objective function to reflect our new understanding of
the utility. None of the implementation details need change.
While this analysis is admittedly ad hoc, our findings here sug-
gest that P4All does not put programmers at a disadvantage
when it comes to producing resource-efficient P4.

6.2 Elasticity
In this section we measure how utility of data structures vary
as resources are made available. Figure 10a shows how the
error rate of a CMS decreases as we increase the available
registers in each stage. Figure 10b shows how the sizes of a
KVS and CMS change for different objective functions. We
use the objective functions for KVS hit rate and CMS error
rate as described in Figure 5. The first objective function 0.8∗
(kv_ob j)−0.2∗ (cms_ob j) gives a higher weight to the KVS
hit rate, while the second 0.2 ∗ (kv_ob j)− 0.8 ∗ (cms_ob j)
gives a higher weight to the CMS error rate.

For multi-variate functions, the compiler generates multiple
instances of the optimization problem, and chooses the solu-
tion to the instance with the best objective. In Figure 10c, we
show the objective (false positive rate) from the instances of
optimization for a Bloom filter. In each instance, the compiler
increases the number of hashes used. The objective decreases
for each instance, but not by much after the first instance.

6.3 Case Study
In a conversation with a major cloud provider, the researchers
expressed interest in hosting a multiple applications on the
same network device, which must include forwarding logic.
We designed P4All for exactly such scenarios—elastic struc-
tures allow new applications to fit onto a shared device. We
consider a simple case study oriented around this problem.

Stage 1 Stage 2 Stage 11 Stage 12

CMS
find_min11

CMS
find_min10

CMS
find_min1

CMS incr1 CMS incr2 CMS incr11

. . .

Forwarding Forwarding Forwarding Forwarding

(a) Switch layout with forwarding tables and a CMS.

Stage 1 Stage 2 Stage 11 Stage 12

Forwarding

CMS
find_min11

CMS
find_min10

CMS
find_min1

CMS incr1 CMS incr2 CMS incr11
. . .

ACL

Forwarding Forwarding Forwarding

ACL ACL ACL

Bloom1

Bloom2

(b) Switch layout with forwarding tables, ACL tables, CMS, and Bloom filter
used in stateful firewall.

Figure 11: Switch program layouts.

To do so, we started with the IPv4 forwarding code from
switch.p4, but the size of the table is defined symbolically
in P4All. We then added a CMS for heavy hitter detection.
Figure 11a illustrates the layout: The forwarding tables utilize
all of the TCAM resources, and the CMS uses registers.

Next, to demonstrate the flexibility and modularity of our
framework, we add access control lists (ACLs), which use
match-action tables, and squeeze in a stateful firewall, using
Bloom filters, similar to the P4 tutorials [2]. Using P4, the
programmer would manually resize the CMS and forwarding
tables so the new applications could fit on the switch, but by
using P4All, we do not have to change our existing code at all.
To write ACLs with elastic TCAM tables, we modify the code
in switch.p4 to include symbolic table sizes. Our compiler
automatically resizes the elastic structures to fit on the switch,
resulting in the layout in Figure 11b. The forwarding tables
and ACLs now share the match-action table resources, and
the registers in the Bloom filter fit alongside the CMS.

7 Related Work

Languages for network programming. There has been a
large body of work on programming languages for soft-
ware defined networks [3, 14, 37, 44] targeted towards Open-
Flow [33], a predecessor to P4 [7, 36]. OpenFlow only allows
for a fixed set of actions and not control over registers in the
data plane, and so these abstractions are not sufficient for P4.
While P4 makes it possible to create applications over a vari-
ety of hardware targets, it does not make it easy. Domino [40]
and Chipmunk [16] use a high-level C-like language to aid in
programming switches. P4All also aims to simplify this pro-
cess, but we enhance P4 with elastic data structures. Domino
and Chipmunk optimize the data-plane layout for static, fixed-
sized data structures, and P4All optimizes the data structure
itself to make the most effective use of resources.

Using synthesis for compiling to PISA. The Domino
compiler extracts “codelets”, groups of statements that must
execute in the same stage. It then uses SKETCH [42] pro-
gram synthesis to map a codelet to ALUs (atoms in the paper’s
terminology) in each stage. If any codelet violates target con-
straints, the program is rejected. To improve Domino, Chip-
munk [16] uses syntax-guided synthesis to perform an exhaus-
tive search of all mappings of the program to the target. Thus,
it can find mappings that are sometimes missed by Domino.
Lyra [15], extends this notion to a one-big-pipeline abstrac-
tion, allowing the composition of multiple algorithms to be
placed across several heterogeneous ASICs. Nevertheless,
Domino, Chipmunk and Lyra map programs with fixed-size
data structures, while P4All enables elastic data structures.

Compiling to RMT. Jose et al. [28] use ILPs and greedy al-
gorithms to compile programs for RMT [8] and FlexPipe [35]
architectures. These ILPs are part of an all-or-nothing com-
piler which attempts to place actions on a switch based on the
dependencies and the sizes of match-action tables. In contrast,
the P4All compiler allows for elastic structures, which can
stretch or compress according to a target’s available resources.

Programmable Optimization. P2GO [45] uses profile-
guided optimization (i.e., a sample traffic trace, not a static
objective function) to reduce the resources required in a P4
program. P2GO can effectively prune components that are not
used in a given environment; however, if unexpected traffic
turns up later, P2GO may have pruned needed functionality!

8 Conclusion

In this paper, we introduce the concept of elastic data struc-
tures that can expand to use the resources on a hardware target.
Elastic switch programs are more modular than their inelastic
counterparts, as elastic pieces can adjust depending on the
resource needs of other components on the switch. They also
are portable, as they can be recompiled for different targets.

P4All is a backwards-compatible extension of P4 that in-
cludes symbolic values, arrays, loops and objective functions.
We have developed P4All code for a number of reusable mod-
ules and several applications from the recent literature. We
also implement and evaluate a compiler for P4All, demonstrat-
ing that compile times are reasonable and that auto-generated
programs make efficient use of switch resources. We believe
that P4All and our reusable modules will make it easier to im-
plement and deploy a range of future data-plane applications.

Acknowledgments

We thank the anonymous NSDI reviewers and our shepherd
Costin Raiciu for their valuable feedback. This work is sup-
ported by DARPA under Dispersed Computing HR0011-17-
C-0047, NSF under FMiTF-1837030 and CNS-1703493 and
the Israel Science Foundation under grant No. 980/21.

References

[1] Lark parser. https://github.com/lark-parser/
lark.

[2] Stateful firewall in P4. https://github.com/
p4lang/tutorials/tree/master/exercises/
firewall.

[3] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-
Baptiste Jeannin, Dexter Kozen, Cole Schlesinger, and
David Walker. NetKAT: Semantic foundations for net-
works. In ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 113–126.
ACM, 2014.

[4] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, Shir Landau
Feibish, Danny Raz, and Minlan Yu. Routing oblivious
measurement analytics. In IFIP Networking, pages 449–
457, 2020.

[5] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang
Li, Gianni Antichi, Minlan Yu, and Michael Mitzen-
macher. PINT: Probabilistic in-band network telemetry.
In ACM SIGCOMM, pages 662–680, 2020.

[6] Ran Ben Basat, Xiaoqi Chen, Gil Einziger, and Ori Rot-
tenstreich. Efficient measurement on programmable
switches using probabilistic recirculation. In IEEE In-
ternational Conference on Network Protocols, pages
313–323, Sep. 2018.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick
McKeown, Jennifer Rexford, Cole Schlesinger, Dan
Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming protocol-independent packet
processors. ACM SIGCOMM Computer Communica-
tion Review, 44(3):87–95, 2014.

[8] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Vargh-
ese, Nick McKeown, Martin Izzard, Fernando Mujica,
and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for
SDN. In ACM SIGCOMM, pages 99–110, 2013.

[9] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott
Shenker. Web caching and Zipf-like distributions: Ev-
idence and implications. In IEEE INFOCOM, pages
126–134, 1999.

[10] Xiaoqi Chen, Shir Landau Feibish, Mark Braverman,
and Jennifer Rexford. BeauCoup: Answering many
network traffic queries, one memory update at a time.
In ACM SIGCOMM, pages 226–239, 2020.

[11] Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jen-
nifer Rexford, Ori Rottenstreich, Steven A. Monetti, and
Tzuu-Yi Wang. Fine-grained queue measurement in the

data plane. In ACM SIGCOMM Conference on Emerg-
ing Networking EXperiments and Technologies, pages
15–29. ACM, 2019.

[12] Saar Cohen and Yossi Matias. Spectral bloom filters. In
ACM SIGMOD, pages 241–252. ACM, 2003.

[13] Graham Cormode and S. Muthukrishnan. Summa-
rizing and mining skewed data streams. In Hillol
Kargupta, Jaideep Srivastava, Chandrika Kamath, and
Arnold Goodman, editors, SIAM International Confer-
ence on Data Mining, pages 44–55. SIAM, 2005.

[14] Nate Foster, Rob Harrison, Michael J. Freedman,
Christopher Monsanto, Jennifer Rexford, Alec Story,
and David Walker. Frenetic: A network programming
language. In ACM SIGPLAN International Conference
on Functional Programming, pages 279–291. ACM,
2011.

[15] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao,
Yu Zhou, Bingchuan Tian, Chen Sun, Dennis Cai, Ming
Zhang, and Minlan Yu. Lyra: A cross-platform language
and compiler for data plane programming on heteroge-
neous ASICs. In ACM SIGCOMM, pages 435–450,
2020.

[16] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya
Raghunathan, Aatish Kishan Varma, Pravein Govindan
Kannan, Anirudh Sivaraman, Srinivas Narayana, and
Aarti Gupta. Switch code generation using program
synthesis. In ACM SIGCOMM, page 44–61, 2020.

[17] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In ACM
SIGCOMM, pages 357–371. ACM, 2018.

[18] Gurobi Optimization. Gurobi optimizer reference man-
ual. http://www.gurobi.com, 2019.

[19] Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rex-
ford. Network-wide heavy hitter detection with com-
modity switches. In ACM Symposium on SDN Research,
2018.

[20] Rob Harrison, Shir Landau Feibish, Arpit Gupta, Ross
Teixeira, S. Muthukrishnan, and Jennifer Rexford. Carpe
elephants: Seize the global heavy hitters. In ACM SIG-
COMM Workshop on Secure Programmable Network
Infrastructure, pages 15–21, 2020.

[21] Mary Hogan, Shir Landau-Feibish, Mina Tah-
masbi Arashloo, Jennifer Rexford, David Walker, and
Rob Harrison. Elastic switch programming with P4All.
In ACM Workshop on Hot Topics in Networks, page
168–174, 2020.

https://github.com/lark-parser/lark
https://github.com/lark-parser/lark
https://github.com/p4lang/tutorials/tree/master/exercises/firewall
https://github.com/p4lang/tutorials/tree/master/exercises/firewall
https://github.com/p4lang/tutorials/tree/master/exercises/firewall
http://www.gurobi.com

[22] Thomas Holterbach, Edgar Costa Molero, Maria Apos-
tolaki, Alberto Dainotti, Stefano Vissicchio, and Laurent
Vanbever. Blink: Fast connectivity recovery entirely in
the data plane. In USENIX Symposium on Networked
Systems Design and Implementation, pages 161–176,
Boston, MA, February 2019.

[23] Qun Huang, Xin Jin, Patrick P. C. Lee, Runhui Li,
Lu Tang, Yi-Chao Chen, and Gong Zhang. SketchVi-
sor: Robust network measurement for software packet
processing. In ACM SIGCOMM, pages 113–126, 2017.

[24] Qun Huang, Patrick P. C. Lee, and Yungang Bao. Sketch-
learn: Relieving user burdens in approximate measure-
ment with automated statistical inference. In ACM SIG-
COMM, pages 576–590, 2018.

[25] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate
Foster, and Robert Soulé. Life in the fast lane: A line-
rate linear road. In ACM Symposium on SDN Research,
2018.

[26] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster,
Jeongkeun Lee, Robert Soulé, Changhoon Kim, and Ion
Stoica. NetChain: Scale-free sub-RTT coordination. In
USENIX Symposium on Networked Systems Design and
Implementation, pages 35–49, Renton, WA, April 2018.

[27] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soule,
Jeongkeun Lee, Nate Foster, Changhoon Kim, and Ion
Stoica. NetCache: Balancing key-value stores with fast
in-network caching. In Symposium on Operating System
Principles, 2017.

[28] Lavanya Jose, Lisa Yan, George Varghese, and Nick
McKeown. Compiling packet programs to reconfig-
urable switches. In USENIX Conference on Networked
Systems Design and Implementation, pages 103–115,
2015.

[29] K. Rustan M. Leino and Philipp Rümmer. A polymor-
phic intermediate verification language: Design and log-
ical encoding. In Javier Esparza and Rupak Majumdar,
editors, International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems,
pages 312–327. Springer Berlin Heidelberg, 2010.

[30] Yuliang Li, Rui Miao, Changhoon Kim, and Minlan
Yu. FlowRadar: A better NetFlow for data centers.
In USENIX Symposium on Networked Systems Design
and Implementation, pages 311–324, Santa Clara, CA,
March 2016.

[31] Zaoxing Liu, Ran Ben Basat, Gil Einziger, Yaron Kass-
ner, Vladimir Braverman, Roy Friedman, and Vyas
Sekar. Nitrosketch: Robust and general sketch-based
monitoring in software switches. In ACM SIGCOMM,
pages 334–350, 2019.

[32] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger,
Vyas Sekar, and Vladimir Braverman. One sketch to
rule them all: Rethinking network flow monitoring with
UnivMon. In ACM SIGCOMM, pages 101–114, 2016.

[33] Nick McKeown, Thomas E. Anderson, Hari Balakrish-
nan, Guru M. Parulkar, Larry L. Peterson, Jennifer Rex-
ford, Scott Shenker, and Jonathan S. Turner. OpenFlow:
Enabling innovation in campus networks. ACM SIG-
COMM Computer Communication Review, 38(2):69–74,
2008.

[34] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun
Lee, and Minlan Yu. SilkRoad: Making stateful layer-4
load balancing fast and cheap using switching ASICs.
In ACM SIGCOMM, pages 15–28, 2017.

[35] Recep Ozdag. Intel® Ethernet Switch FM6000 Series–
Software Defined Networking, 2012. goo.gl/AnvOvX.

[36] P4 Language Consortium. P416 language specifications,
2018. https://p4.org/p4-spec/docs/P4-16-v1.
0.0-spec.pdf.

[37] Cole Schlesinger, Michael Greenberg, and David Walker.
Concurrent NetCore: From policies to pipelines. In
ACM SIGPLAN International Conference on Functional
programming, pages 11–24, 2014.

[38] Naveen Kr. Sharma, Antoine Kaufmann, Thomas An-
derson, Arvind Krishnamurthy, Jacob Nelson, and Si-
mon Peter. Evaluating the power of flexible packet
processing for network resource allocation. In USENIX
Networked Systems Design and Implementation, pages
67–82, March 2017.

[39] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and
Arvind Krishnamurthy. Approximating fair queueing
on reconfigurable switches. In USENIX Symposium on
Networked Systems Design and Implementation, pages
1–16, Renton, WA, April 2018.

[40] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu,
Changhoon Kim, Mohammad Alizadeh, Hari Balakr-
ishnan, George Varghese, Nick McKeown, and Steve
Licking. Packet transactions: High-level programming
for line-rate switches. In ACM SIGCOMM, pages 15–28,
2016.

[41] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rot-
tenstreich, S. Muthukrishnan, and Jennifer Rexford.
Heavy-hitter detection entirely in the data plane. In
ACM SIGCOMM Symposium on SDN Research, pages
164–176, 2017.

[42] Armando Solar-Lezama, Liviu Tancau, Rastislav Bodik,
Sanjit Seshia, and Vijay Saraswat. Combinatorial sketch-
ing for finite programs. In Architectural Support for

goo.gl/AnvOvX
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

Programming Languages and Operating Systems, pages
404–415, 2006.

[43] Emina Torlak and Rastislav Bodik. A lightweight sym-
bolic virtual machine for solver-aided host languages. In
ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 530–541, 2014.

[44] Andreas Voellmy, Junchang Wang, Y Richard Yang,
Bryan Ford, and Paul Hudak. Maple: Simplifying SDN
programming using algorithmic policies. In ACM SIG-
COMM, volume 43, pages 87–98, August 2013.

[45] Patrick Wintermeyer, Maria Apostolaki, Alexander Diet-
müller, and Laurent Vanbever. P2GO: P4 profile-guided
optimizations. In ACM Workshop on Hot Topics in Net-
works, page 146–152, 2020.

[46] Tong Yang, Jie Jiang, Peng Liu, Qun Huang, Junzhi
Gong, Yang Zhou, Rui Miao, Xiaoming Li, and Steve
Uhlig. Elastic sketch: Adaptive and fast network-wide
measurements. In ACM SIGCOMM, pages 561–575,
2018.

[47] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman,
Mosharaf Chowdhury, and Xin Jin. NetLock: Fast, cen-
tralized lock management using programmable switches.
In ACM SIGCOMM, pages 126–138, 2020.

[48] Yu Zhou, Chen Sun, Hongqiang Harry Liu, Rui Miao,
Shi Bai, Bo Li, Zhilong Zheng, Lingjun Zhu, Zhen Shen,
Yongqing Xi, Pengcheng Zhang, Dennis Cai, Ming
Zhang, and Mingwei Xu. Flow event telemetry on pro-
grammable data plane. In ACM SIGCOMM, pages 76–
89, 2020.

	Introduction
	P4 Programming Challenges
	Constrained Data-Plane Resources
	Example: Implementing NetCache in P4

	Elastic Programming in P4All
	Declare the Elastic Parameters
	Declare Elastic State
	Define Elastic Operations
	Specify the Objective Function

	Compiling Elastic Programs
	Upper Bounds for Loop Unrolling
	Optimizing Resource Constraints
	Limitations

	Prototype P4All Compiler
	Performance Evaluation
	Compiler Performance
	Elasticity
	Case Study

	Related Work
	Conclusion

