
Formal Methods for Network Performance Analysis

Mina Tahmasbi Arashloo
University of Waterloo

Ryan Beckett
Microsoft Research

Rachit Agarwal
Cornell University

Abstract
Accurate and thorough analysis of network performance is
challenging. Network simulations and emulations can only
cover a subset of the continuously evolving set of workloads
networks can experience, leaving room for unexplored corner
cases and bugs that can cause sub-optimal performance on live
traffic. Techniques from queuing theory and network calculus
can provide rigorous bounds on performance metrics, but
typically require the behavior of network components and the
arrival pattern of traffic to be approximated with concise and
well-behaved mathematical functions. As such, they are not
immediately applicable to emerging workloads and the new
algorithms and protocols developed for handling them.

We explore a different approach: using formal methods to
analyze network performance. We show that it is possible to
accurately model network components and their queues in
logic, and use techniques from program synthesis to automat-
ically generate concise interpretable workloads as answers
to queries about performance metrics. Our approach offers a
new point in the space of existing tools for analyzing network
performance: it is more exhaustive than simulation and emu-
lation, and can be readily applied to algorithms and protocols
that are expressible in first-order logic. We demonstrate the
effectiveness of our approach by analyzing packet scheduling
algorithms and a small leaf-spine network and generating con-
cise workloads that can cause throughput, fairness, starvation,
and latency problems.

1 Introduction
New network functionality is often analyzed, both empirically
and analytically, to predict how it would perform under differ-
ent kinds of input traffic. However, it is growing increasingly
difficult to do such analysis in a manner that is reasonably
exhaustive, i.e., does not miss traffic patterns that are probable
to occur in production, and general, i.e., is not only applicable
to a limited set of network functionality.

To see why, consider the existing empirical approaches,
i.e., using simulators, emulators, and testbeds [1–3]. These ap-
proaches allow operators to realize a model of their network in
software and/or hardware, push a concrete sequences of pack-
ets through it, and measure how well the network performs
for that specific input traffic pattern. As such, operators have
to pick and choose which input traffic patterns to try. This

leaves room for unexplored traffic patterns that may experi-
ence poor performance because of overlooked corner cases
and bugs. The problem is only exacerbated as new networked
applications emerge, expanding the set of traffic patterns that
a network may face in production.

On the analytical side, there is a substantial body of work
that applies techniques from queuing theory and network
calculus to derive bounds on performance metrics such as
throughput, delay, and loss [4–9]. However, to obtain tight
and useful bounds, the network functionality and the arrival
pattern of traffic need to be closely approximated with concise
and well-behaved mathematical functions. This limits the
set of network functionality and traffic patterns that can be
reasoned about using these frameworks [10], a problem that is,
again, aggravated with the continuous evolution of networked
applications and the network functionality that supports them.

This paper explores an alternative approach: using formal
methods to analyze network performance. That is, we would
like to use logical formulas to model packets, how packets
are processed by each piece of network functionality as they
traverse the network, and how performance metrics such as
throughput and delay change over time. We can then use
verification and synthesis techniques from the formal methods
community to exhaustively explore the space of all possible
traffic patterns and find those for which the network cannot
provide satisfactory performance.

Why use formal methods? Because they can nicely com-
plement existing empirical and analytical approaches for per-
formance analysis. Unlike empirical approaches, they do not
need to explicitly try out every single traffic pattern to find
ones that experience performance problems. Moreover, they
enable us to reason about network functionalities that are
expressible in logical formulas, many of which may be not
feasible to approximate in a way that is suitable for existing
analytical approaches. Finally, past efforts in using formal
methods to solve networking problems have proven quite suc-
cessful. Over the past decade, researchers and practitioners in
both academia and industry have coupled advances in formal
methods tools and techniques with domain-specific optimiza-
tions to rigorously reason about the functional correctness of
various aspects of networks [11–28]. This provides further en-
couragement that formal methods could bring similar benefits
to reasoning about performance.

Realizing this vision is not without its own unique chal-
lenges. First, performance metrics (e.g., throughput and delay)
are statistics over packet streams and are affected by the order
and the time at which packets from competing traffic enter
and exit network components. As such, reasoning about per-
formance requires reasoning about the enormous space of
possible packet-level interactions and finding those that can
lead to unsatisfactory performance. For that, we have found
efficient ways to encode interactions that can significantly
affect performance, e.g., interactions across network queues,
in Satisfiability Modulo Theories (SMT) formulas and over a
bounded number of time steps.

Second, when it comes to performance analysis, finding
a single counter-example is not always useful. In this case,
a counter-example is an assignment to the model’s logical
variables that leads to poor performance, where the model
variables describe packets and the order and time at which
they enter the network. Such a detailed packet trace is not
easily interpretable. Moreover, unlike counter-examples for
correctness properties, it may not even point to a bug, but an
extremely rare scenario where providing sub-optimal perfor-
mance does not have tangible consequences.

We argue that a more useful output (also a more challeng-
ing one to produce) is a traffic pattern or workload that can
succinctly capture the commonality between a whole set of
packet traces that can experience poor performance. To gen-
erate such workloads efficiently, our main insight is to use
syntax-guided synthesis (SyGuS) [29]. That is, we define a
language for specifying workloads. Then, we systematically
search through the space of all workloads to find one such
that all packet traces represented by it experience poor per-
formance. The search algorithm, inspired by prior work on
invariant synthesis [30], is based on Markov Chain Monte
Carlo (MCMC), with a cost function that guides the algorithm
towards the parts of the search space where there is a higher
chance of finding an answer.

To demonstrate the effectiveness of our approach, we apply
it to packet scheduling algorithms as well as a small leaf-
spine network and ask queries about throughput, fairness,
latency, and starvation. The fact that packet sequences are
bounded, as well as other optimizations in our SMT encoding,
enables our framework to analyze each workload in < 1s on
average. Moreover, our search algorithm can successfully
find workloads that convey high-level insights about traffic
classes that can experience transient or persistent performance
problems in 6-18 minutes.

These results provide an encouraging indication that using
formal methods to analyze network performance has the po-
tential to grow into a valuable tool for understanding network
behavior and making networks more robust. Our proof-of-
concept prototype can analyze compositions of a few tens
of network components, modeling small-scale networks or
host-based scenarios where flows from different applications
or VMs contend for end-host resources across a few layers of

classifiers and packet schedulers. That said, we recognize that,
similar to data and control-plane verification tools that have
matured over a decade to scale to large-scale networks [31],
much work needs to be done to improve the scalability of
formal methods tools for network performance analysis. We
discuss potential future research directions in §9.

2 Overview and Motivation
In this section, we use a buggy packet scheduler to demon-
strate our approach in using formal methods to reason about
performance.
The scheduler. FQ-CoDel [32] is the default queuing dis-
cipline in Linux. It is a hybrid packet scheduler and active
queue management (AQM) algorithm. Flows are classified
into queues which are managed by the CoDel AQM algorithm.
The scheduler decides which queue gets to transmit next. It
prioritizes the transmission of the first few packets of new
flows so that short latency-sensitive flows with a few packets
are not blocked by longer flows.

Our motivating example is inspired by the scheduler in
FQ-CoDel. When a packet comes in, it is first classified (e.g.,
based on its 5-tuple) and assigned to a queue. For simplic-
ity, let’s assume hash collisions are rare and each queue is
holding packets of one flow at any point in time. The sched-
uler maintains a list of pointers to queues with potential short
flows called new_queues, and another list called old_queues
with pointers to all the other queues with outstanding pack-
ets. At a high level, queues in new_queues are prioritized over
those in old_queues, and the queues in the same list are ser-
viced using a deficit-round-robin (DRR)-like algorithm [33].

How does the scheduler determine which list each queue
belongs to? Suppose the incoming packet is assigned to qi. If
qi is in neither of the lists, it means it has not received packets
recently and this could be the start of a short flow. So, the
scheduler will add a pointer to qi to the end of new_queues.
Otherwise, the queue will remain in its current list. In both
cases, the packet is enqueued in qi.

On dequeue, the scheduler first looks at new_queues. Sup-
pose qh is the queue at the head of the list. It will be selected
to send a packet unless (1) it is empty, in which case it is
removed from the newqueues and marked as inactive, or (2)
it has packets but has already sent at least a (configurable)
quantum of bytes, in which case it is not considered a short
flow, is removed from new_queues and is inserted at the end
of old_queues. If qh is not eligible, the scheduler moves on to
the next queue in new_queues.
The bug. When a queue in new_queues is empty, it is immedi-
ately deactivated. When it receives another packet, it is placed
in new_queues and gets priority over the queues in old_queues.
This can potentially cause starvation for queue in old_queues.
When proposing the separation between new and old queues,
the FQ-CoDel RFC [32] warns against this bug: “the queue
could reappear (the next time a packet arrives for it) before
the list of old queues is visited; this can go on indefinitely,

Figure 1: Overview of workload synthesis.

even with a small number of active flows, if the flow providing
packets to the queue in question transmits at just the right rate.”
To avoid this problem, the RFC suggests that when a queue in
new_queues becomes empty, it should be first demoted to the
old_queues, and only deactivated if it still stays empty after
all the old queues are visited on subsequent dequeues.

This is a subtle bug that is difficult to catch with existing
approaches for performance analysis. The traffic pattern that
reveals the bug consists of a flow sending packets at a very
specific rate, which could depend on the number and traffic
pattern of other active flows that traverse the scheduler. As
such, it is not likely to be part of the common traffic patterns
that are tried out in simulation and emulation and can be over-
looked in empirical experiments. Similarly, approaches based
on queuing theory and network calculus focus on schedulers
and arrival patterns that have concise and well-defined mathe-
matical approximations and cannot be readily applied to this
specific variation of DRR scheduler or this traffic pattern.

2.1 Using Synthesis to Analyze Performance
Figure 1 shows an overview of our approach using formal
methods and workload synthesis to reason about the perfor-
mance of network components like our example scheduler.
Modeling contention points (§3). First, the users specify
which network component(s) they are interested in, and if
there are more than one, how those components are connected
together. Given this input, the verification engine generates
logical variables and constraints that model the network com-
ponents and their interactions. Each component is modeled
as one or more queuing modules, each with n input queues,
m output queues, and a processing block in the middle. The
processing block takes packets from input queues, processes
them, and puts the resulting packets into output queues.

Here, we model the scheduler as a queuing module with five
input queues and one output queue (Figure 2). Specifically,
in the verification engine, we generate SMT formulas that
model these queues and their content for T consecutive time
steps, where time advances on every dequeue operation. Every
time step, each input queue receives a bounded number of
packets. Moreover, the processing block selects one input
queue according to the scheduler’s dequeue logic, dequeues
a packet from it, and places the packet into the scheduler’s
output queue. The formulas describe how the scheduler state,
e.g., new_queues and old_queues lists, and queue contents at
time t connects with those at time t +1.
Performance queries (§4). Next, the user asks a query about
a performance metric of interest such as throughput, latency,
or fairness. Since the FQ-CoDel scheduler is supposed to

Figure 2: An example trace.

provide fairness, suppose the user asks whether or not one
queue can take more than its share of the bandwidth:(
∧4

i=1 ∀t ∈ [1,T], cenq(Qi, t)≥ t
)︸ ︷︷ ︸

assuming other queues are backlogged

→ cdeq(Q5,T)> 2⌊T/5⌋︸ ︷︷ ︸
can Q5 get more than its fair share?

where cenq(q, t) and cdeq(q, t) are the number of packets re-
spectively enqueued into and dequeued from queue q by the
end of time step t. The query can be read as “if queues Q1 to
Q4 are backlogged the entire T time steps, is it possible for
Q5 to dequeue more than twice its fair share (i.e., ⌊T/5⌋)?”.
Note that we use lower case letters for variables and upper
case letters for literals and constants.
Introducing workloads (§5). At this point, we can ask the
verification engine to use an SMT solver like Z3 [34] to find
an input packet trace that satisfies the query. A packet trace
is simply an assignment to the variables that represent how
many packets enter each queue in every time step. Figure 2
shows an example trace, found by the verification engine, that
satisfies the query. While the trace does provide a concrete
scenario in which Q5 receives more than its fair share of
the bandwidth, it is not easy to interpret as it specifies the
ordering and timing of the entry of every single packet: is
the fact that three packets entered Q1 in the same time step
in the beginning crucial to Q5 getting a larger share of the
bandwidth or is it just an arbitrary choice? Would the query
still be satisfied if instead Q2 had received three packets in
the first time step? Even if these details actually do matter,
it is not clear if the trace is actually pointing to a subtle but
prominent performance problem, or just an extremely rare
and uninteresting scenario.

Rather than output a single packet trace, our search engine
synthesizes a workload that can concisely describe a set of
packet traces that can cause performance problems:

∀t ∈ [1,6] : cenq(Q5, t)≤ 1
∧∀t ∈ [7,14] : aipg(Q5, t)≥ 2
∧∀t ∈ [13,14] : cenq(Q5, t)≥ 5
∧
(
∧4

i=1 ∀t ∈ [1,14], cenq(Qi, t)≥ t
)︸ ︷︷ ︸

backlog assumption from the query

cenq(q, t) is the total number of packets that enter q by t +1,
and aipg(q, t) is the inter-packet gap between the last two pack-
ets entering q by t +1. Such an answer is more interpretable
as it captures the commonality of a set of traces that satisfy
the query. Moreover, the fact that a set of similar packet traces
all cause the same performance problem is a preliminary
indication that it represents more than just a rare scenario.

We define workloads as a conjunction of constraints, each
specifying a traffic pattern for one or a subset of queues over

a period of time. For T = 14, the above workload specifies a
traffic pattern that will always satisfy the query, i.e., cause Q5
to dequeue at least five packets when it should not have de-
queued more than three. The first constraint states that at most
one packet enters Q5 in the first 6 timesteps, so that unlike the
other four queues, Q5 is not demoted to the list of old queues.
After that, the second constraint ensures that Q5 receives traf-
fic at a specific rate, at most one packet every other time step.
This ensures Q5 becomes empty and gets deactivated after
dequeuing each packet (the bug). So, it is activated as a new
queue when it receives its next packet and is prioritized over
others for dequeue. The third constraint ensures that Q5 re-
ceives at least five packets by T = 14, so it has enough packets
to dequeue and satisfy the query. The final constraint ensures
that the other queues are always backlogged, which comes
from the assumption specified in the query.
Synthesizing workloads (§6). The search engine is respon-
sible for generating a workload that satisfies the query. It
first uses the verification engine to generate a set of example
traces that can guide the search towards finding a suitable
workload. Next, inspired by prior work on program and in-
variant synthesis [30, 35], it starts a stochastic search process
based on Markov Chain Monte Carlo (MCMC) that synthe-
sizes a candidate workload and asks the verification engine to
verify if all traces in that workload satisfy the query. If not,
the violating trace is returned to the search engine and added
to the example traces to help guide finding the next candidate
workload. This process repeats until an answer is found and
returned to the user, who can either terminate the analysis or
ask for other workloads that satisfy the query.
User Interface. Similar to many other existing work that
use formal methods for networks, our queries and workloads
are specified as logical expressions. Moreover, the encoding
of packet processing algorithms and protocols into logic is
done manually. To enable widespread adaptation of formal
approaches, it is important to develop front ends that interface
with these “logical backends”, abstract away the details of
logical expressions and formulas, and enable users to interact
with them using higher-level and more familiar interfaces. In
fact, there are several ongoing efforts for providing higher
level query interfaces and automated generation of logical
models and SMT formulas from implementations [36–40].
With the right interface in the middle, the front-end and the
logical back-end can evolve independently. As such, for our
case study in §8, we create a simple front-end to demonstrate
an example of one such interface, and leave the design of a
more general front-end for future work.

3 Modeling Contention Points
Queues are an integral part of networks. In fact, networks
can be viewed as multiple layers of queues with well-defined
functionality in between that describes how to deliver data
from one layer to the next. From source to destination, pack-
ets go from socket buffers, to queues in packet schedulers

Figure 3: A queueing module.

in the end-host stack (e.g., Linux qdiscs), to NIC transmit
queues on the sender. Then, they traverse switch input and
output queues in the network, and the NIC, qdisc, and socket
buffers on the receiving end. Network contention points, e.g.,
switches, NICs, and network stacks, heavily rely on queues to
decide how to allocate network resources to competing traf-
fic streams. Indeed, performance metrics of a packet stream
are significantly affected by the queues it traverses and the
frequency at which those queues are selected to pass on their
traffic. As such, queues are a fundamental part of our model.

Figure 3 shows a simple yet expressive building block
for modeling layers of queues: a queuing module with n ≥ 1
input queues, m ≥ 1 output queues, and a processing block
in the middle. Every timestep, the processing block takes a
batch of packets from the input queues, processes them, and
puts the resulting packets into the output queues. To keep
track of performance metrics, we designate extra variables
per queue for each metric that get updated as packets enter and
exit queues, and ask queries about their values for different
queues (see §4 for examples).
Composition. Queuing modules can be easily composed by
feeding the output queues of one module to the input queues of
another (e.g., figures 6 and 9). So, one could start by modeling
a single bottleneck, e.g., a qdisc, or a NIC/switch scheduler,
and compose them together to reason about segments or paths
in the network (§7 and §8). We can even close the loop by des-
ignating a queuing module for congestion control algorithms,
with one input queue receiving acks and other control packets
and one output queue transmitting data packets. While we
have not explored this last direction in this paper, we believe
it is a very interesting avenue for future work.
Modeling Time. We define a time step as the time between
the dequeue operations of the slowest output queue. That is,
time advances when a new dequeue happens. Modeling time
based on dequeues is a natural choice. It is coarser-grained
than wall-clock time, and since our verification engine per-
forms bounded model checking over time, this helps perfor-
mance problems manifest over fewer time steps. It is also
fine-grained enough for capturing the arrival order of pack-
ets within and across time steps. To capture the arrival order
within a time step, we put an upper bound K on the number of
packets that can enter a queue between dequeues. This bound
allows us to create K variables pt1 , · · · , ptK to capture the order
at which those K packets enter the queue at time t (pti comes
before pt j if i< j). It also helps us avoid finding “trivial” work-
loads that simply flood the queuing module every time step
with an unrealistically large number of packets.
Modeling Packets. We model packets as tuples consisting

of multiple “metadata” variables. Depending on the query,
these variables can include the arrival and departure time of
the packet into and out of different queues of interest, flow id,
application id, or packet size.
Modeling Queues. A queue is specified with two parameters,
its size S and the maximum number of enqueues K allowed
at every time step. We define three sets of variables for each
queue for every time step t: (1) enqs[t][1 : K] consists of K
tuples to capture the packets that are sent to the queue at
time t, (2) elems[t][1 : S], consists of S tuples to capture the
packets that are inside the queue at time t, and (3) an integer
variable deq_cnt[t] that captures how many packets will be de-
queued from this queue at time t. We constrain these variables
such that they collectively behave like a FIFO. Finding the
right constraints to model FIFOs in a scalable manner is not
straightforward, especially when there are multiple enqueues
and dequeues per time step. We describe our encoding of
FIFOs in SMT in Appendix A.

When two modules are composed, we need extra con-
straints to move packets from the output queue of one to
the input queue of the other. Suppose the first output queue
of module A (A.out1) is connected to the first input queue of
module B (B.in1). B decides how many packets to dequeue
from A.out1 at time t and sets its deq_cnt[t] to, say, k. We add
constraints to enqueue the first k packets in A.out1 into B.in1.
We provide two different kinds of composition. In sequen-
tial composition, B.in1.enqs[t][1 : k] = A.out1.elems[t][1 : k], that
is, packets from A.out1 will appear in B.in1 at time t + 1. In
contrast, in immediate composition, packets leaving A.out1
at time t will be visible in B.in1 in the same time step. We
discuss examples of different kinds of composition and their
implications in our case studies in §7 and §8.
Modeling packet-processing algorithms. The packet-
processing algorithm in a queuing module sets the deq_cnt[t]
variables of the module’s input queues to denote how many
packets will be dequeued from each input queue at time t.
It also decides which one of those packets to move to the
enqs[t] of which of the output queues, potentially changing,
dropping, or cloning some packets in the process. As long as
an algorithm’s logic can be expressed in SMT, we can plug it
into our framework.

4 Performance Queries
Performance queries are logical formulas over one or more
performance metric. Users can define their metrics of interest
to be tracked for all or a subset of queues in the queuing
modules. They can then ask queries about the value of a
certain metric for one queue or a set of queues, or compare
the values of metrics between different queues.
Performance metrics. A performance metric m(q, t) is a func-
tion that computes a value over the packets that have entered
or departed the queue q until the end of time step t. Most
metrics can be defined as recursive functions over time. For
instance, metric d that tracks the maximum delay experienced

qry := wl→ tr : qlhs⊕ rhs

tr := {∀ |∃}t ∈ [T1,T2]

qlhs := lhs |m(Q1, t)−m(Q2, t)

wl := true | con∧wl

con := ∀t ∈ [T1,T2] : lhs⊕ rhs

lhs := m(Q, t) |Σq∈S m(q, t)
rhs :=C · t |C

Figure 4: Syntax for queries (§4) and workloads (§5).

by packets in a queue, can be defined in the following way:
d(q,0) = 0
d(q, t) = max(t −a, d(q, t −1))

where a = minp∈depart(q,t) arrival(p,q)

where depart(q, t) is the set of packets that depart from queue
q at time t, and arrival(p,q) is packet p’s arrival time into
q. In defining metrics, one can use simple operations such
as addition, subtraction, multiplication with a constant, and
taking the maximum and minimum between values.
Queries. Queries are logical formulas over performance met-
rics. As shown in Figure 4, they ask questions about the values
of metrics for one queue or a set of queues, or compare the
values of metrics for two queues, over a certain period of time.

For instance, using the metric d defined above, we can ask
if packets could face significant delay in queue Q with the
following query: ∃t ∈ [1,T] : d(Q, t)> D. Moreover, as part of
the query, users can specify base_wl, a workload (formally
defined in Figure 4 and §5) that constrains the space of traces
the user is interested in. That is, the final workload returned
by the search algorithm should be a subset of base_wl. For
instance, suppose we want to know, assuming a minimum
input rate R for a queue Q, whether it will transmit fewer
than K packets during T time steps. For that, we can use the
following query:

∀t ∈ [1,T] : cenq(Q, t)≥ R · t︸ ︷︷ ︸
base_wl

→∃t ∈ [T,T] : cdeq(Q, t)< K

where cenq(q, t) and cdeq(q, t) track the total number of pack-
ets that have entered and exited q by end of t.

Similarly, we can investigate fairness between two queues
by assuming minimum input rates for both in base_wl and
comparing the number of packets they transmit:

base_wl= ∀t ∈ [1,T] : cenq(Q1, t)≥ R1 · t
∧ ∀t ∈ [1,T] : cenq(Q2, t)≥ R2 · t

base_wl→∃t ∈ [T,T] : cdeq(Q1, t)− cdeq(Q2, t)≥ T/2

Thus, queries can ask about many performance metrics,
including latency, throughput, fairness, and starvation.

5 The Workload Language
Workloads are also specified as logical formulas over a set of
metrics. A workload is a set of constraints, each specifying
the traffic pattern for a subset of queues over a period of
time. Workloads only constrain input queues, i.e., queues that
receive packets from “outside” as opposed to another queuing
module. This can help users analyze how a contention point
will perform under different classes of external traffic.

More formally, as shown in Figure 4, a workload wl is
a conjunction of constraints (con). Each con is of the form

Algorithm 1: Workload synthesis search.

Input: User query (qry) from Figure 4.
Output: Workload formula (wl) from Figure 4.

1 Procedure Search(qry)
2 if (not feasibleBaseWorkload(qry)) return BadQuery
3 wl = true; G = goodSet(qry); B = badSet(qry)
4 c1 = cost(wl,G,B)
5 while (true) do
6 (found,bad_trace) = verify(wl,qry)
7 if (found) break else B.insert(bad_trace)
8 op = randomOperation()
9 next_wl = wl.apply(op)

10 c2 = cost(next_wl,G,B)
11 if (c1 > c2) then wl = next_wl;c1 = c2

12 else if (e−λ·(c2−c1) > rand()) wl = next_wl;c1 = c2

13 shrink(wl); broaden(wl); return wl

∀t ∈ [T1,T2] : lhs⊕ rhs, where T1 and T2 are integers denoting
the interval of time over which con constrains the input traffic,
lhs is either a metric for one queue, or the aggregate of a
metric over a set of queues, and ⊕ is a comparison operator
(>,≥,<,≤,=) that shows how the lhs will be constrained by
the rhs, which is time, or a constant.

Workloads can describe sets of traces in a concise and
intuitive manner. Consider the single-constraint workload:
∀t ∈ [1,10] : cenq(Q1, t) ≥ t. Any trace that satisfies this con-
straint, that is, sends at least t packets into Q1 by time t and, as
a result, does not leave the queue idle, is part of this workload.
It does not matter if the traffic enters one packet at a time, or
if 10 packets all come in at time step 1, or if 5 packets enter in
the beginning, and 5 more at time step 5. That is, workloads
can abstract away small details of packet traces as long as a
higher-level property, as specified with a metric, is satisfied.
Workload metrics. The search algorithm explores the space
of all workloads to find one that satisfies the query. When
synthesizing candidate workloads, it decides how many con-
straints to include in the workload, and what metrics and
queues to include in each constraint (§6).

While we leave the metrics that can be used in queries
unconstrained, deciding the set of metrics that are used in
synthesizing workloads requires careful consideration. We
want the set to be small to keep the search space tractable
but expressive to enable specifying common workloads in a
concise and intuitive manner. We define our workloads over
two metrics: (1) cumulative enqueues (cenq(q, t)), the total
number of packets that enter q by the end of time step t, and
(2) arrival inter-packet gap (aipg(q, t)), the inter-packet gap
between the last two packets that enter q by time t.

While small, this is a quite expressive set. cenq constrains
the total number of packets entering the queue, independent
of the exact time they arrive. So, it can abstract away the
timing details of traces when they are not important for the
query. aipg, on the other hand, constrains the gap between
packets and their arrival pace. So, it can capture low-level
timing details if necessary in answering the query. Together,
they create a good balance in capturing the commonalities

of traces that satisfy a query, abstracting away unnecessary
details and including necessary ones.

Our experience in the case studies has shown that this set
is capable of expressing a variety of workloads. But, we view
this as a suitable starting point and not necessarily the final an-
swer. We hope that as using formal methods, and specifically
workload synthesis, for performance analysis evolves, the set
of metrics will mature as well. In fact, our search algorithm is
parametrized over the set of metrics and, if needed, any metric
that can be encoded in SMT can be easily added to our search
algorithm (see §8 for examples).

6 Synthesizing Answers
The search engine uses a guided randomized search over the
space of workloads to find one that satisfies the query. The
search algorithm (Algorithm 1) is based on the Metropo-
lis Hastings Markov Chain Monte Carlo (MCMC) sampler,
which combines random walks with hill climbing and has
been successfully used for synthesizing optimized programs
and loop invariants [20, 30, 35]. Starting from an initial work-
load wl= true (line 3), which imposes no constraints on the
input queues, the search algorithm asks the verification en-
gine to verify the workload, i.e., check if all the traces in the
workload satisfy the query (line 6). If yes, the search engine
returns the workload as the answer to the query (line 7). If not,
using the feedback from the verification engine, the search
algorithm moves on to synthesize and try another candidate
workload until a suitable workload is found (lines 8-12).

6.1 Verifying workloads
Given a workload wl, and a query base_wl→ qry, the verifica-
tion engine uses an SMT solver [34] to check if the following
formula is satisfiable

model∧base_wl∧wl∧¬qry

where model is the logical encoding of the queueing modules
the user is interested in (§3).

If the formula is satisfiable, there is at least one trace that is
(1) valid, i.e., satisfies the constraints specified in model such
as the maximum number of packets that are allowed to enter a
queue between dequeues, (2) satisfies both base_wl (the space
of traces in which user is interested (§4)) and wl, and (3) does
not satisfy the query. This means that our current candidate
workload, wl, is not a suitable answer to the query. So, this
trace is returned to the search algorithm to guide the synthesis
of the next candidate workload.

If the formula is not satisfiable, either (1) base_wl or wl or
their combination with respect to model is infeasible, meaning
that no valid trace can satisfy their constraints and they actu-
ally represent the empty set, or (2) there are no valid traces in
base_wl∧wl that do not satisfy the query. Only in the second
case wl is a valid and non-trivial answer to the query.

To distinguish between these two cases, the search engine
asks the verification engine if model∧base_wl is satisfiable
(line 2). If not, the set of valid traces specified by base_wl is

empty. So, the search engine does not start the search and
notifies the user to modify base_wl. Moreover, when verifying
a candidate workload wl (verify on line 6), the verification
engine checks whether model∧base_wl∧wl is satisfiable. If
not, the fact that wl is infeasible is also returned as feedback
to guide the selection of the next candidate.

6.2 Generating the next candidate
If a candidate workload is not the final answer, the search
algorithm synthesizes another workload to try. The next can-
didate workload, next_wl, is a mutation of the previous one, wl.
Suppose the previous candidate is wl= ∧k

i=1coni. The search
algorithm chooses one of the following operations at random
(line 8), and applies it to wl (line 9), to obtain next_wl:

• Add a new random constraint con, so next_wl= con∧wl.
• Remove a random constraint con j from wl. That is,
next_wl= (∧ j−1

i=1 coni)∧ (∧k
i= j+1coni).

• Modify a random constraint con j. Suppose con j = ∀t ∈
[T1 j ,T2 j] : lhs j ⊕ j rhs j. The search algorithm randomly picks
whether to change one of T1 j , T2 j , lhs j, ⊕ j, or rhs j to obtain
con′j, so that next_wl= (∧ j−1

i=1 coni)∧ con′j ∧ (∧k
i= j+1coni).

These operations are motivated by prior work that has empir-
ically shown MCMC to work well with a mixture of major
(add and remove) and minor (modify) changes to the current
candidate to obtain the next one [30, 35].

Next, the search algorithm uses a cost function (§6.3) to
decide whether it is “worth” transitioning to next_wl and try
it out. If next_wl has a lower cost compared to wl, next_wl be-
comes the current candidate (line 11). If next_wl has a higher
cost, to avoid getting stuck in local minima, the algorithm
may still choose to make the transition with a probability
proportional to the difference in next_wl and wl’s costs (line
12). The algorithm repeats this process until it finds the next
candidate workload.

6.3 The Cost Function
Intuitively, a good cost function should (1) favor workloads
when they include a large number of packet traces that satisfy
the query, and (2) penalize those that include traces that do
not satisfy the query. Inspired by prior work [30], we quantify
these criteria into a cost function using example traces.

We create two sets of traces before starting the search (line
3): a set of good example traces (G), all of which satisfy the
query, and a set of bad examples (B), none of which satisfy
the query. Suppose match(wl,E) is the number of traces in E

that are also in wl. The cost function is then defined as:
costE(wl,G,B) =match(wl,B)−match(wl,G).

Recall that if a workload is feasible but does not satisfy the
query, the verification engine returns a trace in that workload
that does not satisfy the query as feedback. These traces are
added to B as the search goes on, further refining the cost
function (line 7).

In our experience, costE can effectively guide the search to-
ward workloads that satisfy the query. But there could be
multiple such workloads. So, we define another function
costS(wl) that favors concise workloads, i.e., those with fewer
constraints that constrain fewer queues over longer, less frag-
mented periods of time (details in Appendix B). We define our
final cost function as cost(wl) = CE · costE(wl)+CS · costS(wl).
We set CE > CS so that in the beginning, the search algorithm
probes the space of workloads for any answer that satisfies
many good examples and no bad ones. Once the algorithm
has reduced costE(wl) and is in the “right” part of the space,
costS(wl) helps direct it towards a more concise answer.

Note that even if a workload matches some bad examples, it
can still have a low cost and get selected as the next candidate.
This is acceptable because the search algorithm may need to
go through “obviously” bad workloads to explore different
regions of the search space and find the answer. Also, exam-
ple traces are used only to guide the search; each candidate
workload is verified in the verification engine to ensure that
every trace represented by the workload satisfies the query.

6.4 Generating The Example Sets
Before the search starts, the search engine asks the verification
engine to generate traces for G and B. A trace eg is a 2D array
that concretely specifies how many packets enter each queue
at each time step. For example, if eg[Q1][5] = 3, it means that
in this trace, Q1 receives 3 packets at time 5.
The bad examples set (B). The ith bad example is a trace that
satisfies the following formula:

model∧base_wl∧¬qry∧¬(∨i−1
j=1egi ̸= eg j)∧ local_modsi.

Having ¬(∨i−1
j=1egi ̸= eg j) ensures that the trace is different

from the previous i−1 traces. local_modsi ensures that there
is variety across the traces in B so that the search algorithm
can prune the search space faster. For that, we pick P random
points (q1, t1), · · · ,(qP, tP) in the (i−1)th trace and P random
integers v1, · · · ,vP such that egi−1[q j][t j] ̸= v j. Then, we define
local_modsi = ∧P

j=0egi[q j][t j] = v j. This way, the ith trace is
different from the previous one in at least P points. If no such
trace could be found after two tries, we decrement P and retry
until a new trace is found.
The good examples set (G). Generating G is more compli-
cated. To see why, consider the diagram in Figure 5 and an
arbitrary workload ans that satisfies the query. No matter how
we choose B, ans cannot not include any of its traces. So,
by minimizing match(wl,B) in the cost function, the search
algorithm is always moving in the direction of an answer.
However, depending on how we pick G, ans may include all
(ans1 in Figure 5), a subset (ans2), or none (ans3) of G’s traces.
There may not even exist a workload like ans1 that can express
all the traces in G without including any bad traces. So, if we
do not pick G’s traces carefully, by maximizing match(wl,G),
the algorithm may repeatedly be directed towards a part of
the search space where there are no suitable answers.

Figure 5: Relationship between answer workloads and G and B.

Intuitively, we want to pick traces for G that are (1) not
radically different from each other, so that the majority of
them can be represented with a single workload, and (2) not
too similar, so that the workload found by the search algorithm
is sufficiently general. To do so, the search engine asks the
verification engine to create a base trace that it will use as the
basis of generating the rest. Specifically, it asks for a trace eg0
that satisfies model∧base_wl∧qry while using Max-SMT to
minimize the following criteria in the specified order:
1. Total number of queues with traffic, i.e., ΣqIq, where

Iq = 1 if Σteg0[q][t] = 0, and is zero otherwise. This helps
keep the search focused. To see why, suppose we find an
eg0 that satisfies the query and in which only Q1, Q2, and
Q3 have traffic. When generating the rest of G, we add
constraints that make sure the queues that have no traffic in
eg0 stay empty in the rest of the traces as well. So if there is
another set of traces with traffic in, say, Q2, Q4, and Q5, that
satisfy the query, they will not be included in G, making
sure G’s traces are not radically different from each other.

2. Total number of time steps queues do not receive traf-
fic, i.e., Σq,t Iq,t , where Iq,t = 1 if eg0[q][t] = 0 and is zero
otherwise. This means that in the base trace, every queue
receives at least one packet every time step as long as it is
“harmless”, i.e., it does not stop the trace from satisfying
the query. This smooth background traffic in the base trace
can be randomly changed in the rest of the traces to ensure
diversity in the good examples set.

3. Total traffic in the trace, i.e., Σq,teg0[q][t]. Given the above
optimization criteria, this ensures that the background traf-
fic is not flooding the contention point with too many pack-
ets and only allows more than one packet per time step in
the base trace if necessary for satisfying the query.

The rest of G’s traces are generated from eg0. Similar to gen-
erating B, the search engine asks for a trace that satisfies the
query, is not any of the previous traces, and is different from
the previous trace in at least P random places. There are two
differences: for the ith trace egi, we add extra constraints so
that queues that have no traffic in eg0 (see optimization criteria
1) have no traffic in egi either, and we minimize the “distance”
between egi and eg0, i.e., minimize Σq,tdq,t , where dq,t = 1 if
egi[q][t] ̸= eg0[q][t] and zero otherwise.

6.5 Optimizations
We have employed several optimizations to improve the syn-
thesis process and the final answer. We discuss some of the
major ones here and the rest in Appendix C.
Reducing the search space. If a queue q has no traffic in

our base trace eg0 (§6.4), it means that as long as the other
“non-idle” queues have traffic, its traffic is either not important
or has to be zero for satisfying the query. So, we temporarily
add ∀t ∈ [1,T] : cenq(q, t) = 0 to base_wl and only look for
workloads that constrain the rest of the queues during search.
This reduces the space of workloads the search algorithm
needs to explore. These constraints will be removed in post-
processing if not necessary.
Post-processing. Once the search engine finds a workload
wl that satisfies the query, it creates a new workload ans that
includes all the constraints from wl and base_wl. It then per-
forms “workload shrinking” (Algorithm 1, line 13) by remov-
ing the constraints in ans one at a time and checking if ans

still satisfies the query. This helps remove any constraint that
is added to base_wl during example generation or to wl during
search but is not necessary for satisfying the query. Next, we
try “workload broadening”. For a queue Qi that is not in ans

and a constraint con in ans, if con’s left hand side is m(Q j, t),
it is changed to Σq∈{Qi,Q j} m(q, t), and if it is Σq∈S m(q, t), it is
changed to Σq∈S∪{Qi} m(q, t). If the workload still satisfies the
query, this helps include even more traces in the workload.
Reducing calls to the verification engine. Each call to the
verification engine can be expensive as it checks the satisfiabil-
ity of non-trivial formulas. So, if the search algorithm selects
a candidate workload that matches a trace in B, it moves on
to finding the next candidate without consulting with the veri-
fication engine, as it already knows that the current candidate
includes a trace that does not satisfy the query.
Escaping local minima. To avoid getting stuck in local min-
ima, the search algorithm keeps track of its progress, i.e., the
difference between the cost of the previous candidate work-
load and the next one. If the progress is below a threshold
for a number of rounds, it “looks ahead” a couple of hops
when generating the next candidate by applying a sequence of
moves in §6.2 to generate the next workload. If it still cannot
make enough progress in another several rounds, it restarts
the search from a workload with no constraints.

7 Case Study: Packet Scheduling
We have prototyped our techniques in a tool we call FPerf
in ∼10K lines of C++ code, which is publicly available [41].
We use Z3 [34] in the verification engine for checking the
satisfiability of SMT formulas. In this section, we describe
our experience in using FPerf to analyze packet scheduling al-
gorithms. Our goal is to explore expressiveness, i.e., whether
our workload language can express a wide range of work-
loads in answering queries, interpretability, i.e., whether the
final workloads are concise, intuitive, and interpretable, and
tractability, i.e., whether workloads are generated in reason-
able human timescales (i.e., minutes).

7.1 Stand-alone Schedulers
The priority scheduler is a single queuing module with four
input queues and one output queue. Qi has a higher prior-

ity than Q j if i < j. Every time step, the scheduler picks the
highest-priority non-empty input queue, dequeues a packet
from it, and puts the packet in the output queue. In a strict pri-
ority scheduler, lower priority queues may get starved, which
we quantify with the metric blocked(q, t) defined as the number
of consecutive time steps that q has packets but is not chosen
for transmission. We then ask ∃t ∈ [1,T] : blocked(Q3, t)> 5.

Starting from T = 5, we increment T until the verifica-
tion engine finds a satisfying trace in the example gen-
eration phase at T = 7. Then, the search algorithm finds
∀t ∈ [1,7] : Σq∈{Q1,Q2}cenq(q, t)≥ t ∧ ∀t ∈ [1,7] : cenq(Q3, t)≥ 1.
That is, to satisfy the query, Q1 and Q2, which have higher
priorities than Q3, should collectively receive a consistent flow
of traffic (constraint 1), and Q3 should at least have one packet
to be considered blocked (constraint 2). While the answer is
not surprising, it demonstrates FPerf’s ability to abstract away
the details of which higher priority queue receives packets at
exactly what time step, only capturing the necessary details.
The round-robin scheduler is a single queuing module with
five input queues and one output queue. The input queues
are serviced in a round-robin fashion (independent of packet
size, see §9). If every queue receives steady traffic over a time
period T , each should be selected for dequeue at least T/5
times. So, when we ask if Q3 can dequeue more packets than
Q2 with query ∀t ∈ [10,10] : cdeq(Q3, t)− cdeq(Q2, t) ≥ 3 and
base workload ∧5

i=1 ∀t ∈ [1,10] : cenq(Qi, t)≥ t, the verification
engine cannot find any traces that satisfy the query.

Now suppose we relax base_wl to restrict the average
rate of traffic every 5 time steps as opposed to every time
step, i.e., have the queues receive at least 4 packets ev-
ery 5 time steps: base_wl =

(
∧5

i=1 ∀t ∈ [5,5] : cenq(Qi, t) ≥
4
)
∧
(
∧5

i=1 ∀t ∈ [10,10] : cenq(Qi, t) ≥ 8
)
. FPerf finds ∀t ∈

[1,4] : Σq∈{Q1,Q2,Q4,Q5}cenq(q, t) ≤ 0∧ ∀t ∈ [1,4] : cenq(Q3, t) ≥
t ∧ base_wl, which describes a workload where all queues ex-
cept Q3 receive no packets in the first four time steps and
receive a burst of at least 4 packets at time 5, while Q3 contin-
uously receives traffic. So, while the average input rate of all
queues is the same, other queues temporarily fall behind Q3
in terms of dequeues due to the burstiness of their traffic.
FQ-Codel. This case study analyzes the buggy scheduler in-
spired from the FQ-Codel qdisc [32]. The scheduler’s logic,
the query, and the workload are described in §2 as our moti-
vating example. Here, we only report that the same workload
was overwhelmingly returned as the answer across all runs.

7.2 Composing Host and NIC Schedulers
Modern NICs expose multiple transmit queues to the host, so
that CPU cores can concurrently send traffic to the NIC, each
through a dedicated transmit queue [42–44]. This provides
significant performance benefits but makes it difficult to en-
force policies about how applications on the same host should
share network resources. Prior work [44] demonstrates this
using an example, which we analyze in this case study.

Suppose two tenants reside on a server with multiple CPU

Figure 6: Setup for the case study in §7.2.

cores. Tenant 1 runs spark [45], and tenant 2 runs both spark
and memcached [46]. All applications are multi-threaded and
can use all the cores. We want to ensure that the two tenants
fairly share the network bandwidth, and tenant 2’s memcached
traffic is prioritized over its own spark traffic. One option, de-
scribed in [44], is to use software packet schedulers (e.g.,
Linux qdiscs) to enforce fair sharing between the tenants on
the host, and a priority scheduler on the NIC to enforce prior-
itization of memcached traffic. Note that to avoid overhead,
software schedulers enforce policies per core not across cores.

Figure 6 shows how we model this in FPerf for 4 CPU cores.
There is one input queue for traffic from each application on
each core. That is, Q3(i−1)+1, where i is the core number, are
for tenant 1’s spark, Q3(i−1)+2 for tenant 2’s spark, and Q3i

for tenant 2’s memcached traffic. For each core, a queuing
module first classifies traffic from that core’s input queues
into two output queues, one for each tenant. Then, a round-
robin scheduler shares bandwidth between the two tenants
into the NIC’s transmit queue. On the NIC, a module classifies
traffic from the cores into two output queues, one for spark
and one for memcached traffic. Finally, a priority scheduler
that prioritizes memcached traffic decides what packet to send
out of the NIC. We add a “dummy” module that takes the
output from the NIC and “demultiplexes” it into Qout1 queue
for tenant 1 and Qout2 for tenant 2 to use in our queries.

Since the final scheduler always prioritizes memcached
traffic over spark, it is easy to see how the second half of the
policy is always enforced. So, we ask whether tenant 1 and
tenant 2 will get equal access to the NIC output link:

base_wl→∀t ∈ [10,10] : cdeq(Qout2, t)− cdeq(Qout1, t)≥ 3
base_wl= (∀t ∈ [1,10] : Σq∈Stenant1 cenq(q, t)≥ t)∧

(∀t ∈ [1,10] : Σq∈Stenant2 cenq(q, t)≥ t)

Stenant1 are Q3(i−1)+1 (1 ≤ i ≤ 4), which carry tenant 1’s spark
traffic, and the rest of the queues are in Stenant2. That is, in
base_wl, we ensure that both tenants receive a steady stream
of packets. For this query, FPerf finds the workload

∀t ∈ [1,10] : cenq(Q4, t)≥ t ∧ ∀t ∈ [1,10] : cenq(Q9, t)≥ t
∧ (∧i∈Srest∀t ∈ [1,10] : cenq(Qi, t)≤ 0),

where Srest is {1, · · · ,3,5, · · · ,8,10, · · ·12}. That is, if tenant 2’s
memcached runs on core 3 and tenant 1’s spark on core 2, they

Phases Prio RR FQ-C Comp LS-T LS-L

Example
Generation

Generating base trace (s) 0.3 1.0 3.1 70.3 59.5 71.5
Generating good set (G) (s) 6.8 309 346 321 310 632
Generating bad set (B) (s) 1.2 3.0 7.1 179 74.1 69.6

Verification
Engine

Verifying workload (avg) (s) 0.02 0.02 0.11 0.65 0.73 0.94
Verifying workload (max) (s) 0.04 0.13 0.86 7.60 3.26 2.18
Verifying query (avg) (s) 0.03 0.04 0.10 0.81 1.66 1.46
Verifying query (max) (s) 0.06 0.18 0.73 9.90 4.09 2.26

Search
(see §6.5)

Rounds 65 268 769 361 949 117
Rounds w.o/verification 39 107 537 131 836 65
Rounds w/“look-ahead” 1 11 44 20 162 1
Total search time (s) 2.4 59 223 461 420 121

Post
Processing

Workload shrinking (s) 0.2 0.0 0.9 107 25.9 16.4
Workload broadening (s) 1.0 0.0 0.1 45 0.0 2.6

Total Time (min.) 0.2 6.2 9.6 18.5 13.8 14.0

(a) Statistics from running FPerf 10 times for each case study. Parameters: Queue
parameters are S = 10 and K = 4 packets. For example sets, |G| = |B| = 50, and P =
min(10, trace_size

5). During search, the maximum number of constraints in the workload is
set to twice the number of input queues, threshold for slow progress is 0.03 ·max(costE),
CE
CS

= 10, and number of rounds of slow progress tolerated before look-ahead and restart
is 10 and 20 respectively.

Prio RR FQ-C Comp LS-T LS-L

Queuing Modules 1 1 1 11 23 23
Queues 5 6 7 29 66 66
Boolean Vars (×1000) 0.8 0.2 2.6 10.6 21.3 21.3
Integer Vars (×1000) 0.6 1.1 1.9 7.3 23.2 23.2
Constraints (×1000) 7.2 13 2.2 93.8 45.8 45.5
Max timesteps 7 10 14 10 10 10

(b) Case study statistics

(c) Workload synthesis statistics for the latency query on leaf-
spine networks of increasing size. Si-L j-Hk has i spines, j leaves,
and i hosts per leaf to avoid oversubscription (k = i× j). Param-
eters are same as figure 7a except |G|= |B|= 25 (see §9).

Figure 7: Case study statistics and results (§7 and §8).

will only compete in the priority scheduler in the NIC, where
memcached traffic is prioritized over spark traffic, and tenant
2 is favored to access the link. The same phenomena can
happen as long as tenant 2’s memcached traffic and tenant1’s
spark traffic come from two different cores.

Next, we modify the base workload to see if the prob-
lem still exists if there is no memcached traffic. We add∧

i∈{3,6,9} cenq(Qi, t) = 0 to the base workload and repeat the
query. This time, we get the following workload as answer:

∀t ∈ [1,10] : cenq(Q8, t)≥ t ∧ ∀t ∈ [1,10] : cenq(Q11, t)≥ t
∧∀t ∈ [1,10] : Σq∈{Q2,Q5}cenq(q, t)≥ t

∧∀t ∈ [1,10] : cenq(Q10, t)≥ t
∧ (∧i∈rest∀t ∈ [1,10] : cenq(Qi, t)≤ 0).

where rest = {1,3,4,6,7,9,12}. Here tenant 2’s spark runs on
all cores and tenant 1’s spark only on core 4. The first three
constraints ensure that there are three different concurrent
streams of traffic from tenant 2’s spark. Since there is only
one stream of spark traffic for tenant 1, that is, because the
spark flows are not uniformly spread across cores, tenant 1
gets access to the link less frequently than tenant 2. Both
workloads are consistent with the empirical results in [44].

7.3 Tractability
Tables 7a and 7b summarize statistic about different phases
involved in workload synthesis for the packet scheduling case
studies across 10 runs. We use a server with 4-socket NUMA-
enabled Intel Xeon Gold 6128 3.4GHz CPU with 6 cores per
socket. For Comp, we only include the results for the second
query as, compared to the first query, its analysis is more
involved in all synthesis phases.
Generating G is expensive. This is not surprising: when
generating trace egi, we constrain it to have different randomly

chosen values from egi−1 in p = P random places. If no trace
is found in two tries, we decrement p and try again. Each time,
we also ask the verification engine to minimize the distance
between egi and the base trace (§6.4). The more such calls,
either due to the sheer size of G, or because we have to retry
a lot for each trace, the longer generating G will take.

Compared to Prio and Comp, it takes more tries to find a
trace for RR and FQ-Codel (average of 16 and 6 tries, respec-
tively). This is because the answers to their queries are more
sensitive to the timing of packets in the trace: RR needs a
specific kind of burstiness and FQ-CoDel needs a specific rate.
So, making p random modifications to egi−1 for larger values
of p makes it improbable to satisfy the query for egi, increas-
ing the number of retries. By default, P = min(10, trace_size

5),
which is 10 for RR and FQ-CoDel, translating to a maximum
of 20 tries per example trace. Instead, we can potentially set P
to the moving average of the p that has worked for the previ-
ous traces and reduce the number of retries, and consequently,
the total time for generating G.

Another option is to reduce |G|, potentially increasing
search time as shown in Figure 10 (Appendix). For all but FQ-
Codel, the decrease in example generation time outweighs the
increase in search time, and workload synthesis is fastest for
|G|= 25. For FQ-CoDel the sweetspot is |G|= 50. One could
execute workload synthesis in parallel for different values of
|G| and use the results from whichever finishes first. Moreover,
once we have the base trace eg0, we can potentially parallelize
the generation of G into x threads, each generating |G|

x traces.
Our randomized changes from one trace to the next reduces
the risk of getting duplicate traces across threads, and even if
there are a few, it will not affect the correctness of the search.
The verification engine is efficient. The verification engine
can verify a workload in < 1sec on average. The worst case

is ∼ 10sec. for Comp, and < 1sec. in other case studies. The
efficiency of the verification engine is thanks to the advances
in SMT solvers [34], our efficient encoding of queues (Ap-
pendix), and our choice to use immediate composition.

In immediate composition, packets leaving output queues
at time t are visible in the input queues of the next module at
time t, as opposed to t +1 in sequential composition (§3). So,
if we have a chain of L queuing modules, a packet arriving at
time t is processed by all the queuing modules one-by-one but
in the same time step and appears in the final output queue
at t +1, as opposed to t +1+L. In Comp, all the paths from
input to output queues through the queuing modules have the
same length. So, if we use immediate composition across all
modules, it will not change the relative ordering of packets
across queuing modules and allows us to analyze the model
in 10 as opposed to 15 time steps and get the same output.
Optimizations (§6.5) are effective. For instance, when a can-
didate workload matches one of the bad example traces, we
can move on to the next candidate without calling the verifica-
tion engine. Using this optimization, we avoided calling the
verification engine in ∼ 40 to 70% of the rounds, which trans-
lates to saving ∼ 113 and 192 seconds in FQ-CoDel and Comp
that are more complex. Moreover, The “look-ahead” strategy
is used in 5% of the rounds, helping the search algorithm to
avoid local minima and plateaus.

8 Case Study: A Small Leaf-Spine Network
In this section, we use FPerf to analyze a small leaf-spine net-
work (Figure 8). Our goal is to demonstrate the expressiveness
of our model and the generality of our techniques.
Modeling switches. We model our switches after input-
queued switches with virtual output queues (VOQs). Suppose
the switch has P ports. Each input port i has P VOQs, where
the jth VOQ stores packets that are destined for output port j.
The switch crossbar decides which input ports can simultane-
ously send packets to which output ports without interfering
with each other, and delivers packets from the corresponding
VOQs at those input ports to their destination output ports.

Figure 9 shows how we model this in FPerf. A switch with
P ports is a composition of P+ 1 queuing modules. There
are P forwarding modules, one for each input port. The ith
forwarding module takes a packet from input port i, decides
the destination port j it should be forwarded to, and places
the packet in the jth VOQ for port i. The crossbar queuing
module models the switch crossbar. In each time step, using
the iSlip algorithm [47], it matches input ports and output
ports such that each input port is matched with at most one
output port and vice versa. If an input port i is matched with
an output port j, the crossbar moves a packet from the jth
VOQ at port i to the output queue for port j. iSlip and its
variants are widely used in switching fabrics as they provide
high throughput in the crossbar and fairness across inputs.
Packet metadata and workload metrics. The per-packet
metadata variables include dst, a variable representing the fi-

Figure 8: A small leaf-spine network as case study (§8).

nal destination of the packet, and ecmp, a variable with values
in [0,S] where S is the number of spines switches, representing
the result of the ECMP hash of the packet’s flow id modulo
the number of spines. We extend example traces and our algo-
rithms for generating them (§6.4) to include packet metadata
(details are in Appendix D.1). Moreover, we add two cor-
responding metrics, dst(q, t) and ecmp(q, t), to our workload
language to track the values of these variables for packets
entering q at time t. These metrics, together with cenq(q, t)
and aipg(q, t), can be used in the synthesized workloads to
describe a range of traffic patterns and flows.
User Interface. To create a model of a network of switches,
the users need to specify the topology (switches and links)
and the forwarding rules (mapping per-packet metadata to an
output port) for each switch. For a leaf-spine network, FPerf
provides a special interface that only requires specifying the
number of leaves and spines. For the base workload, the users
can provide a list of constraints using an interface that ab-
stracts away the logical operators and expressions in Figure 4.
Each constraint is either (1) [t1, t2] q.m ⊕ c, constraining metric
m for queue q against a constant (⊕ is any comparison opera-
tor), (2) [t1, t2] (q1.m + ... + qn.m) ⊕ c, (3) [t1, t2] q1.m ⊕ q2.m, or
(4) [t1, t2] (q1.m + ... + qn.m)/t ⊕ c, constraining a metric’s value
for one or more queues over time. Queues are identified by
switch id and port number.

For queries, the users provide a list of questions with a
similar interface, asking if the value of a metric over a time
period for one or more queues can go above or below a thresh-
old. There are two special shorthands for common queries:
q.avg_rate is the average input rate for queue q, which trans-
lates to q.cenq/t, and lat(s1, ..., sn) is the latency through the
specified sequence of switches, which translates to sum of
queue sizes (q1.qsize + ... + qn.qsize) along the path. Ap-
pendix D.2 includes more details on the translation between
this interface and the syntax in Figure 4.
The throughput query (LS-T). Since there is no oversub-
scription in our leaf-spine network, we first ask whether the
throughput between hosts 1 and 6 can drop below line-rate:

base_wl→∀t ∈ [10,10] : cenq(Out6, t)< 5
base_wl= (∀t ∈ [1,10] : dst(In1, t) = 6)∧

(∧i, j∈[1,6],i ̸= j∀t ∈ [1,10] : dst(Ini, t) ̸= dst(In j, t))

Ini and Outi are the queues host i uses to send traffic into and
receive traffic from the network, respectively. The query asks
whether the total number of packets received by host i at time
10 is less than half of what it should have received at line rate.
The base workload ensures that host 1 sends a steady stream

Figure 9: Modeling an input-queued switch with VOQs in FPerf.

of traffic to host 6 (at least 1 packet per time step), and no
two hosts send traffic to the same destination so there is no
traffic concentration at the hosts. For this query, FPerf finds
the following workload:

∀t ∈ [1,10] : dst(In3, t)≥ 5 ∧ ∀t ∈ [1,7] : ecmp(In1, t) = 1
∧∀t ∈ [1,7] : ecmp(In3, t) = 1 ∧ ∀t ∈ [1,10] : cenq(In4, t)≤ 0.

That is, if there is another flow from host 3 to the third pod
(constraint 1) with the same ecmp as the flow from host 1 to
6 (constraints 2 and 3), the two flows have to compete for
bandwidth on the link from S1 to L3 (Figure 8) and host 6 will
not receive traffic from host 1 at line rate. The last constraint
ensures that the flow from host 3 has all the bandwidth from
the second pod to itself to compete with the flow from host 1.

The latency query (LS-L). In the absence of queuing delay,
it takes packets three time steps to go from a host in one pod
to a host in a different pod. We want to know if it can take
much longer, say, 13 time steps, for packets to go from host 1
to 6. To do so, we ask if it is possible to have a queue build
up of at least 10 packets along the path of the flow:
base_wl→∀t ∈ [10,10] : Σq∈path qsize(q, t)≥ 10
base_wl= (∀t ∈ [1,10] : dst(In1, t) = 6)∧
(∀t ∈ [1,10] : ecmp(In1, t) = 1)∧ (∀t ∈ [1,10] : cenq(In1, t)≤ t)

Here, the base workload ensures there is a flow from host 1 to
6 (constraints 1 and 2), and that the flow sends at most at line
rate (constraint 3), so that there is no artificial queue build up
from the flow’s own packets. path is the set of queues the flow
visits as it traverses L1, S1 (since in base_wl, ecmp(Int , t) = 1),
and L3 (see Figure 8).

For this query, FPerf finds the following workload:
∀t ∈ [1,8] : dst(In3, t) = 6∧ ∀t ∈ [1,8] : ecmp(In3, t) = 1

∧∀t ∈ [1,10] : ecmp(In5, t) = 6∧ ∀t ∈ [1,10] : cenq(In4, t)≤ 0.

That is, if hosts 3 and 5 (from pods 2 and 3) send traffic to
host 6 at the same time (constraints 1 to 3), there will be a
queue build up of at least 10 packets along the path of the
flow and its packets will experience high latency. Similar to
the throughput query, the last constraint ensures that the flow
from host 3 has all the bandwidth from the second pod to
itself to contribute to quickly building up the queues.

Tractability. Tables 7b and 7a summarize statistics about dif-
ferent phases of workload synthesis for the queries about the
leaf-spine network. The results are consistent with our obser-
vations in §7.3. Generating the good example set is expensive
but there are opportunities for parallelization and further op-
timizations. The verification engine is efficient, verifying

workloads in < 1.7sec. on average and ∼ 4sec. in the worst
case. Beyond what is described in §7.3, we employ other
optimizations that contribute to this efficiency. Specifically,
we use the forwarding rules in the leaf-spine topology to (1)
remove certain VOQs from the switch crossbar if their corre-
sponding input and output ports are not expected to commu-
nicate (e.g., a packet entering a leaf from a spine is expected
to go to one of the output ports connected to the hosts and not
other spines), and (2) constrain the values of the per-packet
metadata to reduce the search space (e.g., all packets going
into S1 have ecmp set to 1). Finally, our search optimizations
remain effective, avoiding calls to the verification engine in
∼ 55 to 89% of the rounds, and the example traces effectively
guide the search towards workloads that satisfy the query.
Takeaways. Queuing modules and their composition are
expressive enough to model a variety of network compo-
nents, from packet schedulers and classifiers to a network
of switches. We did not need to make any changes to how
we model contention points (§3) to model the leaf-spine net-
work. Similarly, our workload synthesis techniques generalize
beyond packet scheduling. Our example generation strategy
and workload metrics need only minor changes to include the
packet metadata needed for forwarding over the network, and
our search algorithm can find workloads for the queries as
effectively without any modifications.

9 Discussion and Future Directions
Scaling to large networks. Figure 7c shows how example
generation, search, and workload verification times increase
for the latency query on leaf- spine networks of increasing
size. As the network size increases, the number of variables
and constraints go from 45k and 46k to 182k and 181k, and au-
tomated theorem provers (e.g., Max-SMT and SMT solvers)
which we use in example generation and workload verifica-
tion, can take exponentially longer as the problem size in-
creases. For our largest evaluated network (not shown in the
figure) with 4 spines, 4 leaves, and 16 servers (56 modules
and 288 queues), it takes 224 minutes to find an answer.

There is room for more optimizations, some of which we
have implemented for this experiment and discuss in Ap-
pendix D.3. But, as with any other approach that relies on
similar formal methods tools, there is a limit to how many vari-
ables and constraints we can jointly reason about within a rea-
sonable amount of time. As such, similar to data and control-
plane verification tools that have matured over a decade to
scale to large-scale networks, much work needs to be done to
improve the scalability of formal methods tools for network
performance analysis.

For example, we may need to develop new techniques,
e.g., domain-specific algorithms for reasoning about network
properties to replace SAT/SMT solvers [12, 48] or decom-
pose global properties into local properties for modular anal-
ysis [15, 31]. Specifically, given that performance queries and
properties such as latency lend themselves well to decomposi-

tion over regions and paths, we believe modular analysis to be
key in scaling automated formal reasoning about performance
and an important direction for future work.
Bounded Time. We model queuing modules for a bounded
number of time steps, starting with empty queues and every
module in its initial state. Nevertheless, the workloads in our
case studies often include “repeatable” patterns. For instance,
in FQ-CoDel, Q5 can continue causing fairness problems after
14 timesteps if it keeps sending at the rate specified in the
workload. Prior work explores how to find periodic adver-
sarial input patterns for P4 programs [49], and it would be
interesting to explore similar ideas in our context. Moreover,
to cover different portions of the time horizon, we can explore
ways to compute a subset set of reachable states in queuing
modules and start from those as opposed to the initial state.
Finally, exploring verification techniques for reasoning about
unbounded time [50] is an interesting avenue for future work.
Packets vs. bits. In our prototype, metrics, and therefore,
queries and workloads, are defined in terms of packets rather
than bits. We plan to extend FPerf to include packet sizes as
extra variables, so they can be used in defining metrics and
potentially reveal even more interesting workloads.
Generating traces from workloads. We can use the ver-
ification engine to generate example traces from the final
workloads. Transforming these traces or the traces in G to
concrete packets that can be injected into real-world networks
(e.g., see Adapters in [37]) is an interesting future direction.

10 Related Work
Network Calculus. Network Calculus [6, 51] offers a uni-
form mathematical framework for analyzing performance
guarantees. To use network calculus, one needs to model the
input workload as an “arrival curve”, which bounds the arrival
pattern of bits into a network component, and the network
component as a “service curve”, which bounds the number of
serviced bits. Using these curves and (min,+) algebra, one can
then derive bounds on performance metrics such as through-
put, latency, jitter, and loss [4, 52–54]. However, these curves
need to be reasonably concise and provide tight bounds on
the behavior of the network component and the input traffic
pattern for the final bounds to be tight and useful. Deriving ar-
rival and service curves is challenging, particularly for today’s
complex network functionality and traffic patterns [10].
Quantitative Reasoning. There is a line of work for rea-
soning about quantitative network properties: Some extend
dataplane verifiers to reason about quantities such as link
loads and hop counts [55–57]. Others reason about probabilis-
tic aspects of networks (e.g., weighted ECMP) and answer
probabilistic questions (e.g., the probability that packets reach
a destination) [58,59]. Our work is similar in that performance
properties are quantitative. However, these tools focus on veri-
fication, whereas, we propose to use synthesis to automatically
generate not just one counter-example, but a workload that vi-
olates user-defined performance-related properties. Moreover,

these tools abstract away many low level network details as
nondeterministic, which we are able to model more precisely
in SMT in our queueing modules.
Automated protocol analysis. Recent work uses techniques
such as bounded model checking and guided search to check
if congestion control algorithms can be driven into undesir-
able states or underutilize the network [60–62]. Khan et al.
propose to train Markov models that capture the temporal be-
havior and throughput and delay distributions of delay-based
congestion control protocols [63]. Gilad et al. use reinforce-
ment learning (RL) to train agents that generate adversarial
traces for protocols and use it to demonstrate sub-optimal
performance in some RL-driven protocols [64]. We propose
generating workloads describing sets of traces in response to
user-defined queries about performance problems.
Synthesis. Syntax-Guided Synthesis (SyGuS) is a general ap-
proach to program synthesis that uses a verifier together with
a candidate program grammar. There are various ways to do
SyGuS; there are enumerative [65, 66], stochastic [20, 30, 35],
and logical approaches [67]. Our work is based on stochas-
tic search. Moreover, recent work explores using synthesis
in networking to generate packet processing code [19, 20],
network configuration [21–23], configuration updates [24], or
control-plane repairs [25, 26]. We use synthesis to generate
workloads to reason about network performance.

11 Conclusion
Over the past decade, a large body of academic and industry
work has demonstrated the feasibility and benefits of using
formal methods to reason about the functional correctness of
networks. Inspired by their success, we set out to bring the
same benefits to analyzing network performance.

Along the way, we have developed efficient encodings of
packet-level interactions that affect network performance. We
have also found that when it comes to performance analysis,
returning isolated packet traces that violate performance prop-
erties is not always useful. Instead, we argue that a more use-
ful output is a workload that can concisely describe the com-
monality of a set of traces that can experience performance
problems. We have shown how to apply existing synthesis
techniques to generating such workloads and demonstrated
the tractability of our approach using case studies.

This is only the start; as with other applications of formal
methods to systems and networking, much work needs to be
done to make such formal performance analysis approaches
suitable for analyzing real-world networks, some of which
we have outlined in this paper as future research directions.

Acknowledgments
We thank Laurent Vanbever, our shepherd, the anonymous
reviewers, Jennifer Rexford, Shir Landau-Feibish, and Nate
Foster for their helpful feedback. This work was supported
in part by NSF grants CNS-2047283 and CNS-1704742, a
Google faculty research award, and a Sloan fellowship.

References
[1] NS3 Network Simulator. https://www.nsnam.org/. Accessed: 09-

2022.

[2] Mininet. http://mininet.org/. Accessed: 09-2022.

[3] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapra-
gada, Nuno P Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua
Yuan. CrystalNet: Faithfully emulating large production networks. In
ACM SOSP, 2017.

[4] Victor Firoiu, J-Y Le Boudec, Don Towsley, and Zhi-Li Zhang. The-
ories and models for internet quality of service. Proceedings of the
IEEE, 2002.

[5] Rayadurgam Srikant. The mathematics of Internet congestion control.
Springer, 2004.

[6] Jean-Yves Le Boudec and Patrick Thiran. Network calculus: A theory
of deterministic queuing systems for the internet. Springer, 2001.

[7] Steven H Low. A duality model of TCP and queue management
algorithms. IEEE/ACM Transactions On Networking, 2003.

[8] Jiayue He, Mung Chiang, and Jennifer Rexford. TCP/IP interaction
based on congestion price: Stability and optimality. In 2006 IEEE
International Conference on Communications, 2006.

[9] Mohammad Alizadeh, Adel Javanmard, and Balaji Prabhakar. Analysis
of DCTCP: Stability, convergence, and fairness. ACM SIGMETRICS,
2011.

[10] Florin Ciucu and Jens Schmitt. Perspectives on network calculus: No
free lunch, but still good value. In ACM SIGCOMM, 2012.

[11] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar,
P Brighten Godfrey, and Samuel Talmadge King. Debugging the data
plane with Anteater. In ACM SIGCOMM, 2011.

[12] Peyman Kazemian, George Varghese, and Nick McKeown. Header
space analysis: Static checking for networks. In USENIX NSDI, 2012.

[13] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and
P Brighten Godfrey. Veriflow: Verifying network-wide invariants in
real time. In USENIX NSDI, 2013.

[14] Alex Horn, Ali Kheradmand, and Mukul Prasad. Delta-Net: Real-time
network verification using atoms. In USENIX NSDI, 2017.

[15] Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal,
Ashish Bhargava, Paul-Andre C Bissonnette, et al. Validating dat-
acenters at scale. In ACM SIGCOMM. 2019.

[16] Announcing Network Intelligence Center – towards proactive net-
work operations. https://cloud.google.com/blog/products/
networking/announcing-network-intelligence-center. Ac-
cessed: 09-2022.

[17] Fangdan Ye, Da Yu, Ennan Zhai, Hongqiang Harry Liu, Bingchuan Tian,
Qiaobo Ye, Chunsheng Wang, et al. Accuracy, scalability, coverage: A
practical configuration verifier on a global WAN. In ACM SIGCOMM,
2020.

[18] Siva Kesava Reddy Kakarla, Ryan Beckett, Behnaz Arzani, Todd Mill-
stein, and George Varghese. GRoot: Proactive verification of DNS
configurations. In ACM SIGCOMM, 2020.

[19] Xiangyu Gao, Taegyun Kim, Michael D Wong, Divya Raghunathan,
Aatish Kishan Varma, Pravein Govindan Kannan, Anirudh Sivaraman,
Srinivas Narayana, and Aarti Gupta. Switch code generation using
program synthesis. In ACM SIGCOMM, 2020.

[20] Qiongwen Xu, Michael D Wong, Tanvi Wagle, Srinivas Narayana, and
Anirudh Sivaraman. Synthesizing safe and efficient kernel extensions
for packet processing. In ACM SIGCOMM, 2021.

[21] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. Don’t mind the gap: Bridging network-wide objectives
and device-level configurations. In ACM SIGCOMM, 2016.

[22] Ryan Beckett, Ratul Mahajan, Todd Millstein, Jitendra Padhye, and
David Walker. Network configuration synthesis with abstract topolo-
gies. In ACM SIGPLAN PLDI, 2017.

[23] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin
Vechev. Netcomplete: Practical network-wide configuration synthesis
with autocompletion. In USENIX NSDI, 2018.

[24] Tibor Schneider, Rüdiger Birkner, and Laurent Vanbever. Snowcap:
synthesizing network-wide configuration updates. In ACM SIGCOMM,
2021.

[25] Aaron Gember-Jacobson, Aditya Akella, Ratul Mahajan, and
Hongqiang Harry Liu. Automatically repairing network control planes
using an abstract representation. In ACM SOSP, 2017.

[26] Anubhavnidhi Abhashkumar, Aaron Gember-Jacobson, and Aditya
Akella. Aed: incrementally synthesizing policy-compliant and manage-
able configurations. In ACM CoNEXT, 2020.

[27] VMware to Advance Network Monitoring with Acquisition of
Veriflow. https://blogs.vmware.com/management/2019/08/
vmware-to-advance-network-monitoring-with-acquisition-
of-veriflow.html. Accessed: 09-2022.

[28] Intentionet. https://www.intentionet.com/. Accessed: 09-2022.

[29] Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin,
Mukund Raghothaman, Sanjit A Seshia, Rishabh Singh, Armando
Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-Guided
Synthesis. In FMCAD, 2013.

[30] Rahul Sharma and Alex Aiken. From invariant checking to invariant
inference using randomized search. Formal Methods in System Design,
2016.

[31] Ryan Beckett and Ratul Mahajan. Capturing the state of research on
network verification. https://netverify.fun/2-current-state-
of-research/. Accessed: 09-2022.

[32] Toke Høeiland-Jøergensen, Paul McKenny, Dave Taht, Jim Gettys, and
Eric Dumazet. The Flow Queue CoDel packet scheduler and active
queue management algorithm. RFC 8290, 2018.

[33] Madhavapeddi Shreedhar and George Varghese. Efficient fair queueing
using deficit round robin. In ACM SIGCOMM, 1995.

[34] Z3. https://github.com/Z3Prover/z3. Accessed: 09-2022.

[35] Eric Schkufza, Rahul Sharma, and Alex Aiken. Stochastic superopti-
mization. In ACM ASPLOS, 2013.

[36] Rüdiger Birkner, Dana Drachsler-Cohen, Laurent Vanbever, and Martin
Vechev. Net2Text: Query-Guided summarization of network forward-
ing behaviors. In USENIX NSDI, 2018.

[37] Tiago Ferreira, Harrison Brewton, Loris D’Antoni, and Alexandra Silva.
Prognosis: closed-box analysis of network protocol implementations.
In ACM SIGCOMM, 2021.

[38] Richard Uhler and Nirav Dave. Smten with satisfiability-based search.
In ACM OOPSLA, 2014.

[39] Emina Torlak and Rastislav Bodik. A Lightweight symbolic virtual
machine for solver-aided host languages. In ACM SIGPLAN PLDI,
2014.

[40] CBMC. https://www.cprover.org/cbmc/. Accessed: 09-2022.

[41] FPerf Github Repository. https://github.com/minmit/fperf. Ac-
cessed: 09-2022.

[42] Nvidia ConnectX SmartNICs. https://www.nvidia.com/en-us/
networking/ethernet-adapters/. Accessed: 09-2022.

[43] Sivasankar Radhakrishnan, Yilong Geng, Vimalkumar Jeyakumar, Ab-
dul Kabbani, George Porter, and Amin Vahdat. SENIC: Scalable NIC
for end-host rate limiting. In USENIX NSDI, 2014.

[44] Brent Stephens, Aditya Akella, and Michael Swift. Loom: Flexible and
Efficient NIC Packet Scheduling. In USENIX NSDI, 2019.

https://www.nsnam.org/
http://mininet.org/
https://cloud.google.com/blog/products/networking/announcing-network-intelligence-center
https://cloud.google.com/blog/products/networking/announcing-network-intelligence-center
https://blogs.vmware.com/management/2019/08/vmware-to-advance-network-monitoring-with-acquisition-of-veriflow.html
https://blogs.vmware.com/management/2019/08/vmware-to-advance-network-monitoring-with-acquisition-of-veriflow.html
https://blogs.vmware.com/management/2019/08/vmware-to-advance-network-monitoring-with-acquisition-of-veriflow.html
https://www.intentionet.com/
https://netverify.fun/2-current-state-of-research/
https://netverify.fun/2-current-state-of-research/
https://github.com/Z3Prover/z3
https://www.cprover.org/cbmc/
https://github.com/minmit/fperf
https://www.nvidia.com/en-us/networking/ethernet-adapters/
https://www.nvidia.com/en-us/networking/ethernet-adapters/

[45] Apache Spark. https://spark.apache.org/. Accessed: 09-2022.
[46] Memcached: a Distributed Memory Object Caching System. http:

//www.memcached.org/. Accessed: 09-2022.
[47] Nick McKeown. The iSLIP scheduling algorithm for input-queued

switches. IEEE/ACM Transactions on Networking, 1999.
[48] Todd Millstein. Toward modular network verification. https://

netverify.fun/toward-modular-network-verification/. Ac-
cessed: 09-2022.

[49] Qiao Kang, Jiarong Xing, Yiming Qiu, and Ang Chen. Probabilistic
profiling of stateful data planes for adversarial testing. In ACM ASPLOS,
2021.

[50] Anthony Lin. Model Checking Infinite-State Systems: Generic and
Specific Approaches. PhD thesis, 2010.

[51] Rene L Cruz. A calculus for network delay. parts I and II. IEEE
Transactions on Information Theory, 1991.

[52] Jorg Liebeherr, Yashar Ghiassi-Farrokhfal, and Almut Burchard. On
the impact of link scheduling on end-to-end delays in large networks.
IEEE Journal on Selected Areas in Communications, 2011.

[53] Jörg Liebeherr, Almut Burchard, and Florin Ciucu. Delay bounds
in communication networks with heavy-tailed and self-similar traffic.
IEEE Transactions on Information Theory, 2012.

[54] C-S Chang. Stability, queue length and delay. II. Stochastic queueing
networks. In IEEE Conference on Decision and Control, 1992.

[55] Garvit Juniwal, Nikolaj Bjorner, Ratul Mahajan, Sanjit Seshia, and
George Varghese. Quantitative network analysis. Technical report,
2016.

[56] Ying Zhang, Wenfei Wu, Sujata Banerjee, Joon-Myung Kang, and
Mario A Sanchez. SLA-verifier: Stateful and quantitative verification
for service chaining. In IEEE INFOCOM, 2017.

[57] Kim G Larsen, Stefan Schmid, and Bingtian Xue. WNetKAT: A
weighted SDN programming and verification language. In Interna-
tional Conference on Principles of Distributed Systems (OPODIS),
2017.

[58] Nate Foster, Dexter Kozen, Konstantinos Mamouras, Mark Reitblatt,
and Alexandra Silva. Probabilistic NetKAT. In European Symposium
on Programming, 2016.

[59] Timon Gehr, Sasa Misailovic, Petar Tsankov, Laurent Vanbever, Pascal
Wiesmann, and Martin Vechev. Bayonet: Probabilistic inference for
networks. In ACM SIGPLAN PLDI, 2018.

[60] Venkat Arun, Mina Tahmasbi Arashloo, Ahmed Saeed, Mohammad
Alizadeh, and Hari Balakrishnan. Toward formally verifying congestion
control behavior. In ACM SIGCOMM, 2021.

[61] Wei Sun, Lisong Xu, Sebastian Elbaum, and Di Zhao. Model-Agnostic
and efficient exploration of numerical state space of real-world TCP
congestion control implementations. In USENIX NSDI, 2019.

[62] Samuel Jero, Md Endadul Hoque, David R Choffnes, Alan Mislove, and
Cristina Nita-Rotaru. Automated attack discovery in TCP congestion
control using a model-guided approach. In NDSS, 2018.

[63] Muhammad Khan, Yasir Zaki, Shiva Iyer, Talal Ahamd, Thomas Pötsch,
Jay Chen, Anirudh Sivaraman, and Lakshmi Subramanian. The case
for model-driven interpretability of delay-based congestion control
protocols. ACM SIGCOMM Computer Communication Review, 2021.

[64] Tomer Gilad, Nathan H Jay, Michael Shnaiderman, Brighten Godfrey,
and Michael Schapira. Robustifying network protocols with adversarial
examples. In ACM HotNets, 2019.

[65] Peter-Michael Osera and Steve Zdancewic. Type-and-Example-
Directed program synthesis. In ACM SIGPLAN PLDI, 2015.

[66] Jonathan Frankle, Peter-Michael Osera, David Walker, and Steve
Zdancewic. Example-directed synthesis: A type-theoretic interpre-
tation. In ACM SIGPLAN-SIGACT POPL, 2016.

[67] Sumit Gulwani and Ramarathnam Venkatesan. Component-Based
synthesis applied to bitvector circuits. Technical report, 2009.

A Efficient Encoding of FIFOs in SMT
A queue is specified with two parameters, its size S and the
maximum number of enqueues K allowed at every time step.
We define the following variables for each queue for every
time step t:

1. enqs[t][1 : K] consists of K tuples, where each tuple repre-
sents a packet. This captures the packets that are sent to
the queue at time t. These packets will enter that queue at
time t +1,

2. elems[t][1 : S], consists of S tuples, where each tuple repre-
sents a packet. This captures the packets that are inside the
queue at time t, and

3. an integer variable deq_cnt[t] that captures how many pack-
ets will be dequeued from this queue at time t.

We also define a set of helper boolean variables val_elem[t][i].
val_elem[t][i] is true if there is a packet in elems[t][1 : S] and is
false if elems[t][i] is empty. val_enq[t][1 : K] is defined similarly.

Our queues can have up to K enqueues and up to S dequeues
in every time step. To model that, we take care of the dequeues
first. We define an extra set of helper variables tmp_val[t][1 : S]
to denote which indexes in the queue would still have packets
and which ones would become empty at t +1 if we were to
only do deq_cnt(t) number of dequeues and not any enqueues.
Specifically, tmp_val[t][i] is true if the ith element of the queue
will still contain a packet after the dequeues in that time step
assuming no enqueues happen.

To capture that, for every 1 ≤ i ≤ S and 1 ≤ d ≤ S, if i+d ≤ S,
we add(

deq_cnt[t] = d
)
→

(
tmp_valid[t][i] = val_elem[t][i+d]

)
Otherwise, we add(

deq_cnt[t] = d
)
→

(
¬tmp_val[t][i]

)
.

We also have some standard constraints to shift the packets
in elem forward depending on the deq_cnt(t).

The next set of constraints handle the enqueues in a “sliding
window” fashion. That is, starting from the head of the queue,
we consider all possible K + 1 consecutive positions in the
queue to find a window where the first element has a packet
and the next K are empty. This will be the tail of the queue
and where we will be enqueuing the new packets.

Specifically, for every 1 ≤ i ≤ S−K and 1 ≤ j ≤ K, we add
the following constraint:
tmp_val[t][i]∧¬tmp_val[t][i+1]→ elem[t][i+ j] = enqs[t −1][j]

We add extra constraints for the start and end of the queue
and when there is not enough space for K packets.

Finally, we add constraints to make sure there is no “hole”
in the queue. That is, suppose the queue has a packet at index
i and no packets at index i+1. Then, there is a packet at any
index j ≤ i queue. Moreover, at any index j > i, the queue is
empty. Specifically, for every 1 ≤ i < S, we add:

val_elem[t][i]∨¬val_elem[t][t]

https://spark.apache.org/
http://www.memcached.org/
http://www.memcached.org/
https://netverify.fun/toward-modular-network-verification/
https://netverify.fun/toward-modular-network-verification/

B Defintion of costS
Consider a workload wl=∧k

i=1coni, where coni = ∀t ∈ [T1i ,T2i] :
lhsi ⊕i rhsi. costS(wl) is defined in the following way:

costS(wl) =Σk
i=1queue_cnt(speci)+ interval_cnt(wl)

where queue_cnt(speci) is the number of queues constrained
by coni, which is equal to the number of queues specified in
lhsi. interval_cnt(wl) captures the degree of time fragmenta-
tion in the workload and is defined as the number of non-
overlapping time intervals with unique sets of constraints.

As an example, suppose wl has three constraints, ∀t ∈
[1,15] : cenq(Q1, t) ≥ 2, ∀t ∈ [3,7] : cenq(Q2, t) ≤ 5, and ∀t ∈
[5,10] : aipg(Q5, t) = 3. These three constraints are specify-
ing a traffic pattern over five non-overlapping time intervals
([1,2], [3,4], [5,7], [8,10], [11,15]) each with a unique set of con-
straints. So, interval_cnt is equal to five in this example. We
favor workloads that cause less time fragmentation as they
are less likely to overfit to the example sets, more concise,
and more interpretable.

C Details on Search Engine Optimizations
Reducing the search space. We have described one of our
optimizations to reduce the search space in §6.5. Another
optimization is detecting and ignoring “duplicate” workloads.
Our workload language allows for easy mutation of work-
loads with simple operations during search to generate new
candidates. So, it is possible for a workload’s mutation to
represent the same set of traces while being syntactically dif-
ferent. We perform several checks to detect such workloads
and avoid generating them as candidates, reducing the space
of workloads the search algorithm needs to explore.
Reducing calls to the verification engine. As we describe
in §6.5, if the search algorithm selects a candidate workload
that matches a trace in B, it can move on to finding the next
candidate without consulting with the verification engine, as
it already knows that the current candidate includes a trace
that does not satisfy the query. Note that the search algorithm
selects these candidates despite that fact that they match traces
in B as they could help it explore different regions of the
search space. Similarly, if a workload is rejected because it is
infeasible (§6.1), the search engine will keep track of it and
avoid a potentially expensive call to the verification engine if
that workload comes up in the future.
Other optimizations. Instead of only applying one of the
operations in §6.2 and generating one candidate workload, we
apply all of them one at a time, generate a set of candidates,
and pick one randomly from the ones with the lowest cost.
This helps the algorithm explore the lower-cost regions of the
search space earlier. Moreover, we introduce a new operation,
replace, which replaces a randomly-chosen constraint in the
workload with a new random constraint. Replace is equivalent
to a remove followed by an add, but it helps the algorithm
to generate a more diverse set of candidates faster. Finally,

Figure 10: Search and example generations times for |G|= |B|= 25,
50, and 100. Prio results are not shown as the total time was less
then 20s for Prio and would not be visible in the plot.

if the search algorithm selects a candidate workload that is
infeasible, adding or modifying constraints in the workload
to generate the next one are likely to yield another infeasible
candidate. So, the algorithm backtracks to the last known
feasible candidate and continues from that point.

D More Details on the Leaf-Spine Case Study

D.1 Introducing New Packet Metadata
In the leaf-spine case study §8, packets have two metadata
variables: dst, representing the final destination of the packet,
and ecmp, with values in [0,S] where S is the number of spines
switches, representing the result of the ECMP hash of the
packet’s flow id modulo the number of spines.

We define the metrics dst(q, t) as the destination of packets
that enter q at time t and ecmp(q, t) as the ECMP hash mod-
ulo number of spines for those packets. So, our workloads
describe traffic patterns in which packets entering a queue at
the same time have the same dst and ecmp.

For generating the base example, we add another optimiza-
tion criteria, to maximize the “smoothness” of flows. That is,
for the traffic entering from the hosts, the trace should not
introduce new flows or go back and forth between flows with
different dst and ecmp if not needed for satisfying the query.
When generating the rest of the good examples, we maintain
the same “smoothness” criteria, and when minimizing the
distance between eg0 and egi, we include the difference in
per-packet metadata in the computing the distance.

D.2 From User Interface to Logical Formulas
In the user interface described in §8, for the base workload,
the users can provide a list of constraints using an interface
that abstracts away the logical operators and expressions in
Figure 4. Here, we describe how these constraints are trans-
lated to the logical formulas in Figure 4.

• [t1, t2] q.m ⊕ c becomes ∀t ∈ [t1, t2] : m(q, t)⊕ c.
• [t1, t2] (q1.m + ... + qn.m) ⊕ c becomes ∀t ∈ [t1, t2] :

Σq∈{q1,··· ,qm}m(q, t)⊕ c.
• [t1, t2] q1.m ⊕ q2.m becomes ∀t ∈ [t1, t2] : m(q1, t)⊕m(q2, t)

• [t1, t2] (q1.m + ... + qn.m)/t ⊕ c becomes ∀t ∈ [t1, t2] :
Σq∈{q1,··· ,qm}m(q, t)⊕ c · t

For queries, the users provide a list of questions with
a similar interface, asking if the value of a metric over a
time period for one or more queues can go above or be-
low a threshold. A single question [t1, t2] lhs ⊕ rhs becomes
∃t ∈ [t1, t2] : trans(qlhs ⊕ rhs), where trans(qlhs ⊕ rhs) is the trans-
lation of the left hand side similar to what is described above.
A list of questions will translate to the conjunction of their
equivalent logical formulas. Note that queries in the form of
∀t ∈ [t1, t2]lhs⊕ rhs are still possible in the user interface by
creating a separate question for each time step between t1 and
t2. It is also possible to extend the user interface to directly
specify ∀ queries.

D.3 Example Generation Optimizations
For our scalability experiments in Figure 7c, we started with
the default |G| = |B| = 50. However, example generation is
expensive, and automated theorem provers (e.g., Max-SMT
and SMT solvers) which we use in example generation and
workload verification, can take exponentially longer as the
problem size increases. So, to be able to observe the trends
for larger networks, we used |G|= |B|= 25

We also employed extra optimizations when generating G.
Recall that when generating the base example, we minimize
the number of queues that have traffic in them. If a queue
does not receive any traffic in the base example trace eg0, it
will stay empty in the rest of the traces in G. So, once eg0 is
generated, we create a “reduced” model in which remove the
input queues that are marked as empty in eg0 as they would be
empty in the rest of the examples anyway. This helps reduce
the number of variables and constraints, specifically in the
crossbar modules of the leaf switches.

Moreover, recall that when generating trace egi, we con-
strain it to have different randomly chosen values from egi−1
in p = P random places. If no trace is found in two tries, we
decrement p and try again. Instead of fixing the starting point
to p = P, we set it to the moving average of the ps the worked
when generating the last K examples.

	Introduction
	Overview and Motivation
	Using Synthesis to Analyze Performance

	Modeling Contention Points
	Performance Queries
	The Workload Language
	Synthesizing Answers
	Verifying workloads
	Generating the next candidate
	The Cost Function
	Generating The Example Sets
	Optimizations

	Case Study: Packet Scheduling
	Stand-alone Schedulers
	Composing Host and NIC Schedulers
	Tractability

	Case Study: A Small Leaf-Spine Network
	Discussion and Future Directions
	Related Work
	Conclusion
	Efficient Encoding of FIFOs in SMT
	Defintion of costS
	Details on Search Engine Optimizations
	More Details on the Leaf-Spine Case Study
	Introducing New Packet Metadata
	From User Interface to Logical Formulas
	Example Generation Optimizations

