Toward eBPF-Accelerated Pub-Sub Systems

Beihao Zhou
University of Waterloo
Waterloo, Canada
beihao.zhou@uwaterloo.ca

Abstract

Publish-subscribe (pub-sub) systems are a fundamental building
block for real-time distributed applications, where high throughput
and low latency are critical. Existing brokers can suffer performance
bottlenecks as they operate in user space and rely on the socket API
and full kernel stack traversal for every message. We present BPF-
Broker, a novel pub-sub broker that leverages eBPF to accelerate
message dissemination by decoupling the broker’s control and
data paths. Subscriber management is handled in user space, while
message forwarding is done early in the kernel using the TC ingress
and XDP hooks. Our evaluation shows that BPF-Broker achieves
up to 3% higher throughput compared to our Socket-based baseline
broker under high subscriber counts, and up to 2-10x lower end-
to-end latency. These results highlight the potential of eBPF in
accelerating pub-sub systems.

CCS Concepts

+ Networks — In-network processing; Cloud computing; .
Software and its engineering — Real-time systems software;
Message passing.

Keywords

Publish-subscribe system, Data streaming, eBPF (extended Berkeley
Packet Filter), Message queueing systems

ACM Reference Format:

Beihao Zhou, Samer Al-Kiswany, and Mina Tahmasbi Arashloo. 2025. To-
ward eBPF-Accelerated Pub-Sub Systems. In 3rd Workshop on eBPF and
Kernel Extensions (eBPF 25), September 8—11, 2025, Coimbra, Portugal. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3748355.3748365

1 Introduction

Publish-subscribe (pub-sub) systems are a widely adopted communi-
cation paradigm in distributed infrastructures, enabling decoupled
and scalable message dissemination. In a typical pub-sub architec-
ture, publishers generate messages associated with specific topics,
and subscribers subscribe to receive messages published at a cer-
tain topic. Pub-sub service is often offered by Brokers, dedicated
servers that host topics, queue messages for each topic, and fan-out
messages to all subscribers of a topic.

Pub-sub systems serve as the backbone for real-time applica-
tions across a wide range of domains, including metrics pipelines,

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

eBPF °25, September 8—11, 2025, Coimbra, Portugal

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2084-0/25/09

https://doi.org/10.1145/3748355.3748365

Samer Al-Kiswany
University of Waterloo
Waterloo, Canada
alkiswany@uwaterloo.ca

Mina Tahmasbi Arashloo
University of Waterloo
Waterloo, Canada
mina.arashloo@uwaterloo.ca

streaming data analytics, IoT networks, autonomous vehicles, and
microservice orchestration [2, 5, 12, 15, 18]. In these environments,
a single publisher may need to broadcast frequent updates to tens
or hundreds of subscribers [1, 8, 28]. Moreover, in many cases, time-
liness outweighs reliability: missing an occasional sensor update is
acceptable as long as the next one arrives in time [4, 10, 11, 20]. This
makes message fan-out in the broker a particularly performance-
critical operation, demanding high throughput and low latency.

Existing brokers such as RabbitMQ [29] and ActiveMQ [3] are
implemented as user-space applications that use the socket interface
and the traditional Kernel stack to send and receive messages. That
is, when using these brokers, every publish request has to traverse
up the entire kernel network stack and cross over to the user space
to get processed, and each of the per-subscriber messages generated
in response has to cross over the boundary and traverse back down
the stack. The stack overhead can grow prohibitively large with an
increasing number of subscribers - for large message fan-outs, this
can result in tens of milliseconds of latency in processing publish
requests and throughput degradation, which worsens further under
high load [6, 7, 27].

In this paper, we explore using eBPF to accelerate pub-sub bro-
kers. We observe that the core logic of the performance-critical
data path of a pub-sub broker, i.e., the message fan-out for publish
requests, is conceptually simple: when receiving a publish request,
the broker needs to identify the topic, look up the subscribers, and
forward the message. This simplicity makes the broker’s publish
logic an ideal candidate to implement in eBPF hooks that are lower
in the stack, i.e., XDP and TC. This way, the publish requests will
be processed and disseminated to the subscribers without going
through any of the traditional protocol processing logic in the
kernel network stack or a user-space process.

Specifically, we present BPF-Broker, a broker with its message
dissemination path fully implemented in eBPF. In designing BPF-
Broker, we decouple the control and data paths: topic registration
and subscriber management occur in a user-space process, while
message dissemination in response to publish requests is performed
fully in-kernel in eBPF hooks. The user-space control logic stores
the subscriber list for each topic in a map-of-maps accessed by
eBPF programs at the traffic control (TC) layer. BPF-Broker in-
tercepts incoming packets at the TC ingress hook. For publish
requests in a single UDP packet, it uses an eBPF map-of-maps
to retrieve the subscriber list for the corresponding topic. It then
uses bpf_clone_redirect() to replicate and send out messages
to subscribers directly to the NIC transmit queues, bypassing the
traditional protocol processing, sockets, queues, and crossing into
user space altogether. To further accelerate message dissemination,
BPF-Broker identifies, in the XDP hook, when a publish message
is for a topic with only one subscriber and processes it right there,
avoiding sending the packet to the kernel stack at all.

https://doi.org/10.1145/3748355.3748365
https://doi.org/10.1145/3748355.3748365

eBPF °25, September 8-11, 2025, Coimbra, Portugal

........ { broker_controlpath |

User space

- \
| broker_datapath_tc | -bpf_clone_redirect() - - -- -

Network Stack
\I Traffic Control Ingress hook | Y,

—1

A !
S 1
:
1
1

Network Driver
XDP hook T

v Wy

1
1
'
1
:
| broker_datapath_xdp | E
:
1
1
1
1
1
1
1

(-----_________________

Figure 1: BPF-Broker Architecture

We evaluate BPF-Broker by comparing it against a broker that im-
plements both the control and data paths in a user-space application
and uses UDP sockets to send and receive messages. Our evalua-
tion using synthetic workloads shows that BPF-Broker can achieve
up to 2-10X lower end-to-end latency and 3X higher throughput.
BPF-Broker can scale to hundreds of subscribers while maintaining
stable performance under high fanout pressure, demonstrating the
potential of eBPF in accelerating pub-sub systems.

2 BPF-Broker’s Design

A pub-sub broker is responsible for two key functions: (1) main-
taining topic-subscriber mappings, and (2) disseminating messages
related to a certain topic to that topic’s active subscribers. Maintain-
ing topic-subscriber mapping, which involves topic registration and
subscription management, is not performance-critical and benefits
from flexibility. As such, it is implemented in BPF-Broker’s control
path in a user space process (Figure 1). Message dissemination,
on the other hand, is performance-critical and is implemented in
BPF-Broker’s data path in low-level eBPF hooks for low latency and
high throughput. This section provides an overview of the pub-sub
protocol used for communication between BPF-Broker, publishers,
and subscribers (§2.1), presents how BPF-Broker maintains topic-
to-subscriber mappings in its control path (§2.2), and describes how
it accelerates message fan-out in its data path (§2.3).

2.1 The Pub-Sub Protocol

There are several existing pub-sub protocols for communication be-
tween the broker and publishers and subscribers, including AMQP
[14], MQTT [23], DDS [19], STOMP [24], and XMPP [22]. As a
first step in accelerating brokers with eBPF, we focus on the core
messages common across most protocols for topic registration,
subscription, and publishing. All messages are sent over UDP and
consist of a command keyword followed by one or more argu-
ments, separated by spaces. Table 1 provides an overview of the
message formats. We discuss extensions to support TCP and other
commands and features in §4.

Topic Registration. Publishers can create a new topic using the
REGISTER command. If the topic does not exist, the broker creates

Beihao Zhou, Samer Al-Kiswany, and Mina Tahmasbi Arashloo

Operation | Incoming Outgoing
Registration | REGISTER <T> REGACK <T>
Subscription | SUBSCRIBE <T> SUBACK <T>
Publishing PUBLISH <T> <M> | PUBLISH <T> <M>

Table 1: Protocol message formats for registration, subscrip-
tion, and publishing operations on the broker (<T> denotes
the topic name and <M> the message content).

an entry for it. Regardless of whether the topic is newly created or
already exists, the broker acknowledges the request with a REGACK
message.

Topic Subscription. To receive messages for a topic, subscribers
can issue a SUBSCRIBE command with the topic name. The broker
extracts the subscriber’s IP address and port number from the UDP
packet metadata and records this as the destination information for
that subscriber. The broker then responds with a SUBACK to confirm
the subscription.

Publishing. A publisher sends a PUBLISH command, which in-
cludes the topic name and the message. The broker delivers a copy
of the message to all the endpoints subscribed to the specified topic.

2.2 Maintaining Topic-Subscriber Mapping

BPF-Broker’s control path is responsible for building and main-
taining the topic-subscriber mapping. It runs in user space and
uses UDP sockets for sending and receiving messages. When a
client sends a REGISTER or SUBSCRIBE command, the message is
delivered to the control-path’s UDP socket through the traditional
network stack. The control-path then parses the command and
updates the corresponding eBPF maps responsible for keeping the
topic-subscriber mapping.

Topic-Subscriber map. BPF-Broker uses eBPF maps, which
are kernel-resident data structures used to store and exchange
state between eBPF programs and user space [17]. BPF-Broker
uses a map type that supports a single level of nesting, namely
BPF_MAP_TYPE_HASH_OF _MAPS. The outer map is a hash table where
each key is a topic name, and each value is a file descriptor refer-
encing an inner map. The inner map is a hash table used to store
the destination information of the subscribers for each topic. Specif-
ically, each inner map stores subscriber endpoints using 64-byte
keys: the first 32 bytes store the subscriber’s IPv4 address, the next
16 bytes store the port number, and the remaining 16 bytes are
reserved for alignment and future extensions.

Processing REGISTER and SUBSCRIBE. When a REGISTER re-
quest is received, the broker’s control path checks whether the
topic already exists in the outer map. If not, it creates an empty
hash map to track the information for that topic’s subscribers and
inserts it into the map of maps with the topic name as key. For
a SUBSCRIBE request, the control path extracts the topic and the
subscriber’s IP address and port from the packet, constructs the
64-byte subscriber key from the IP address and port, and inserts
the key into the subscriber map.

2.3 Publishing Messages in eBPF

BPF-Broker’s data path is responsible for processing PUBLISH com-
mands. Our goal is to implement the data path in an eBPF hook in
the kernel as early in the stack as possible to optimize performance.

Toward eBPF-Accelerated Pub-Sub Systems

[Avg Latency 3 P99 Latency

1.5

1.0 A

0.5 4

0.0 T T T T
4 128

6 256 512 1024
Packet Size (Bytes)

Latency (ps)

Figure 2: Time taken by a single packet to go from the XDP
to the TC ingress hook for varying packet sizes.

eXpress Data Path (XDP). XDP is the earliest possible hook
in the packet receive path. It runs in the Network Interface Card
(NIC) driver after packets are received from the NIC and before
they enter the kernel network stack. By operating on raw Ethernet
frames from the DMA-backed ring buffer and avoiding the kernel’s
networking stack entirely, XDP can provide the lowest latency and
highest throughput among the packet processing hooks.

However, XDP lacks support for packet cloning, which is essen-
tial for topics with multiple subscribers. As such, BPF-Broker can
only use it for processing publish requests when there is only one
subscriber for the corresponding topic. Specifically, when a packet
is received at the XDP hook, BPF-Broker will extract the topic and
look up the corresponding subscriber map in the topic-subscriber
map of maps. If there is only one subscriber, it rewrites the UDP
header in-place to update the source and destination fields, then
forwards the packet using XDP_TX. Otherwise, it will use XDP_PASS
to pass the packet to the Linux kernel, where it will be further
processed by the Traffic Control (TC) ingress hook.

Traffic Control (TC) Ingress. The TC ingress hook runs after
the network stack has performed some initial packet processing
(including allocating sk_buffs) but before any layer-3 (IP) process-
ing. This hook supports more complex packet handling, including
cloning and redirection to multiple destinations. When a PUBLISH
message makes it to this hook, the eBPF program looks up the inner
map of subscribers for the target topic and iterates over each entry
using bpf_for_each_map_elem(). For each subscriber, it clones
the incoming packet, updates the headers to reflect the correct
destination, and uses the helper function bpf_clone_redirect()
to directly enqueue the modified packet to the TX queue. Once a
copy of the message is created and redirected to each subscriber,
the PUBLISH message has finished processing and can be safely
dropped, without the need to traverse the rest of the stack.

Although TC introduces slightly more overhead than XDP, our
measurements show that the additional per-packet latency is mod-
est — on the order of 1us (Figure 2). This hybrid use of XDP and TC
allows BPF-Broker to opportunistically optimize processing publish
requests even further when there is only one subscriber for a topic.

3 Evaluation

We have implemented BPF-Broker’s control and data paths in ~1.3K
lines of C code, and compared it with a baseline that implements the
same functionality in user space and uses UDP sockets for receiving

eBPF ’25, September 8-11, 2025, Coimbra, Portugal

© 3.0
(@] E 207.66KReq/s
Pl (Sub=32)
T 0 7 5 4 357.64KReq/s 65.49KReq/s
© 4 - y
Em (Sub=16) 118.45KReq/s (Sub=128)
52 (Sub=64)
220+
[
=Y {
E5 15 A ey
X eq/s (Sub=
= E Lo 1216.20KReqfs (Sub=2) 648 -@- 2568 1024p
|8 1 o 1495.06KReq’s (Sub=1) -@- 1288 512B
c L f ;

0 25 50 75 100 125
Number of Subscribers

Figure 3: Throughput ratio of BPF-Broker over the baseline
across varying packet sizes. The line is annotated with the
absolute throughput of BPF-Broker in MReq/s.

and sending messages. We show that implementing a broker’s data
path logic for message fan-out in the lower-level eBPF hooks (i.e.,
skipping most of the kernel stack) can improve latency, throughput,
and CPU utilization under varying load, subscriber counts, and
message sizes.

Experimental Setup. All experiments are conducted on two
nodes from the CloudLab [21] c6525-25g cluster, one acting as the
subscribers and publishers, and the other as the broker. Each node
is equipped with a 16-core AMD EPYC 7302P processor running
at 3.00 GHz, 128 GB of ECC RAM, two 480 GB SATA SSDs, and
dual-port Mellanox ConnectX-5 25 Gbps NICs (PCle v4.0). To elimi-
nate variability from shared hardware threads, hyperthreading is
disabled. Unless otherwise stated, we configure the broker with 16
dedicated threads, each pinned to a unique CPU core. Each core
is also pinned to a dedicated RX and TX queue, and each RX/TX
queue is configured with a depth of 8192 entries.

Baseline. Our baseline consists of a multi-threaded user-space
program that spawns 16 threads, each pinned to a dedicated core
and bound to a unique UDP port. Clients send packets to these 16
ports using a uniform random distribution to balance load across
threads. RX steering is configured such that packets destined for
a given port are directed to a specific RX queue, matching the
core affinity of the receiving thread. Each thread uses recvfrom()
to receive publish requests and forwards the received message to
multiple subscriber addresses using individual sendto() calls on
its UDP socket.

3.1 Throughput

The sender generates fixed-size publish requests to the same topic
in an open loop, using a configurable number of threads to control
the generated request load. We vary the load and observe that
BPF-Broker saturates at ~1.5 MReq/s.

Figure 3 shows the ratio of BPF-Broker’s throughput over the
baseline for various message sizes and subscriber counts, where
throughput is defined as the number of packets the broker receives
and successfully fans out to all intended recipients. The absolute
throughput of BPF-Broker for several data points is included in
the plot. The results show that the BPF-Broker consistently out-
performs the baseline under all packet sizes. The throughput ratio
increases steadily with the number of subscribers, reaching up to 3x

eBPF °25, September 8-11, 2025, Coimbra, Portugal

32B 4.0 3.5 4.3 2 4.1 8.7 3.8
’g 10
-l; 64B 4.1 82 3.6 4.0 8.7 8.7 59
) 8
~
© 128B 4.5 3.1 3.1 4.0 4.0 3.7 3.8
N
o -6
) 2568 3.9 4.0 3.0 4.0 3.6 3.7 3.8
o
]
% 512B 4.0 4.1 2.9 4.0 3.4 3.6 3.8 -4
@
[a 9

1024B 4.1 4.1 3.0 39 3.6 3.5 39

1 1 1 1 1 1 1
4 8 16 32 64 128 256

Number of Subscribers

(a) Per-packet latency ratio of baseline over BPF-Broker.

Beihao Zhou, Samer Al-Kiswany, and Mina Tahmasbi Arashloo

2 103 4 Baseline Ingress
Tg Baseline Egress
@ BPF-Broker
=)
L 102 4
%)
2
>
£ 10! 4
Q
=t
5]
=
1 2 4 8 16 32 64 128 256

Number of Subscribers

(b) Breakdown of ingress and egress latency for baseline (Packet
size 1024B), compared to BPF-Broker’s total latency.

Figure 4: Latency of BPF-Broker vs. baseline.

at high fan-out levels. For example, at 32 subscribers, the through-
put gap widens to nearly 2.5x (210K vs. 85K req/s for packet sizes
of 64B, 128B, and 256B) and with 128 subscribers, BPF-Broker sus-
tains up to 3X the throughput of the baseline. This trend implies
that BPF-Broker is more resilient to replication pressure and can
maintain significantly higher throughput under both high load and
large fan-out. We also observe that the throughput ratio increases
more slowly for larger packet sizes. This is because we need to use
bpf_skb_pull_data in the TC ingress hook to explicitly pull all
the payload into the hook, which will take longer for larger packets.

We observe that BPF-Broker experiences throughput degradation
as the number of subscribers increases. This is expected as every
request is “done” processing when it generates as many packets as
the number of subscribers. However, BPF-Broker degrades more
gracefully and maintains a consistent performance advantage over
the baseline.

3.2 Latency Micro-Benchmark

To isolate the benefits of performing the publish operation in
XDP/TC, we run this set of experiments using a single CPU core and
one RX/TX queue pair. Each experiment involves a single publisher
sending one packet, avoiding batching, concurrency, or contention
effects. For BPF-Broker, we measure latency as the time between
the packet’s arrival at the TC ingress hook and the completion of all
clone operations. For the baseline, we similarly begin timing at TC
ingress and record completion when TC egress observes the final
clone being transmitted. Each experiment is repeated 200 times. We
use the average in our reported results, but observe similar trends
for the 99th percentile.

Figure 4a shows the ratio of per-packet latency of baseline over
BPF-Broker, across varying packet sizes and subscriber counts.
The ratio peaks at 9.7X, with an average around 4X. The highest
ratios occur at low subscriber counts (1-2), where baseline incurs
a high fixed ingress cost from traversing the kernel networking
stack, while BPF-Broker clones packets directly in the kernel with
minimal overhead before they hit any major protocol processing.

This trend is further clarified in Figure 4b, which breaks down
the latency of the baseline’s ingress and egress paths for 1024B
packets (y-axis is in log-scale). Baseline ingress latency is measured
from the TC ingress hook to when the packet is delivered to the

UDP socket in user space, before any sendto() occurs. Baseline
egress latency spans from the first sendto() call to when all cloned
packets are seen at the TC egress hook. For BPF-Broker, we cannot
meaningfully distinguish between ingress and egress as all the
processing happens in the TC ingress (or XDP) hook.

At low fan-out (i.e., low subscriber count), baseline ingress dom-
inates the total latency. BPF-Broker avoids this cost entirely as it
skips most of the processing in the kernel stack and crossing into
user space, hence the higher baseline to BPF-Broker latency ratio
shows in Figure 4a. As fan-out increases, baseline egress dominates
the total latency. BPF-Broker incurs an increasing cost as well, but
not as much as the baseline. This is because the baseline makes
a separate (sendto()) system call for each copy of the publish
message and each of those messages needs to traverse the entire
stack, while BPF-Broker performs the cloning in the TC ingress
hook early on in the kernel. As such, the total baseline over BPF-
Broker latency ratio stabilizes at higher subscriber counts, where
the baseline ingress overhead is increasingly amortized.

3.3 End-to-End Latency

We compare the end-to-end (E2E) latency of BPF-Broker with the
UDP-socket baseline under both light and high load. Under light
load, one thread on the client sends publish messages in an open
loop without saturating the broker, allowing us to observe latency
under low system stress. In contrast, the high load setup drives BPF-
Broker to saturation, ensuring it operates near peak throughput
with no bottlenecks observed at either RX or TX queues. Due to
coarse-grained rate control for publish messages in our evaluation
setup, we limit our evaluation to <= 8 subscribers per topic to avoid
overwhelming the broker beyond its saturation point.

The results are depicted in Figure 5. Under light load (Figures 5a
and 5b), BPF-Broker consistently maintains at least a 2X latency ad-
vantage over the baseline. BPF-Broker achieves low average latency,
ranging from below 100us with a single subscriber to below 500us
with 8 subscribers. The baseline exhibits significantly higher aver-
age and tail latency, resulting in normalized latency ratios (baseline
/ BPF-Broker) of up to 10X for small subscriber counts. This ad-
vantage narrows slightly as the number of subscribers grows, due
to the increasing number of per-packet clone operations. Under
high load (Figures 5c and 5d), BPF-Broker sustains sub-millisecond

Toward eBPF-Accelerated Pub-Sub Systems

»
= 1250 " packetsize =0 ogeoe-—mm—-—--oTTTT]
> 64B Avg g-------"""""
9 1000 64B P99 P
g -@- 256B Avg /’
= | = 256B P99 ,
~ 750 1024B Avg ~ 7
oy 500 4 1024B P99 ¥
¢ -
M 250 1 "_//‘
i3
A o=
m T T T T

1 2 4 8

Number of Subscribers
(a) End-to-end latency of BPF-Broker (light load).
)
2 2500 A
>
—————— |

g 2000 g oWoTTTIl L e
3
8 1500 1
b —
210001 —8—— o Y-
8 Packet Size
A 500 64BAvg -@- 256B Avg 1024B Avg
E 64BP99 -l 256B P99 1024B P99
m 0 T T T T

1 2 4 8

Number of Subscribers

(c) End-to-end latency of BPF-Broker (high load).

eBPF ’25, September 8-11, 2025, Coimbra, Portugal

=
Q Packet Size
’é 10 1 .\ 64BAvg -l 256B P99
S 5 64B P99 1024B Avg
w8 -@- 256B Avg 1024B P99
m 5
-
oS o
o O
2E]
— 0
@
m 24
~ T T T T
1 2 4 8
Number of Subscribers
(b) Latency ratio of baseline over BPF-Broker (light load).
D6
19)
i~/
8557
5
M4
>m
o<
803
B E —~ .
= 24 >N Packet Size
Q [3 64BAvg -@ 256B Avg 1024B Avg
Lg . 64BP99 -l 256B P99 1024B P99
Aed T T T T
1 2 4 8

Number of Subscribers

(d) Latency ratio of baseline over BPF-Broker (high load).

Figure 5: End-to-end latency comparison between BPF-Broker and UDP-socket baseline under light and high load. Solid lines

are for average and dashed lines are for 99th-percentile latency.

average latency for most packet sizes and < 1ms for 1024B packets
across all configurations. The normalized latency ratio remains
favorable, peaking at up to 6x improvement over the baseline.

Interestingly, we observe opposite latency trends in the latency
ratio under light and high load. Under light load, the latency ratio
decreases as the number of subscribers increases. This matches our
observations in §3.2 that at low contention, BPF-Broker’s latency
gap from the baseline is higher at low subscriber count, where the
baseline ingress dominates the total latency. In contrast, under high
load, the latency ratio increases with more subscribers. Here, the
baseline suffers significantly from kernel socket buffer pressure
that BPF-Broker avoids through in-kernel replication. Nevertheless,
BPF-Broker achieves significantly lower latency than the socket-
based baseline under both light and high load, and remains robust
and performant even under substantial replication pressure.

3.4 CPU Utilization

Figure 6 shows per-core CPU utilization, averaged across 16 cores,
under increasing publish request rates for the UDP socket baseline,
BPF-Broker’s XDP path (single-subscriber topics), and BPF-Broker’s
TC ingress path (multi-subscriber topics). The error bars represent
the standard deviation across repeated measurements.

We observe that the baseline quickly saturates CPU resources,
reaching over 90% utilization per core at just 1.2 MReq/s, and flat-
tening at full saturation (near 100%) beyond that point. In contrast,
BPF-Broker’s TC ingress path shows a more efficient CPU usage

pattern, increasing almost linearly with throughput and reaching
near-saturation only at around 1.45 MReq/s. Notably, BPF-Broker’s
XDP path has the lowest CPU usage across all throughput levels,
remaining below 55% even at the highest tested rate of 1.48 MReq/s.
This behavior highlights the benefit of BPF-Broker’s two-tier
data path architecture for handling mixed pub-sub workloads. Top-
ics with a single subscriber are served via the XDP path, enabling
early delivery with minimal processing overhead. Multi-subscriber
topics are processed through the TC ingress hook, which supports
in-kernel packet cloning for efficient replication. BPF-Broker ’s
two-tier data path architecture minimizes contention at high load.

4 Discussion and Future Work

BPF-Broker demonstrates that in-kernel fanout using eBPF at TC
ingress and XDP can substantially reduce broker resource usage,
lower end-to-end pub-sub latency, and increase throughput. How-
ever, real-world pub-sub systems using production-grade protocols
such as MQTT and AMQP often require richer broker capabilities.
As we discuss below, we plan to explore hybrid designs that com-
bine multiple eBPF hooks as in-kernel fast paths with user-space
control paths to implement these features. These extensions would
position BPF-Broker as a low-overhead, standards-compliant broker
core for high-performance pub-sub systems.

QoS guarantees. BPF-Broker currently supports QoS 0 (fire-and-
forget), which is common in latency-sensitive pub-sub systems [13].
Exploring support for higher QoS levels such as at-least-once (QoS

eBPF °25, September 8-11, 2025, Coimbra, Portugal

100 A1
8
= 801
S
2
g 607 ——X
= X seliinll
5 40 A —_x,_)e-——x"
5 =" Baseline
A 204 BPF-Broker (TC Ingress Path)
@) =¥ BPF-Broker (XDP Path)
0 T T T T

1.0 1.1 1.2 1.3 1.4 1.5
Throughput (MReq/s)

Figure 6: CPU utilization of BPF-Broker (TC ingress and XDP
paths) compared to a UDP socket baseline (orange lines are
error bars).

1) and exactly-once (QoS 2) delivery, and providing message de-
livery acks is part of our future work. For example, one avenue
we are exploring is to track acknowledgments in eBPF maps and
incorporate a lightweight user-space scheduler that periodically
inspects these maps to trigger retransmissions as needed.

TCP vs. UDP and message persistence. Our current design
uses UDP, which is suitable for high-throughput, real-time, fire-
and-forget scenarios such as metrics pipelines and sensor networks,
where occasional loss is acceptable and the benefits of bypassing
more complicated TCP processing are significant. We plan to ex-
plore reliable transport protocols like TCP for scenarios that need
ordered, loss-free delivery and/or persistent connections using eBPF
hooks such as sockmap and sk_msg. We also plan to explore using
these hooks to support message persistence, e.g., by employing
snapshot-based buffering strategies for lightweight retransmission,
allowing selective recovery when subscribers rejoin or experience
loss without incurring the overhead of userspace buffering and
stream management.

Other advanced broker features. We also plan to extend BPF-
Broker with support for priority-based message scheduling and rate
control using the TC eBPF hooks to allow for more fine-grained
control over how the broker’s compute and communication re-
sources are allocated across various publishers, subscribers, and
topics. Moreover, we plan to use the XDP hook to do complex topic-
matching policies, message filtering, and per-topic access control.

Deployment considerations. All experiments and develop-
ment were conducted on Ubuntu 24.04 with Linux kernel version
6.8. While BPF-Broker eliminates userspace processing overhead, it
introduces deployment frictions not present in mainstream brokers
like RabbitMQ or Redis. Specifically, it requires a modern Linux
kernel (> 5.10) that supports key features such as map-of-maps
and bpf_clone_redirect(), and typically needs root privileges to
attach programs to TC or XDP hooks. Although these features are
supported as of version 5.10, we used kernel version 6.8 to leverage
the latest improvements in stability and performance. These con-
straints may limit deployability in containerized or multi-tenant
environments without privileged access.

Ethics statement. This work does not raise any ethical issues.

5 Related Work

eBPF-based Acceleration. Recent work has explored eBPF to ac-
celerate networked applications. BMC [9] accelerates Memcached

Beihao Zhou, Samer Al-Kiswany, and Mina Tahmasbi Arashloo

by serving UDP GET requests in XDP from in-kernel cache, while us-
ing the TC egress hook to monitor responses and maintain cache co-
herence. Electrode [31] accelerates distributed protocols (i.e. Multi-
Paxos) by offloading performance-critical operations like broad-
casting and quorum handling to XDP and TC egress. DINT [32]
targets distributed transaction processing by offloading key-value
access, locking, and logging into the kernel via eBPF. It uses XDP for
parsing and execution, and TC egress for response finalization and
state synchronization. BOAD [25] optimizes broadcast and aggrega-
tion using XDP for early processing and TC egress for coordinated
replication. XAgg [30] implements in-kernel gradient aggregation
using XDP to improve distributed machine learning performance.

Unlike these systems, BPF-Broker targets generic pub-sub work-
loads and performs in-kernel message replication. It opportunis-
tically uses XDP to handle single-subscriber topics, avoiding ker-
nel buffer allocation and reducing CPU overhead. XDP handles
lightweight fast paths, while TC ingress manages cloning for multi-
subscriber delivery.

Accelerating Publish-Subscribe Systems. Prior work has im-
proved pub-sub performance through various broker-level optimiza-
tions. For instance, Mosquitto [16], a lightweight pub-sub broker
for the MQTT protocol [23], improves general-purpose efficiency
by handling I/O in user space using event loops (e.g., epoll()).
KafkaDirect [26] uses one-sided RDMA to bypass broker CPUs,
enabling zero-copy writes and direct remote reads by producers
and consumers. Instead of relying on user-space optimizations or
specialized hardware, BPF-Broker offloads pub-sub logic into the
kernel, enabling low-latency message replication with broad de-
ployability on commodity systems.

6 Conclusion

We presented BPF-Broker, an eBPF-based pub-sub system that per-
forms in-kernel fan-out using the TC ingress hook, eliminating the
need for userspace message handling. Our preliminary evaluation
shows that BPF-Broker achieves significantly lower latency and
higher throughput compared to a socket-based broker, highlight-
ing the potential of programmable kernel hooks for accelerating
pub-sub systems.

Acknowledgments

We thank the anonymous reviewers of the ACM SIGCOMM eBPF
workshop for their helpful feedback. This work is partially sup-
ported by the Canada Research Chair grant on “Minimizing Human
Error in Modern Networks”.

References

[1] Amazon Web Services. 2025. AWS IoT Core Endpoints and Quotas. (2025). https:
//docs.aws.amazon.com/general/latest/gr/iot-core.html#thing-limits Accessed:
2025-05-18.

[2] Kyoungho An, Subhav Pradhan, Faruk Caglar, and Aniruddha Gokhale. 2012. A
publish/subscribe middleware for dependable and real-time resource monitoring
in the cloud. In Proceedings of the Workshop on Secure and Dependable Middleware
for Cloud Monitoring and Management (SDMCMM °12). Association for Computing
Machinery, New York, NY, USA, Article 3, 6 pages. https://doi.org/10.1145/
2405186.2405189

[3] Apache Software Foundation. 2025. Apache ActiveMQ: Open Source Message
Broker. https://activemgq.apache.org/. (2025). Accessed: 2025-05-18.

[4] Helbert da Rocha, Tania L Monteiro, Marcelo Eduardo Pellenz, Manuel C Penna,
and Joilson Alves Junior. 2020. An MQTT-SN-based QoS dynamic adaptation
method for wireless sensor networks. In Advanced Information Networking and

https://docs.aws.amazon.com/general/latest/gr/iot-core.html#thing-limits
https://docs.aws.amazon.com/general/latest/gr/iot-core.html#thing-limits
https://doi.org/10.1145/2405186.2405189
https://doi.org/10.1145/2405186.2405189
https://activemq.apache.org/

=

Toward eBPF-Accelerated Pub-Sub Systems

Applications: Proceedings of the 33rd International Conference on Advanced Infor-
mation Networking and Applications (AINA-2019) 33. Springer, 690-701.

Jai Dayal, Drew Bratcher, Greg Eisenhauer, Karsten Schwan, Matthew Wolf,
Xuechen Zhang, Hasan Abbasi, Scott Klasky, and Norbert Podhorszki. 2014.
Flexpath: Type-Based Publish/Subscribe System for Large-Scale Science Analyt-
ics. In 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. 246-255. https://doi.org/10.1109/CCGrid.2014.104

Jasenka Dizdarevic, Marc Michalke, and Admela Jukan. 2023. Engineering and
experimentally benchmarking open source MQTT broker implementations. arXiv
preprint arXiv:2305.13893 (2023).

Philippe Dobbelaere and Kyumars Sheykh Esmaili. 2017. Kafka versus RabbitMQ:
A comparative study of two industry reference publish/subscribe implementa-
tions: Industry Paper. In Proceedings of the 11th ACM International Conference on
Distributed and Event-Based Systems (DEBS ’17). Association for Computing Ma-
chinery, New York, NY, USA, 227-238. https://doi.org/10.1145/3093742.3093908
Julien Gascon-Samson, Franz-Philippe Garcia, Bettina Kemme, and Jorg Kienzle.
2015. Dynamoth: A Scalable Pub/Sub Middleware for Latency-Constrained Ap-
plications in the Cloud. In 2015 IEEE 35th International Conference on Distributed
Computing Systems. 486—496. https://doi.org/10.1109/ICDCS.2015.56

Yoann Ghigoff, Julien Sopena, Kahina Lazri, Antoine Blin, and Gilles Muller.
2021. {BMC}: Accelerating memcached using safe in-kernel caching and pre-
stack processing. In 18th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 21). 487-501.

Kannan Govindan and Amar Prakash Azad. 2015. End-to-end service assurance in

eBPF ’25, September 8-11, 2025, Coimbra, Portugal

’22). Association for Computing Machinery, New York, NY, USA, 2191-2204.
https://doi.org/10.1145/3514221.3526056

Tyler Treat. 2016. Benchmarking Message Queue Latency. (February 2016).
https://bravenewgeek.com/benchmarking-message-queue-latency/ Accessed:
2025-05-06.

P. Triantafillou and A. Economides. 2004. Subscription summarization: a new
paradigm for efficient publish/subscribe systems. In 24th International Conference
on Distributed Computing Systems, 2004. Proceedings. 562-571. https://doi.org/10.
1109/ICDCS.2004.1281623

VMware. 2025. RabbitMQ: Open Source Message Broker. https://www.rabbitmgq.
com/. (2025). Accessed: 2025-05-18.

Qianyu Zhang, Gongming Zhao, Hongli Xu, and Peng Yang. 2024. XAgg: Ac-
celerating Heterogeneous Distributed Training Through XDP-Based Gradient
Aggregation. IEEE/ACM Transactions on Networking 32, 3 (2024), 2174-2188.
https://doi.org/10.1109/TNET.2023.3339524

Yang Zhou, Zezhou Wang, Sowmya Dharanipragada, and Minlan Yu. 2023. Elec-
trode: Accelerating Distributed Protocols with eBPF. In 20th USENIX Sympo-
sium on Networked Systems Design and Implementation (NSDI 23). USENIX As-
sociation, Boston, MA, 1391-1407. https://www.usenix.org/conference/nsdi23/
presentation/zhou

Yang Zhou, Xingyu Xiang, Matthew Kiley, Sowmya Dharanipragada, and Minlan
Yu. 2024. {DINT}: Fast {In-Kernel} Distributed Transactions with {eBPF}. In
21st USENIX Symposium on Networked Systems Design and Implementation (NSDI
24). 401-417.

10T MQTT-SN. In 2015 12th Annual IEEE consumer communications and networking
conference (CCNC). IEEE, 290-296.

[11] Xiaolong Guo, Song Han, X. Sharon Hu, Xun Jiao, Yier Jin, Fanxin Kong, and

Michael Lemmon. 2021. Towards scalable, secure, and smart mission-critical IoT

systems: review and vision. In Proceedings of the 2021 International Conference on

Embedded Software (EMSOFT ’21). Association for Computing Machinery, New

York, NY, USA, 1-10. https://doi.org/10.1145/3477244.3477624

Daniel Happ, Niels Karowski, Thomas Menzel, Vlado Handziski, and Adam

Wolisz. 2017. Meeting IoT platform requirements with open pub/sub solutions.

Annals of Telecommunications 72 (2017), 41-52.

[13] HiveMQ. 2025. MQTT Essentials Part 6: MQTT Quality of Service Lev-
els. https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-
service-levels/. (2025). Accessed: 2025-07-22.

[14] Joshua Kramer. 2009. Advanced message queuing protocol (AMQP). Linux
Journal 2009, 187 (2009), 3.

[15] Seda Kul and Ahmet Sayar. 2021. A survey of publish/subscribe middleware

systems for microservice communication. In 2021 5th International Symposium

on Multidisciplinary Studies and Innovative Technologies (ISMSIT). IEEE, 781-785.

Roger A Light. 2017. Mosquitto: server and client implementation of the MQTT

protocol. Journal of Open Source Software 2, 13 (2017), 265.

[17] Chang Liu, Byungchul Tak, and Long Wang. 2024. Understanding Performance

of eBPF Maps. In Proceedings of the ACM SIGCOMM 2024 Workshop on EBPF and

Kernel Extensions (eBPF °24). Association for Computing Machinery, New York,

NY, USA, 9-15. https://doi.org/10.1145/3672197.3673430

Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. 2019.

Edge computing for autonomous driving: Opportunities and challenges. Proc.

IEEE 107, 8 (2019), 1697-1716.

Object Management Group (OMG). 2015. Data Distribution Service (DDS) Speci-

fication. https://www.omg.org/spec/DDS/1.4/. (2015).

[20] Thomas Rausch, Stefan Nastic, and Schahram Dustdar. 2018. EMMA: Distributed

QoS-Aware MQTT Middleware for Edge Computing Applications. In 2018 IEEE

International Conference on Cloud Engineering (IC2E). 191-197. https://doi.org/10.

1109/IC2E.2018.00043

Robert Ricci, Eric Eide Wong, Leigh Stoller, Mike Hibler, Jon Duerig, David Webb,

Kirk Johnson, Aditya Akella, and Glenn Ricart. 2014. Introducing CloudLab:

Scientific Infrastructure for Advancing Cloud Architectures and Applications.

In USENIX Conference on Hot Topics in Cloud Computing (HotCloud). USENIX

Association, Philadelphia, PA. https://www.cloudlab.us/

Peter Saint-Andre. 2011. Extensible Messaging and Presence Protocol (XMPP).

https://datatracker.ietf.org/doc/html/rfc6121. (2011).

[23] Dipa Soni and Ashwin Makwana. 2017. A survey on mgqtt: a protocol of internet
of things (iot). In International conference on telecommunication, power analysis
and computing techniques (ICTPACT-2017), Vol. 20. 173-177.

[24] STOMP Protocol Working Group. 2023. STOMP - Simple (or Streaming) Text

Oriented Messaging Protocol. https://stomp.github.io/stomp-specification-1.2.

html. (2023).

Jianchang Su, Yifan Zhang, Linpu Huang, and Wei Zhang. 2024. BOAD: Optimiz-

ing Distributed Communication with In-Kernel Broadcast and Aggregation. In

Proceedings of the ACM SIGCOMM 2024 Workshop on EBPF and Kernel Extensions

(eBPF ’"24). Association for Computing Machinery, New York, NY, USA, 51-57.

https://doi.org/10.1145/3672197.3673438

Konstantin Taranov, Steve Byan, Virendra Marathe, and Torsten Hoefler. 2022.

KafkaDirect: Zero-copy Data Access for Apache Kafka over RDMA Networks. In

Proceedings of the 2022 International Conference on Management of Data (SIGMOD

[12

[16

(18

[19

[21

[22

[y)
&

[26

https://doi.org/10.1109/CCGrid.2014.104
https://doi.org/10.1145/3093742.3093908
https://doi.org/10.1109/ICDCS.2015.56
https://doi.org/10.1145/3477244.3477624
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://www.hivemq.com/blog/mqtt-essentials-part-6-mqtt-quality-of-service-levels/
https://doi.org/10.1145/3672197.3673430
https://www.omg.org/spec/DDS/1.4/
https://doi.org/10.1109/IC2E.2018.00043
https://doi.org/10.1109/IC2E.2018.00043
https://www.cloudlab.us/
https://datatracker.ietf.org/doc/html/rfc6121
https://stomp.github.io/stomp-specification-1.2.html
https://stomp.github.io/stomp-specification-1.2.html
https://doi.org/10.1145/3672197.3673438
https://doi.org/10.1145/3514221.3526056
https://bravenewgeek.com/benchmarking-message-queue-latency/
https://doi.org/10.1109/ICDCS.2004.1281623
https://doi.org/10.1109/ICDCS.2004.1281623
https://www.rabbitmq.com/
https://www.rabbitmq.com/
https://doi.org/10.1109/TNET.2023.3339524
https://www.usenix.org/conference/nsdi23/presentation/zhou
https://www.usenix.org/conference/nsdi23/presentation/zhou

	Abstract
	1 Introduction
	2 BPF-Broker's Design
	2.1 The Pub-Sub Protocol
	2.2 Maintaining Topic-Subscriber Mapping
	2.3 Publishing Messages in eBPF

	3 Evaluation
	3.1 Throughput
	3.2 Latency Micro-Benchmark
	3.3 End-to-End Latency
	3.4 CPU Utilization

	4 Discussion and Future Work
	5 Related Work
	6 Conclusion
	References

