
The eXpress Data Path: Fast Programmable Packet Processing in
the Operating System Kernel

Toke Høiland-Jørgensen
Karlstad University

toke@toke.dk

Jesper Dangaard Brouer
Red Hat

brouer@redhat.com

Daniel Borkmann
Cilium.io

daniel@cilium.io

John Fastabend
Cilium.io

john@cilium.io

Tom Herbert
Quantonium Inc.

tom@herbertland.com

David Ahern
Cumulus Networks
dsahern@gmail.com

David Miller
Red Hat

davem@redhat.com

ABSTRACT
Programmable packet processing is increasingly implemented us-
ing kernel bypass techniques, where a userspace application takes
complete control of the networking hardware to avoid expensive
context switches between kernel and userspace. However, as the
operating system is bypassed, so are its application isolation and
security mechanisms; and well-tested configuration, deployment
and management tools cease to function.

To overcome this limitation, we present the design of a novel
approach to programmable packet processing, called the eXpress
Data Path (XDP). In XDP, the operating system kernel itself pro-
vides a safe execution environment for custom packet processing
applications, executed in device driver context. XDP is part of the
mainline Linux kernel and provides a fully integrated solution work-
ing in concert with the kernel’s networking stack. Applications
are written in higher level languages such as C and compiled into
custom byte code which the kernel statically analyses for safety,
and translates into native instructions.

We show that XDP achieves single-core packet processing per-
formance as high as 24 million packets per second, and illustrate
the flexibility of the programming model through three example
use cases: layer-3 routing, inline DDoS protection and layer-4 load
balancing.

CCS CONCEPTS
• Networks → Programming interfaces; Programmable net-
works; • Software and its engineering → Operating systems;

KEYWORDS
XDP, BPF, Programmable Networking, DPDK

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CoNEXT ’18, December 4–7, 2018, Heraklion, Greece
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6080-7/18/12.
https://doi.org/10.1145/3281411.3281443

ACM Reference Format:
Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. The eXpress
Data Path: Fast Programmable Packet Processing in the Operating System
Kernel. In CoNEXT ’18: International Conference on emerging Networking
EXperiments and Technologies, December 4–7, 2018, Heraklion, Greece. ACM,
New York, NY, USA, 13 pages. https://doi.org/10.1145/3281411.3281443

1 INTRODUCTION
High-performance packet processing in software requires very tight
bounds on the time spent processing each packet. Network stacks
in general purpose operating systems are typically optimised for
flexibility, which means they perform too many operations per
packet to be able to keep up with these high packet rates. This
has led to the increased popularity of special-purpose toolkits for
software packet processing, such as the Data Plane Development
Kit (DPDK) [16]. Such toolkits generally bypass the operating sys-
tem completely, instead passing control of the network hardware
directly to the network application and dedicating one, or several,
CPU cores exclusively to packet processing.

The kernel bypass approach can significantly improve perfor-
mance, but has the drawback that it is more difficult to integrate
with the existing system, and applications have to re-implement
functionality otherwise provided by the operating system network
stack, such as routing tables and higher level protocols. In the
worst case, this leads to a scenario where packet processing applica-
tions operate in a completely separate environment, where familiar
tooling and deployment mechanisms supplied by the operating
system cannot be used because of the need for direct hardware ac-
cess. This results in increased system complexity and blurs security
boundaries otherwise enforced by the operating system kernel. The
latter is in particular problematic as infrastructure moves towards
container-based workloads coupled with orchestration systems
such as Docker or Kubernetes, where the kernel plays a dominant
role in resource abstraction and isolation.

As an alternative to the kernel bypass design, we present a sys-
tem that adds programmability directly in the operating system
networking stack in a cooperative way. This makes it possible to
perform high-speed packet processing that integrates seamlessly
with existing systems, while selectively leveraging functionality

54

https://doi.org/10.1145/3281411.3281443
https://doi.org/10.1145/3281411.3281443
https://www.acm.org/publications/policies/artifact-review-badging/#reusable
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3281411.3281443&domain=pdf&date_stamp=2018-12-04

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece T. Høiland-Jørgensen et al.

in the operating system. This framework, called the eXpress Data
Path (XDP), works by defining a limited execution environment in
the form of a virtual machine running eBPF code, an extended ver-
sion of original BSD Packet Filter (BPF) [37] byte code format. This
environment executes custom programs directly in kernel context,
before the kernel itself touches the packet data, which enables cus-
tom processing (including redirection) at the earliest possible point
after a packet is received from the hardware. The kernel ensures the
safety of the custom programs by statically verifying them at load
time; and programs are dynamically compiled into native machine
instructions to ensure high performance.

XDP has been gradually integrated into the Linux kernel over
several releases, but no complete architectural description of the
system as a whole has been presented before. In this work we
present a high-level design description of XDP and its capabilities,
and how it integrates with the rest of the Linux kernel. Our perfor-
mance evaluation shows raw packet processing performance of up
to 24 million packets per second per CPU core. While this does not
quite match the highest achievable performance in a DPDK-based
application on the same hardware, we argue that the XDP system
makes up for this by offering several compelling advantages over
DPDK and other kernel bypass solutions. Specifically, XDP:

• Integrates cooperatively with the regular networking stack,
retaining full control of the hardware in the kernel. This re-
tains the kernel security boundary, and requires no changes
to network configuration and management tools. In addition,
any network adapter with a Linux driver can be supported by
XDP; no special hardware features are needed, and existing
drivers only need to be modified to add the XDP execution
hooks.

• Makes it possible to selectively utilise kernel network stack
features such as the routing table and TCP stack, keeping
the same configuration interface while accelerating critical
performance paths.

• Guarantees stability of both the eBPF instruction set and the
programming interface (API) exposed along with it.

• Does not require expensive packet re-injection from user
space into kernel space when interacting with workloads
based on the normal socket layer.

• Is transparent to applications running on the host, enabling
new deployment scenarios such as inline protection against
denial of service attacks on servers.

• Can be dynamically re-programmed without any service
interruption, which means that features can be added on
the fly or removed completely when they are not needed
without interruption of network traffic, and that processing
can react dynamically to conditions in other parts of the
system.

• Does not require dedicating full CPU cores to packet process-
ing, which means lower traffic levels translate directly into
lower CPU usage. This has important efficiency and power
saving implications.

In the rest of this paper we present the design of XDP and our
performance analysis. This is structured as follows: Section 2 first
outlines related work. Section 3 then presents the design of the
XDP system and Section 4 presents our evaluation of its raw packet

processing performance. Section 5 supplements this with exam-
ples of real-world use cases that can be implemented with XDP.
Finally, Section 6 discusses future directions of XDP, and Section 7
concludes.

2 RELATEDWORK
XDP is certainly not the first system enabling programmable packet
processing. Rather, this field has gained momentum over the last
several years, and continues to do so. Several frameworks have
been presented to enable this kind of programmability, and they
have enabled many novel applications. Examples of such applica-
tions include those performing single functions, such as switch-
ing [47], routing [19], named-based forwarding [28], classifica-
tion [48], caching [33] or traffic generation [14]. They also include
more general solutions which are highly customisable and can
operate on packets from a variety of sources [12, 20, 31, 34, 40, 44].

To achieve high packet processing performance on Common Off
The Shelf (COTS) hardware, it is necessary to remove any bottle-
necks between the networking interface card (NIC) and the program
performing the packet processing. Since one of the main sources
of performance bottlenecks is the interface between the operating
system kernel and the userspace applications running on top of
it (because of the high overhead of a system call and complexity
of the underlying feature-rich and generic stack), low-level packet
processing frameworks have to manage this overhead in one way
or another. The existing frameworks, which have enabled the appli-
cations mentioned above, take several approaches to ensuring high
performance; and XDP builds on techniques from several of them.
In the following we give a brief overview of the similarities and
differences between XDP and the most commonly used existing
frameworks.

The DataPlane Development Kit (DPDK) [16] is probably the
most widely used framework for high-speed packet processing.
It started out as an Intel-specific hardware support package, but
has since seen a wide uptake under the stewardship of the Linux
Foundation. DPDK is a so-called kernel bypass framework, which
moves the control of the networking hardware out of the kernel
into the networking application, completely removing the overhead
of the kernel-userspace boundary. Other examples of this approach
include the PF_RING ZC module [45] and the hardware-specific
Solarflare OpenOnload [24]. Kernel bypass offers the highest per-
formance of the existing frameworks [18]; however, as mentioned
in the introduction, it has significant management, maintenance
and security drawbacks.

XDP takes an approach that is the opposite of kernel bypass:
Instead of moving control of the networking hardware out of the
kernel, the performance-sensitive packet processing operations are
moved into the kernel, and executed before the operating system
networking stack begins its processing. This retains the advantage
of removing the kernel-userspace boundary between networking
hardware and packet processing code, while keeping the kernel in
control of the hardware, thus preserving the management interface
and the security guarantees offered by the operating system. The
key innovation that enables this is the use of a virtual execution
environment that verifies that loaded programs will not harm or
crash the kernel.

55

The eXpress Data Path CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Prior to the introduction of XDP, implementing packet process-
ing functionality as a kernel module has been a high-cost approach,
since mistakes can crash the whole system, and internal kernel APIs
are subject to frequent change. For this reason, it is not surprising
that few systems have taken this approach. Of those that have, the
most prominent examples are the Open vSwitch [44] virtual switch
and the Click [40] and Contrail [41] virtual router frameworks,
which are all highly configurable systems with a wide scope, al-
lowing them to amortise the cost over a wide variety of uses. XDP
significantly lowers the cost for applications of moving processing
into the kernel, by providing a safe execution environment, and
by being supported by the kernel community, thus offering the
same API stability guarantee as every other interface the kernel
exposes to userspace. In addition, XDP programs can completely
bypass the networking stack, which offers higher performance than
a traditional kernel module that needs to hook into the existing
stack.

While XDP allows packet processing to move into the operating
system for maximum performance, it also allows the programs
loaded into the kernel to selectively redirect packets to a special
user-space socket type, which bypasses the normal networking
stack, and can even operate in a zero-copy mode to further lower
the overhead. This operating mode is quite similar to the approach
used by frameworks such as Netmap [46] and PF_RING [11], which
offer high packet processing performance by lowering the overhead
of transporting packet data from the network device to a userspace
application, without bypassing the kernel completely. The Packet
I/O engine that is part of PacketShader [19] is another example of
this approach, and it has some similarities with special-purpose
operating systems such as Arrakis [43] and ClickOS [36].

Finally, programmable hardware devices are another way to
achieve high-performance packet processing. One example is the
NetFPGA [32], which exposes an API that makes it possible to run
arbitrary packet processing tasks on the FPGA-based dedicated
hardware. The P4 language [7] seeks to extend this programma-
bility to a wider variety of packet processing hardware (including,
incidently, an XDP backend [51]). In a sense, XDP can be thought
of as a “software offload”, where performance-sensitive processing
is offloaded to increase performance, while applications otherwise
interact with the regular networking stack. In addition, XDP pro-
grams that don’t need to access kernel helper functions can be
offloaded entirely to supported networking hardware (currently
supported with Netronome smart-NICs [27]).

In summary, XDP represents an approach to high-performance
packet processing that, while it builds on previous approaches,
offers a new tradeoff between performance, integration into the
system and general flexibility. The next section explains in more
detail how XDP achieves this.

3 THE DESIGN OF XDP
The driving rationale behind the design of XDP has been to allow
high-performance packet processing that can integrate coopera-
tively with the operating system kernel, while ensuring the safety
and integrity of the rest of the system. This deep integration with
the kernel obviously imposes some design constraints, and the com-
ponents of XDP have been gradually introduced into the Linux

Network hardware

Li
nu

x
ke

rn
el

BP
F

m
ap

s

XDP

Network stack

Device driver

Queueing
and forwarding TC BPF

TCP/UDP

AF_INET

U
se

rs
pa

ce Control plane

A
F_

X
D

P

A
F_

RA
W

V
ir

tu
al

 d
ev

ic
es

Packet data flow Control data flow

Applications

IP layer

Build sk_buff

Userspace-accessible sockets

Network stack processing steps

User applications, VMs, containers

Parts of the XDP system

VMs and containers

Drop

Figure 1: XDP’s integration with the Linux network stack. On
packet arrival, before touching the packet data, the device driver
executes an eBPF program in the main XDP hook. This program
can choose to drop packets; to send them back out the same inter-
face it was received on; to redirect them, either to another inter-
face (including vNICs of virtual machines) or to userspace through
special AF_XDP sockets; or to allow them to proceed to the regular
networking stack, where a separate TC BPF hook can perform fur-
ther processing before packets are queued for transmission. The dif-
ferent eBPF programs can communicate with each other and with
userspace through the use of BPF maps. To simplify the diagram,
only the ingress path is shown.

kernel over a number of releases, during which the design has
evolved through continuous feedback and testing from the commu-
nity.

Unfortunately, recounting the process and lessons learned is not
possible in the scope of this paper. Instead, this section describes
the complete system, by explaining how the major components
of XDP work, and how they fit together to create the full system.
This is illustrated by Figure 1, which shows a diagram of how XDP
integrates into the Linux kernel, and Figure 2, which shows the
execution flow of a typical XDP program. There are four major
components of the XDP system:

• The XDP driver hook is the main entry point for an XDP
program, and is executed when a packet is received from the
hardware.

56

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece T. Høiland-Jørgensen et al.

D
ro

p

Pa
ss

 to
 s

ta
ck

Re
di

re
ct

X
m

it
 o

ut

Return code

U
se

rs
pa

ce

CP
U

In
te

rf
ac

e

Packet verdict

Parse packet

- Direct memory access to packet data
- Tail calls to split processing

Read/write metadata

Context object

- RX metadata (queue no, ...)
- Pointer to packet data
- Space for custom metadata

Kernel helpers

Use kernel functions, e.g.:
- Checksumming
- Routing table lookups

Maps

- Key/value stores
- Hash, array, trie, etc.
- Defined by program

Kernel
networking stack

Userspace
programs

Other BPF
programs
in kernel

Communication w/rest of system

Rewrite packet

- Write any packet header / payload
- Grow/shrink packet headroom

Program execution phase transitions

Communication with rest of system

Packet flow

Figure 2: Execution flow of a typical XDP program. When a packet arrives, the program starts by parsing packet headers to extract the
information it will react on. It then reads or updates metadata from one of several sources. Finally, a packet can be rewritten and a final
verdict for the packet is determined. The program can alternate between packet parsing, metadata lookup and rewriting, all of which are
optional. The final verdict is given in the form of a program return code.

• The eBPF virtual machine executes the byte code of the
XDP program, and just-in-time-compiles it for increased
performance.

• BPF maps are key/value stores that serve as the primary
communication channel to the rest of the system.

• The eBPF verifier statically verifies programs before they
are loaded to make sure they do not crash or corrupt the
running kernel.

3.1 The XDP Driver Hook
An XDP program is run by a hook in the network device driver each
time a packet arrives. The infrastructure to execute the program is
contained in the kernel as a library function, which means that the
program is executed directly in the device driver, without context
switching to userspace. As shown in Figure 1, the program is exe-
cuted at the earliest possible moment after a packet is received from
the hardware, before the kernel allocates its per-packet sk_buff data
structure or performs any parsing of the packet.

Figure 2 shows the various processing steps typically performed
by an XDP program. The program starts its execution with access
to a context object. This object contains pointers to the raw packet
data, along with metadata fields describing which interface and
receive queue the packet was received on.

The program typically begins by parsing packet data, and can
pass control to a different XDP program through tail calls, thus
splitting processing into logical sub-units (based on, say, IP header
version).

After parsing the packet data, the XDP program can use the
context object to read metadata fields associated with the packet,
describing the interface and receive queue the packet came from.

The context object also gives access to a special memory area,
located adjacent in memory to the packet data. The XDP program
can use this memory to attach its own metadata to the packet,
which will be carried with it as it traverses the system.

In addition to the per-packet metadata, an XDP program can
define and access its own persistent data structures (through BPF
maps, described in Section 3.3 below), and it can access kernel
facilities through various helper functions. Maps allow the program
to communicate with the rest of the system, and the helpers allow
it to selectively make use of existing kernel functionality (such as
the routing table), without having to go through the full kernel
networking stack. New helper functions are actively added by the
kernel development community in response to requests from the
community, thus continuously expanding the functionality that
XDP programs can make use of.

Finally, the program can write any part of the packet data, in-
cluding expanding or shrinking the packet buffer to add or remove
headers. This allows it to perform encapsulation or decapsulation,
as well as, for instance, rewrite address fields for forwarding. Vari-
ous kernel helper functions are available to assist with things like
checksum calculation for a modified packet.

These three steps (reading, metadata processing, and writing
packet data) correspond to the light grey boxes on the left side of
Figure 2. Since XDP programs can contain arbitrary instructions, the
different steps can alternate and repeat in arbitrary ways. However,
to achieve high performance, it is often necessary to structure the
execution order as described here.

At the end of processing, the XDP program issues a final verdict
for the packet. This is done by setting one of the four available
return codes, shown on the right-hand side of Figure 2. There are

57

The eXpress Data Path CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

three simple return codes (with no parameters), which can drop the
packet, immediately re-transmit it out the same network interface,
or allow it to be processed by the kernel networking stack. The
fourth return code allows the XDP program to redirect the packet,
offering additional control over its further processing.

Unlike the other three return codes, the redirect packet verdict
requires an additional parameter that specifies the redirection tar-
get, which is set through a helper function before the program exits.
The redirect functionality can be used (1) to transmit the raw packet
out a different network interface (including virtual interfaces con-
nected to virtual machines), (2) to pass it to a different CPU for
further processing, or (3) to pass it directly to a special userspace
socket address family (AF_XDP). These different packet paths are
shown as solid lines in Figure 1. The decoupling of the return code
and the target parameter makes redirection a flexible forwarding
mechanism, which can be extended with additional target types
without requiring any special support from either the XDP pro-
grams themselves, or the device drivers implementing the XDP
hooks. In addition, because the redirect parameter is implemented
as a map lookup (where the XDP program provides the lookup key),
redirect targets can be changed dynamically without modifying the
program.

3.2 The eBPF Virtual Machine
XDP programs run in the Extended BPF (eBPF) virtual machine.
eBPF is an evolution of the original BSD packet filter (BPF) [37]
which has seen extensive use in various packet filtering applications
over the last decades. BPF uses a register-based virtual machine
to describe filtering actions. The original BPF virtual machine has
two 32-bit registers and understands 22 different instructions. eBPF
extends the number of registers to eleven, and increases register
widths to 64 bits. The 64-bit registers map one-to-one to hardware
registers on the 64-bit architectures supported by the kernel, en-
abling efficient just-in-time (JIT) compilation into native machine
code. Support for compiling (restricted) C code into eBPF is included
in the LLVM compiler infrastructure [29].

eBPF also adds new instructions to the eBPF instruction set.
These include arithmetic and logic instructions for the larger regis-
ter sizes, as well as a call instruction for function calls. eBPF adopts
the same calling convention as the C language conventions used on
the architectures supported by the kernel. Along with the register
mapping mentioned above, this makes it possible to map a BPF
call instruction to a single native call instruction, enabling function
calls with close to zero additional overhead. This facility is used by
eBPF to support helper functions that eBPF programs can call to
interact with the kernel while processing, as well as for function
calls within the same eBPF program.

While the eBPF instruction set itself can express any general
purpose computation, the verifier (described in Section 3.4 below)
places limitations on the programs loaded into the kernel to ensure
that the user-supplied programs cannot harm the running kernel.
With this in place, it is safe to execute the code directly in the
kernel address space, which makes eBPF useful for a wide variety
of tasks in the Linux kernel, not just for XDP. Because all eBPF
programs can share the same set of maps, this makes it possible for
programs to react to arbitrary events in other parts of the kernel.

For instance, a separate eBPF program could monitor CPU load and
instruct an XDP program to drop packets if load increases above a
certain threshold.

The eBPF virtual machine supports dynamically loading and
re-loading programs, and the kernel manages the life cycle of all
programs. This makes it possible to extend or limit the amount of
processing performed for a given situation, by adding or completely
removing parts of the program that are not needed, and re-loading
it atomically as requirements change. The dynamic loading of pro-
grams also makes it possible to express processing rules directly
in program code, which for some applications can increase perfor-
mance by replacing lookups into general purpose data structures
with simple conditional jumps.

3.3 BPF Maps
eBPF programs are executed in response to an event in the kernel
(a packet arrival, in the case of XDP). Each time they are executed
they start in the same initial state, and they do not have access
to persistent memory storage in their program context. Instead,
the kernel exposes helper functions giving programs access to BPF
maps.

BPF maps are key/value stores that are defined upon loading an
eBPF program, and can be referred to from within the eBPF code.
Maps exist in both global and per-CPU variants, and can be shared,
both between different eBPF programs running at various places
in the kernel, as well as between eBPF and userspace. The map
types include generic hash maps, arrays and radix trees, as well as
specialised types containing pointers to eBPF programs (used for
tail calls), or redirect targets, or even pointers to other maps.

Maps serve several purposes: they are a persistent data store be-
tween invocations of the same eBPF program; a global coordination
tool, where eBPF programs in one part of the kernel can update
state that changes the behaviour in another; and a communication
mechanism between userspace programs and the kernel eBPF pro-
grams, similar to the communication between control plane and
data plane in other programmable packet processing systems.

3.4 The eBPF Verifier
Since eBPF code runs directly in the kernel address space, it can
directly access, and potentially corrupt, arbitrary kernel memory.
To prevent this from happening, the kernel enforces a single entry
point for loading all eBPF programs (through the bpf() system
call). When loading an eBPF program it is first analysed by the
in-kernel eBPF verifier. The verifier performs a static analysis of the
program byte code to ensure that the program performs no actions
that are unsafe (such as accessing arbitrary memory), and that the
program will terminate. The latter is ensured by disallowing loops
and limiting the maximum program size. The verifier works by first
building a directed acyclic graph (DAG) of the control flow of the
program. This DAG is then verified as follows:

First, the verifier performs a depth-first search on the DAG to
ensure it is in fact acyclic, i.e., that it contains no loops, and also
that it contains no unsupported or unreachable instructions. Then,
in a second pass, the verifier walks all possible paths of the DAG.
The purpose of this second pass is to ensure that the program per-
forms only safe memory accesses, and that any helper functions are

58

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece T. Høiland-Jørgensen et al.

called with the right argument types. This is ensured by rejecting
programs that perform load or call instructions with invalid argu-
ments. Argument validity is determined by tracking the state of all
registers and stack variables through the execution of the program.

The purpose of this register state trackingmechanism is to ensure
that the program performs no out of bounds memory accesses
without knowing in advance what the valid bounds are. The bounds
cannot be known because programs must process data packets
which vary in size; and similarly, the contents of maps are not
known in advance, so it is not known whether a given lookup will
succeed. To deal with this, the verifier checks that the program
being loaded does its own bounds checking before dereferencing
pointers to packet data, and that map lookups are checked for NULL
values before being dereferenced. This approach leaves the program
writer in control of how checks are integrated into the processing
logic, and what to do in the error path.

To track data access, the verifier tracks data types, pointer offsets
and possible value ranges of all registers. At the beginning of the
program, R1 contains a pointer to the context metadata object, R10 is
a stack pointer, and all other registers are marked as not initialised.
At each execution step, register states are updated based on the
operations performed by the program. When a new value is stored
in a register, that register inherits the state variables from the source
of the value. Arithmetic operations will affect the possible value
ranges of scalar types, and the offsets of pointer types. The widest
possible range is stored in the state variables, e.g., if a one-byte load
is performed into a register, that register’s possible value range
is set to 0-255. Branches in the instruction graph will update the
register state according to the logical operation contained in the
branch. For example, given a comparison such as "R1 > 10", the
verifier will set the maximum value of R1 to 10 in one branch, and
the minimum value to 11 in the other.

Using this range information stored in the state variables, it is
possible for the verifier to predict the ranges of memory that each
load instruction can potentially access, and ensure that only safe
memory accesses are performed. For packet data access this is done
by looking for comparisons with the special data_end pointer that
is available in the context object; for values retrieved from a BPF
map the data size in the map definition is used; and for values stored
on the stack, accesses are checked against the data ranges that have
previously been written to. Furthermore, restrictions are placed on
pointer arithmetic, and pointers cannot generally be converted to
integer values. Any eBPF program that performs operations that
the verifier cannot prove are safe, are simply rejected at load time.
In addition to this, the verifier also uses the range information to
enforce aligned memory accesses.

It should be noted that the purpose of the verifier is to protect the
internals of the kernel from being exposed to malicious or buggy
eBPF programs, not to ensure that the programs perform their
designated function in the most efficient way possible. That is, an
XDP program can slow down the machine by performing excessive
processing (up to the maximum program size), and it can corrupt
network packets if written incorrectly. Loading programs requires
administrative (root) privileges for this reason, and it is up to the
eBPF programmer to prevent these types of bugs, and to the system
administrator to decide which programs to load on the system.

3.5 Example XDP program
To showcase the features described above, Listing 1 shows an

example of a simple XDP program. The program will parse packet
headers, and reflect all UDP packets by swapping the source and
destination MAC addresses and sending the packet back out the
interface it came in on. While this is obviously a very simple exam-
ple, the program does feature most of the components of an XDP
program that is useful in the real world. Specifically:

• A BPF map is defined (lines 1–7) for keeping statistics of
the number of processed packets. The map is keyed on IP
protocol number and each value is simply a packet count
(updated in lines 60–62). A userspace program can poll this
map to output statistics while the XDP program is running.

• Pointers to the start and end of the packet data is read from
the context object (lines 30–31), to be used for direct packet
data access.

• Checking against the data_end pointer ensures that no data is
read out of bounds (lines 22, 36 and 47). The verifier ensures
correctness even across pointer copies (as in lines 21–22).

• The programmust handle any packet parsing itself, including
things such as VLAN headers (lines 41–50).

• Direct packet data access is used to modify the packet head-
ers (lines 14–16).

• The map lookup helper function exposed by the kernel
(called on line 60). This is the only real function call in the
program; all other functions are inlined on compilation, in-
cluding helpers like htons().

• The final packet verdict is communicated by the program
return code (line 69).

When the program is installed on an interface, it is first compiled
into eBPF byte code, then checked by the verifier. The notable things
checked by the verifier in this case are (a) the absence of loops, and
the total size of the program, (b) that all direct packet data accesses
are preceded by appropriate bounds checking (c) that the sizes of
parameters passed to the map lookup function matches the map
definition, and (d) that the return value from the map lookup is
checked against NULL before it is accessed.

3.6 Summary
The XDP system consists of four major components: (1) The XDP
device driver hook which is run directly after a packet is received
from the hardware. (2) The eBPF virtual machine which is responsi-
ble for the actual program execution (and is also used for executing
programs in other parts of the kernel). (3) BPF maps, which allow
programs running in various parts of the kernel to communicate
with each other and with userspace. And (4) The eBPF verifier,
which ensures programs do not perform any operations that can
harm the running kernel.

These four components combine to create a powerful environ-
ment for writing custom packet processing applications, that can
accelerate packet processing in essential paths, while integrating
with the kernel and making full use of its existing facilities. The
performance achievable by these applications is the subject of the
next section.

59

The eXpress Data Path CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

1 /* map used to count packets; key is IP protocol, value is pkt count */
2 struct bpf_map_def SEC("maps") rxcnt = {
3 .type = BPF_MAP_TYPE_PERCPU_ARRAY,
4 .key_size = sizeof(u32),
5 .value_size = sizeof(long),
6 .max_entries = 256,
7 };
8
9 /* swaps MAC addresses using direct packet data access */
10 static void swap_src_dst_mac(void *data)
11 {
12 unsigned short *p = data;
13 unsigned short dst[3];
14 dst[0] = p[0]; dst[1] = p[1]; dst[2] = p[2];
15 p[0] = p[3]; p[1] = p[4]; p[2] = p[5];
16 p[3] = dst[0]; p[4] = dst[1]; p[5] = dst[2];
17 }
18
19 static int parse_ipv4(void *data, u64 nh_off, void *data_end)
20 {
21 struct iphdr *iph = data + nh_off;
22 if (iph + 1 > data_end)
23 return 0;
24 return iph->protocol;
25 }
26
27 SEC("xdp1") /* marks main eBPF program entry point */
28 int xdp_prog1(struct xdp_md *ctx)
29 {
30 void *data_end = (void *)(long)ctx->data_end;
31 void *data = (void *)(long)ctx->data;
32 struct ethhdr *eth = data; int rc = XDP_DROP;
33 long *value; u16 h_proto; u64 nh_off; u32 ipproto;
34
35 nh_off = sizeof(*eth);
36 if (data + nh_off > data_end)
37 return rc;
38
39 h_proto = eth->h_proto;
40
41 /* check VLAN tag; could be repeated to support double-tagged VLAN */
42 if (h_proto == htons(ETH_P_8021Q) || h_proto == htons(ETH_P_8021AD)) {
43 struct vlan_hdr *vhdr;
44
45 vhdr = data + nh_off;
46 nh_off += sizeof(struct vlan_hdr);
47 if (data + nh_off > data_end)
48 return rc;
49 h_proto = vhdr->h_vlan_encapsulated_proto;
50 }
51
52 if (h_proto == htons(ETH_P_IP))
53 ipproto = parse_ipv4(data, nh_off, data_end);
54 else if (h_proto == htons(ETH_P_IPV6))
55 ipproto = parse_ipv6(data, nh_off, data_end);
56 else
57 ipproto = 0;
58
59 /* lookup map element for ip protocol, used for packet counter */
60 value = bpf_map_lookup_elem(&rxcnt, &ipproto);
61 if (value)
62 *value += 1;
63
64 /* swap MAC addrs for UDP packets, transmit out this interface */
65 if (ipproto == IPPROTO_UDP) {
66 swap_src_dst_mac(data);
67 rc = XDP_TX;
68 }
69 return rc;
70 }

Listing 1: Example XDP program. The program parses packet head-
ers, swaps source and destination MAC addresses for all UDP pack-
ets, and sends them back out the same interface. A packet counter
is kept per IP protocol number. Adapted from xdp2_kern.c, which
is distributed with the kernel source code.

4 PERFORMANCE EVALUATION
In this section we present our performance evaluation of XDP.
As mentioned in Section 2, there are quite a few existing systems
for high-performance packet processing, and benchmarking all of
them is not feasible in the scope of this paper. Instead, we note
that DPDK is the existing solution that achieves the highest perfor-
mance [18], and compare against that as a baseline for the current
state of the art in high-speed software packet processing (using
the testpmd example application shipped with the 18.05 release of
DPDK). We focus on the raw packet processing performance, using
synthetic benchmarks, and also compare against the performance
of the Linux kernel network stack, to show the performance im-
provements offered by XDP in the same system. In the next section,
we supplement these raw performance benchmarks with some ex-
amples of real-world applications implemented on top of XDP, to
demonstrate their feasibility within the programming model.

For all benchmarks, we use a machine equipped with a hexa-core
Intel Xeon E5-1650 v4 CPU running at 3.60GHz, which supports
Intel’s Data Direct I/O (DDIO) technology allowing the networking
hardware Direct Memory Access (DMA) system to place packet data
directly in the CPU cache. The test machine is equipped with two
Mellanox ConnectX-5 Ex VPI dual-port 100Gbps network adapters,
which are supported by the mlx5 driver. We use the TRex packet
generator [9] to produce the test traffic. The test machine runs
a pre-release of version 4.18 of the Linux kernel. To help others
reproduce our results, we make available the full details of our
setup, along with links to source code and the raw test data, in an
online repository [22].

In our evaluation, we focus on three metrics:
• Packet drop performance. To show the maximum packet
processing performance, we measure the performance of
the simplest possible operation of dropping the incoming
packet. This effectively measures the overhead of the system
as a whole, and serves as an upper bound on the expected
performance of a real packet processing application.

• CPU usage. As mentioned in the introduction, one of the
benefits of XDP is that it scales the CPU usage with the
packet load, instead of dedicating CPU cores exclusively to
packet processing. We quantify this by measuring how CPU
usage scales with the offered network load.

• Packet forwarding performance. A packet processing sys-
tem that cannot forward packets has limited utility. Since
forwarding introduces an additional complexity compared
to the simple processing case (e.g., interacting with more
than one network adapter, rewriting link-layer headers, etc.),
a separate evaluation of forwarding performance is useful.
We include both throughput and latency in the forwarding
evaluation.

We have verified that with full-sized (1500 bytes) packets, our
system can process packets at line-speed (100Gbps) on a single core
that is half-idle. This makes it clear that the challenge is process-
ing many packets per second, as others have also noted [46]. For
this reason, we perform all tests using minimum-sized (64 bytes)
packets, and measure the maximum number of packets per second
the system can process. To measure how performance scales with
the number of CPU cores, we repeat the tests with an increasing

60

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece T. Høiland-Jørgensen et al.

1 2 3 4 5 6
Number of cores

0

20

40

60

80

100

120

M
pp

s

DPDK
XDP
Linux (raw)
Linux (conntrack)

Figure 3: Packet drop performance. DPDK uses one core for control
tasks, so only 5 are available for packet processing.

number of cores dedicated to packet processing.1 For XDP and
the Linux network stack (which do not offer an explicit way to
dedicate cores to packet processing) we achieve this by configuring
the hardware Receive Side Scaling (RSS) feature to steer traffic to
the desired number of cores for each test.

As we will see in the results below, our tests push the hardware
to its very limits. As such, tuning the performance of the system as
a whole is important to realise optimal performance. This includes
the physical hardware configuration, configuration of the network
adapter features such as Ethernet flow control and receive queue
size, and configuration parameters of the Linux kernel, where we for
instance disable full preemption and the “retpoline” mitigation for
the recent Meltdown and Spectre vulnerabilities. The full details of
these configuration issues are omitted here due to space constraints,
but are available in the online repository.

The following subsections present the evaluation results for each
of the metrics outlined above, followed by a general discussion of
the performance of XDP compared to the other systems. As all our
results are highly repeatable, we show results from a single test run
(with no error bars) to make the graphs more readable.

4.1 Packet Drop Performance
Figure 3 shows the packet drop performance as a function of the
number of cores. The baseline performance of XDP for a single
core is 24Mpps, while for DPDK it is 43.5Mpps. Both scale their
performance linearly until they approach the global performance
limit of the PCI bus, which is reached at 115Mpps after enabling
PCI descriptor compression support in the hardware (trading CPU
cycles for PCI bus bandwidth).

The figure also shows the performance of the Linux networking
stack in two configurations: one where we use the “raw” table of the
iptables firewall module to drop packets, which ensures the earliest
possible drop in the network stack processing; and another where
we use the connection tracking (conntrack) module, which carries
a high overhead, but is enabled by default on many Linux distri-
butions. These two modes illustrate the performance span of the
1The Hyperthreading feature of the CPU is disabled for our experiments, so whenever
we refer to the number of active CPU cores, this means the number of physical cores.

0 5 10 15 20 25
Offered load (Mpps)

0

20

40

60

80

100

CP
U

us
ag

e (
%)

DPDK
XDP
Linux

Figure 4: CPU usage in the drop scenario. Each line stops at the
method’s maximum processing capacity. The DPDK line continues
at 100% up to the maximum performance shown in Figure 3.

Linux networking stack, from 1.8 Mpps of single-core performance
with conntrack, up to 4.8 Mpps in raw mode. It also shows that
in the absence of hardware bottlenecks, Linux performance scales
linearly with the number of cores. And finally, it shows that with
its 24 Mpps on a single core, XDP offers a five-fold improvement
over the fastest processing mode of the regular networking stack.

As part of this Linux raw mode test, we also measured the over-
head of XDP by installing an XDP program that does no operation
other than updating packets counters and passing the packet on
to the stack. We measured a drop in performance to 4.5Mpps on a
single core, corresponding to 13.3 ns of processing overhead. This is
not shown on the figure, asthe difference is too small to be legible.

4.2 CPU Usage
Wemeasure the CPU usage of the different tested systemswhen run-
ning the packet drop application on a single CPU core, by recording
the percentage of CPU busy time using the mpstat system utility.
The results of this is shown in Figure 4. The test varies the offered
packet load up to the maximum that each system can handle on a
single core.

Since DPDK by design dedicates a full core to packet processing,
and uses busy polling to process the packets, its CPU usage is
always pegged at 100%, which is the green line at the top of the
figure. In contrast, both XDP and Linux smoothly scale CPU usage
with the offered load, with a slightly larger relative increase in CPU
usage at a small offered load level.

The non-linearity of the graph in the bottom-left corner is due
to the fixed overhead of interrupt processing. At lower packet rates,
the number of packets processed during each interrupt is smaller,
leading to higher CPU usage per packet.

4.3 Packet Forwarding Performance
Figure 5 shows packet forwarding performance. The forwarding
applications perform a simple Ethernet address rewrite, where the
source and destination address of the incoming packet are swapped
before the packet is forwarded. This is the minimum rewriting
that is needed for packet forwarding to function, so the results

61

The eXpress Data Path CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

Table 1: Packet forwarding latency. Measurement machine con-
nected to two ports on the same NIC, measuring end-to-end latency
for 50 seconds with high and low packet rates (100 pps and 1 Mpps).

Average Maximum < 10µs
100 pps 1 Mpps 100 pps 1 Mpps 100 pps 1 Mpps

XDP 82µs 7µs 272µs 202µs 0% 98.1%
DPDK 2µs 3µs 161µs 189µs 99.5% 99.0%

represent an upper bound on forwarding performance. Since XDP
can forward packets out the same NIC as well as out a different
NIC (using two different program return codes), we include both
modes in the graph. The DPDK example program only supports
forwarding packets through a different interface, so we only include
this operating mode in the test. Finally, the Linux networking stack
does not support this minimal forwarding mode, but requires a
full bridging or routing lookup to forward packets; this lookup is
expensive, and since the other applications do not perform it, the
results are not directly comparable. For this reason, we omit the
Linux networking stack from these results, and instead include the
Linux routing performance in our routing use case presented in
Section 5.1.

As Figure 5 shows, we again see linear scaling with the number
of cores up to a global performance bottleneck. The absolute per-
formance is somewhat lower than for the packet drop case, which
shows the overhead of packet forwarding. We also see that the
XDP performance improves significantly when packets are sent
out on the same interface that they were received on, surpassing
the DPDK forwarding performance at two cores and above. The
performance difference is primarily due to differences in memory
handling: packet buffers are allocated by the device driver and as-
sociated with the receiving interface. And so, when the packet is
forwarded out a different interface, the memory buffer needs to be
returned to the interface that it is associated with.

Looking at forwarding latency, as seen in Table 1, the relative
performance of XDP and DPDK for different-NIC forwarding are
reflected for the high packet rate test (with DPDK showing slightly
lower variance as well). However, for low packet rates, the latency of
XDP is dominated by the interrupt processing time, which leads to
much higher end-to-end latency than DPDK achieves with constant
polling.

4.4 Discussion
As we have seen in the previous subsections, XDP achieves sig-
nificantly higher performance than the regular Linux networking
stack. Even so, for most use cases XDP does not quite match the
performance of DPDK. We believe this is primarily because DPDK
has incorporated more performance optimisations at the lowest
level of the code. To illustrate this, consider the packet drop exam-
ple: XDP achieves 24Mpps on a single core, which corresponds to
41.6 nanoseconds per packet, while DPDK achieves 43.5Mpps, or
22.9 nanoseconds per packet. The difference of 18.7 nanoseconds
corresponds to 67 clock cycles on the 3.6 GHz processor in our test
machine. Thus, it is clear that every micro-optimisation counts;
for example, we measure an overhead of 1.3 nanoseconds for a

1 2 3 4 5 6
Number of cores

0

10

20

30

40

50

60

70

80

M
pp

s

DPDK (different NIC)
XDP (same NIC)
XDP (different NIC)

Figure 5: Packet forwarding throughput. Sending and receiving on
the same interface takes up more bandwidth on the same PCI port,
which means we hit the PCI bus limit at 70 Mpps.

single function call on our test system. The mlx5 driver performs
10 function calls when processing a single packet, corresponding
to 13 of the 18.7 nanoseconds of performance difference between
XDP and DPDK.

Some of this overhead is inevitable on a general-purpose op-
erating system such as Linux, as device drivers and subsystems
are structured in a way that makes it possible to support a wide
variety of systems and configurations. However, we believe that
some optimisations are viable. For instance, we have performed an
experiment that removed DMA-related function calls that were not
needed on our specific hardware from the driver, removing four
of the 10 per-packet function calls. This improved the packet drop
performance to 29Mpps. Extrapolating this, removing all function
calls would increase performance to 37.6Mpps. While this is not
possible in practice, it is possible to remove some of them, and
combining this with other performance optimisations, we believe
it is reasonable to expect the performance gap between DPDK and
XDP to lessen over time. We see similar effects with other drivers,
such as the i40e driver for 40Gbps Intel cards, which achieves full
performance up to the NIC hardware performance limit with both
XDP and DPDK.2

Given the above points, we believe it is feasible for XDP to
further decrease the performance delta to DPDK. However, given
the benefits of XDP in terms of flexibility and integration with the
rest of the system, XDP is already a compelling choice for many
use cases; we show some examples of this in the next section.

5 REAL-WORLD USE CASES
To show how the various aspects of XDP can be used to implement
useful real-world applications, this section describes three example
use cases. These use cases have all seen deployment in one form or
another, although we use simplified versions in our evaluation to
be able to make the code available. We also refer the reader to [38]

2While DPDK uses the drivers in the operating system to assume control of the
hardware, it contains its own drivers that are used for the actual packet processing.

62

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece T. Høiland-Jørgensen et al.

for an independent look at some of the challenges of implementing
real-world network services in XDP.

The purpose of this section is to demonstrate the feasibility of im-
plementing each use case in XDP, so we do not perform exhaustive
performance evaluations against state of the art implementations.
Instead, we use the regular Linux kernel stack as a simple perfor-
mance baseline and benchmark the XDP applications against that.
The three use cases are a software router, an inline Denial of Service
(DoS) mitigation application and a layer-4 load balancer.

5.1 Software Routing
The Linux kernel contains a full-featured routing table, which in-
cludes support for policy routing, source-specific routing, multi-
path load balancing, and more. For the control plane, routing dae-
mons such as Bird [10] or FRR [17] implement a variety of routing
control plane protocols. Because of this rich ecosystem supporting
routing on Linux, re-implementing the routing stack in another
packet processing framework carries a high cost, and improving
performance of the kernel data plane is desirable.

XDP is a natural fit for this task, especially as it includes a helper
function which performs full routing table lookups directly from
XDP. The result of the lookup is an egress interface and a next-hop
MAC address, which makes it possible for the XDP program to im-
mediately forward the packet if the lookup succeeds. If no next-hop
MAC is known (because neighbour lookup has not been performed
yet), the XDP program can pass the packet to the networking stack,
which will resolve the neighbour, allowing subsequent packets to
be forwarded by XDP.

To show the performance of this use case, we use the XDP routing
example that is included in the Linux kernel source [1] and compare
its performance to routing in the regular Linux network stack.
We perform two tests: one with a single route installed in the
routing table, and another where we use a full dump of the global
BGP routing table from routeviews.org. In both cases, all next-hop
addresses are set to the address of the test system connected to our
egress interface. The full table contains 752,138 distinct routes, and
for our tests we generate 4000 random destination IP addresses to
make sure we exercise the full table.3.

The performance of this use case is seen in Figure 6. Using XDP
for the forwarding plane improves performance with a factor of 2.5
for a full table lookup, and a factor of 3 for the smaller routing table
example. This makes it feasible to run a software router with a full
BGP table at line rate on a 10Gbps link using a single core (using a
conservative estimate of an average packet size of 300 bytes).

5.2 Inline DoS Mitigation
DoS attacks continue to plague the internet, typically in the form of
distributed attacks (DDoS attacks) from compromised devices. With
XDP, it is possible to deploy packet filtering to mitigate such at-
tacks directly at the application servers, without needing to change
applications. In the case of a virtual machine deployment, the filter
can even be installed in the hypervisor, and thus protect all virtual
machines running on the host.
3Using fewer than 4000 destination IPs, the part of the routing table that is actually used
is small enough to be kept in the CPU cache, which gives misleading (better) results.
Increasing the number of IPs above 4000 had no additional effects on forwarding
performance.

0 1 2 3 4 5
Mpps (single core)

Linux (full table)

Linux (single route)

XDP (full table)

XDP (single route)

Figure 6: Software routing performance. Since the performance
scales linearlywith the number of cores, only the results for a single
core are shown.

To show how this could work, we perform a test modelled on
the DDoS mitigation architecture used by Cloudflare, which uses
XDP as the filtering mechanism [6]. Their Gatebot architecture
works by sampling traffic at servers located in distributed Points of
Presence (PoPs), collecting it centrally for analysis, and formulating
mitigation rules based on the analysis. The mitigation rules take the
form of a series of simple checks on the packet payload, which are
compiled directly into eBPF code and distributed to the edge servers
in the PoPs. Here the code is executed as an XDP program that
will drop packets matching the rules, while also updating match
counters stored in BPF maps.

To test the performance of such a solution, we use an XDP pro-
gram that parses the packet headers and performs a small number
of tests4 to identify attack traffic and drop it, and uses the CPU
redirect feature to pass all other packets to a different CPU core
for processing. To simulate a baseline application load we use the
Netperf benchmarking tool [26]. Netperf contains a TCP-based
round-trip benchmark, which opens a TCP connection and sends a
small payload that is echoed back from the server, repeating as soon
as a reply is received. The output is the number of transactions per
second, which represents performance of an interactive use case,
such as small remote procedure calls.

We run our experiment on a single core, to illustrate the situation
where legitimate traffic has to compete for the same hardware
resources as attack traffic. We apply a baseline load of 35.000 TCP
transactions per second, then simulate the DoS attack by offering
an increasing load of small UDP packets matching our packet filter.
We measure the TCP transactions performance as the attack traffic
volume increases, reporting the average of four test repetitions per
data point.

The results of this is shown in Figure 7. Without the XDP filter,
performance drops rapidly, being halved at 3Mpps and effectively
zero at just below 3.5Mpps of attack traffic. However, with the XDP
filter in place, the TCP transaction performance is stable at around
28.500 transactions per second until 19.5Mpps of attack traffic, af-
ter which it again drops rapidly. This shows that effective DDoS
filtering is feasible to perform in XDP, which comfortably handles
10Gbps of minimum-packet DoS traffic on a single CPU core. De-
ploying DDoS mitigation this way leads to increased flexibility,
since no special hardware or application changes are needed.

4Our example program performs four packet data reads per packet, to parse the outer
packet headers and drop packets with a pre-defined UDP destination port number.

63

routeviews.org

The eXpress Data Path CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

0 5 10 15 20 25
Mpps DOS traffic

0

5

10

15

20

25

30

35

TC
P

Kt
ra

ns
/s

XDP
No XDP

Figure 7: DDoS performance. Number of TCP transactions per sec-
ond as the level of attack traffic directed at the server increases.

Table 2: Load balancer performance (Mpps).

CPU Cores 1 2 3 4 5 6

XDP (Katran) 5.2 10.1 14.6 19.5 23.4 29.3
Linux (IPVS) 1.2 2.4 3.7 4.8 6.0 7.3

5.3 Load Balancing
For the load balancer use case, we use the XDP component of the
Katran load balancer [15] released as open source by Facebook. This
works by announcing an IP address for the service, which is routed
to the load balancer. The load balancer hashes the source packet
header to select a destination application server. The packet is then
encapsulated and sent to the application server, which is responsible
for decapsulating it, processing the request, and replying directly
to the originator. The XDP program performs the hashing and
encapsulation, and returns the packet out the same interface on
which it was received. It keeps configuration data in BPF maps and
implements the encapsulation entirely in the eBPF program.

To test this use case, we configure the Katran XDP program with
a fixed number of destination hosts5, and run it on our test machine.
We compare it with the IPVS load balancer that is part of the Linux
kernel, which can be configured in the same way. The performance
of both is shown in Table 2, which shows linear scaling with the
number of CPUs, and that XDP offers a performance gain of 4.3x
over IPVS.

6 FUTURE DIRECTIONS OF XDP
As we have shown above, XDP offers high performance and can be
used to implement a variety of real-world use cases. However, this
does not mean that XDP is a finished system. On the contrary, as
part of the Linux kernel, XDP undergoes continuous improvement.
Some of this development effort goes into softening the rough
edges that are the inevitable result of XDP being incrementally
incorporated into a general purpose operating system kernel. Other

5We use one virtual IP per CPU core, and 100 destinations per virtual IP.

efforts continue to push the boundaries of XDP’s capabilities. In
this section we discuss some of these efforts.

6.1 Limitations on eBPF programs
As mentioned previously, the programs loaded into the eBPF virtual
machine are analysed by the eBPF verifier, which places certain
limitations on the programs to ensure they do not harm the running
kernel. These limitations fall in two categories: (a) Ensuring the
program will terminate, which is implemented by disallowing loops
and limiting the maximum size of the program. And (b) ensuring
the safety of memory accesses, which is done by the register state
tracking explained in Section 3.4.

Since the primary function of the verifier is to ensure the safety
of the kernel, a conservative approach is taken, and the verifier will
reject any program that it cannot prove is safe. This can lead to false
negatives, where safe programs are needlessly rejected; reducing
such cases is an ongoing effort. The error messages reported by
the verifier have also been made friendlier, to make it easier for
developers to change their code to fix verification errors when they
do occur. Support for function calls in eBPF has recently been added,
support for bounded loops is planned, and efficiency improvements
of the verifier itself are being worked on, which will allow it to
operate on larger programs.

Another limitation of eBPF programs compared to user-space
C programs is the lack of a standard library, including things like
memory allocation, threading, locking, etc. This is partly alleviated
by the life cycle and execution context management of the kernel
(i.e., an XDP program is automatically run for each arriving packet),
and partly by the helper functions exposed by the kernel.

Finally, only one XDP program can be attached to each network-
ing interface. This can be worked around by cooperation between
programs, where the tail call functionality can be used to either
dynamically dispatch to different programs depending on packet
content, or to chain several programs together.

6.2 User Experience and Debugging
Since an XDP program runs in the kernel, the debugging tools avail-
able to a regular userspace program are not generally applicable.
Instead, the debugging and introspection features included in the
kernel can be applied to XDP (and other eBPF programs). These
tools include tracepoints and kprobes [13] as well as the perfor-
mance counters that are part of the perf subsystem [42]. However,
developers who are not familiar with the kernel ecosystem may
find this ecosystem of kernel-specific tools a limitation. To ease
the transition, a variety of tools exist, including the BPF Compiler
Collection [50], the bpftool introspection program [8] and the libbpf
library of utility functions [30]. These have already seen significant
improvements, but more work is needed in this area.

6.3 Driver Support
Each device driver needs to add support for running XDP programs,
by supporting an API exposed by the core networking stack, and
support is continuously being added to more and more drivers.6

6At the time of writing Linux 4.18 has XDP support in 12 different drivers, including
most high-speed network adapters. For an updated list, see [2].

64

CoNEXT ’18, December 4–7, 2018, Heraklion, Greece T. Høiland-Jørgensen et al.

However, since features are usually implemented in smaller incre-
ments, some care is still needed when selecting hardware to use
with XDP, to ensure full support for the features needed for a par-
ticular use case. However, since XDP is integrated into the kernel
device driver model, it imposes no particular capability constraints
on the hardware, which means that full support in all drivers is
possible.

As the XDP system has evolved, the need to keep the changes
required in drivers to support XDP to a minimum has become in-
creasingly clear, and some steps have been taken in this direction.
For instance, support for new targets can be added to the redirec-
tion action without any changes needed from the drivers. Finally,
the Generic XDP feature [39] allows running XDP programs (at re-
duced performance) even if the networking driver lacks the proper
support, by moving execution into the core networking stack.

6.4 Performance Improvements
As we discussed in Section 4.4, there is still a performance gap be-
tween XDP and DPDK in some use cases. Efforts to improve this are
ongoing, which includes micro-optimisations of driver code as well
as changes to the core XDP code to remove unnecessary operations,
and amortise processing costs through improved batching.

6.5 QoS and Rate Transitions
Currently, XDP does not implement any mechanism for support-
ing different Quality of Service (QoS) levels. Specifically, an XDP
program receives no back-pressure when attempting to forward
packets to a destination that has exhausted its capacity, such as
when joining networks with different speeds or other mismatched
network characteristics.

While QoS is lacking from XDP, the Linux kernel networking
stack features best-in-class Active Queue Management (AQM) and
packet scheduling algorithms [23]. Not all of these features are a
good fit for the XDP architecture, but we believe that selectively
integrating features from the networking stack into XDP is an
opportunity to provide excellent support for QoS and AQM in XDP,
in away that can be completely transparent to the packet processing
applications themselves. We are planning to explore this further.

6.6 Accelerating Transport Protocols
With XDP we have shown how high-speed packet processing can
be integrated cooperatively into the operating system to accelerate
processing while making use of existing features of the operat-
ing system where it makes sense. XDP focuses on stateless packet
processing, but extending the same model to stateful transport pro-
tocols such as TCP would provide many of the same performance
benefits to applications that require reliable (and thus stateful)
transports. Indeed, others have shown that accelerated transport
protocols can significantly improve performance relative to the
regular operating system stack [5, 25, 35, 52].

One of these previous solutions [52] shows that there is signifi-
cant potential in improving the raw packet processing performance
while keeping the in-kernel TCP stack itself. XDP is a natural fit for
this, and there has been some initial discussion of how this could
be achieved [21]; while far from trivial, this presents an exciting
opportunity for expanding the scope of the XDP system.

6.7 Zero-copy to userspace
As mentioned in Section 3.1, an XDP program can redirect data
packets to a special socket opened by a user space application. This
can be used to improve performance of network-heavy applications
running on the local machine. However, in its initial implementa-
tion, this mechanism still involves copying the packet data, which
negatively affects performance. There is ongoing work to enable
true zero-copy data transfer to user space applications through
AF_XDP sockets. This places some constrains on the memory han-
dling of the network device, and so requires explicit driver support.
The first such support was merged into the kernel in the 4.19 re-
lease cycle, and work is ongoing to add it to more drivers. The
initial performance numbers look promising, showing transfers of
upwards of 20 Mpps to userspace on a single core.

6.8 XDP as a building block
Just as DPDK is used as a low-level building block for higher level
packet processing frameworks (e.g., [31]), XDP has the potential
to serve as a runtime environment for higher-level applications.
In fact, we have already started to see examples of applications
and frameworks leveraging XDP. Prominent examples include the
Cilium security middle-ware [3], the Suricata network monitor [4],
Open vSwitch [49] and the P4-to-XDP compiler project [51]. There
is even an effort to add XDP as a low-level driver for DPDK [53].

7 CONCLUSION
We have presented XDP, a system for safely integrating fast pro-
grammable packet processing into the operating system kernel. Our
evaluation has shown that XDP achieves raw packet processing
performance of up to 24Mpps on a single CPU core.

While this is not quite on par with state of the art kernel bypass-
based solutions, we argue that XDP offers other compelling features
that more than make up for the performance delta. These features
include retaining kernel security and management compatibility;
selectively utilising existing kernel stack features as needed; provid-
ing a stable programming interface; and complete transparency to
applications. In addition, XDP can be dynamically re-programmed
without service interruption, and requires neither specialised hard-
ware nor dedicating resources exclusively to packet processing.

We believe that these features make XDP a compelling alterna-
tive to all-or-nothing kernel bypass solutions. This belief is sup-
ported by XDP’s adoption in a variety of real-world applications,
some of which we have shown examples of. Furthermore, the XDP
system is still evolving, and we have outlined a number of interest-
ing developments which will continue to improve it in the future.

ACKNOWLEDGEMENTS
XDP has been developed by the Linux networking community for
a number of years, and the authors would like to thank everyone
who has been involved. In particular, Alexei Starovoitov has been
instrumental in the development of the eBPF VM and verifier; Jakub
Kicinski has been a driving force behind XDP hardware offloading
and the bpftool utility; and Björn Töpel and Magnus Karlsson have
been leading the AF_XDP and userspace zero-copy efforts.

We also wish to extend our thanks to the anonymous reviewers,
and to our shepherd Srinivas Narayana, for their helpful comments.

65

The eXpress Data Path CoNEXT ’18, December 4–7, 2018, Heraklion, Greece

REFERENCES
[1] David Ahern. 2018. XDP forwarding example. https://elixir.bootlin.com/linux/

v4.18-rc1/source/samples/bpf/xdp_fwd_kern.c
[2] Cilium Authors. 2018. BPF and XDP Reference Guide. https://cilium.readthedocs.

io/en/latest/bpf/
[3] Cilium Authors. 2018. Cilium software. https://github.com/cilium/cilium
[4] Suricata authors. 2018. Suricata - eBPF and XDP. https://suricata.readthedocs.

io/en/latest/capture-hardware/ebpf-xdp.html
[5] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,

and Edouard Bugnion. 2014. IX: A protected dataplane operating system for high
throughput and low latency. In Proceedings of the 11th USENIX Symposium on
Operating System Design and Implementation (OSDI ’14). USENIX.

[6] Gilberto Bertin. 2017. XDP in practice: integrating XDP in our DDoS mitigation
pipeline. In NetDev 2.1 - The Technical Conference on Linux Networking.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014).

[8] bpftool authors. 2018. bpftool manual. https://elixir.bootlin.com/linux/v4.18-rc1/
source/tools/bpf/bpftool/Documentation/bpftool.rst

[9] Cisco. 2018. TRex Traffic Generator. https://trex-tgn.cisco.com/
[10] CZ.nic. 2018. BIRD Internet Routing Daemon. https://bird.network.cz/
[11] Luca Deri. 2009. Modern packet capture and analysis: Multi-core, multi-gigabit,

and beyond. In the 11th IFIP/IEEE International Symposium on Integrated Network
Management (IM).

[12] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall,
Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. 2009.
RouteBricks: exploiting parallelism to scale software routers. In Proceedings of
the ACM SIGOPS 22nd symposium on Operating systems principles. ACM.

[13] Linux documentation authors. 2018. Linux Tracing Technologies. https://www.
kernel.org/doc/html/latest/trace/index.html

[14] Paul Emmerich, Sebastian Gallenmüller, Daniel Raumer, Florian Wohlfart, and
Georg Carle. 2015. Moongen: A scriptable high-speed packet generator. In
Proceedings of the 2015 Internet Measurement Conference. ACM.

[15] Facebook. 2018. Katran source code repository. https://github.com/
facebookincubator/katran

[16] Linux Foundation. 2018. Data Plane Development Kit. https://www.dpdk.org/
[17] The Linux Foundation. 2018. FRRouting. https://frrouting.org/
[18] Sebastian Gallenmüller, Paul Emmerich, Florian Wohlfart, Daniel Raumer, and

Georg Carle. 2015. Comparison of Frameworks for High-Performance Packet
IO. In Proceedings of the Eleventh ACM/IEEE Symposium on Architectures for
Networking and Communications Systems (ANCS ’15). IEEE Computer Society,
29–38.

[19] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. 2010. PacketShader: a
GPU-accelerated software router. In ACM SIGCOMM Computer Communication
Review, Vol. 40. ACM.

[20] Sangjin Han, Scott Marshall, Byung-Gon Chun, and Sylvia Ratnasamy. 2012.
MegaPipe: ANewProgramming Interface for Scalable Network I/O. In Proceedings
of the 8th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’12).

[21] Tom Herbert. 2016. Initial thoughts on TXDP. https://www.spinics.net/lists/
netdev/msg407537.html

[22] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. 2018. XDP-paper
online appendix. https://github.com/tohojo/xdp-paper

[23] Toke Høiland-Jørgensen, Per Hurtig, and Anna Brunstrom. 2015. The Good, the
Bad and the WiFi: Modern AQMs in a residential setting. Computer Networks 89
(Oct. 2015).

[24] Solarflare Communications Inc. 2018. OpenOnload. https://www.openonload.
org/

[25] EunYoung Jeong, ShinaeWoo, Muhammad Asim Jamshed, Haewon Jeong, Sungh-
wan Ihm, Dongsu Han, and KyoungSoo Park. 2014. mTCP: a Highly Scalable
User-level TCP Stack for Multicore Systems.. In Proceedings of the 11th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’14), Vol. 14.
489–502.

[26] Rick Jones. 2018. Netperf. Open source benchmarking software. http://www.
netperf.org/

[27] Jakub Kicinski and Nic Viljoen. 2016. eBPF/XDP hardware offload to SmartNICs.
In NetDev 1.2 - The Technical Conference on Linux Networking.

[28] Davide Kirchner, Raihana Ferdous, Renato Lo Cigno, Leonardo Maccari, Massimo
Gallo, Diego Perino, and Lorenzo Saino. 2016. Augustus: a CCN router for
programmable networks. In Proceedings of the 3rd ACMConference on Information-
Centric Networking. ACM.

[29] Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and runtime
optimization. IEEE Computer Society.

[30] libbpf authors. 2018. libbpf source code. https://elixir.bootlin.com/linux/v4.
18-rc1/source/tools/lib/bpf

[31] Leonardo Linguaglossa, Dario Rossi, Salvatore Pontarelli, Dave Barach, Damjan
Marjon, and Pierre Pfister. 2017. High-speed software data plane via vectorized
packet processing. Technical Report. Telecom ParisTech.

[32] John W Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad
Naous, Ramanan Raghuraman, and Jianying Luo. 2007. NetFPGA–an open
platform for gigabit-rate network switching and routing. In IEEE International
Conference on Microelectronic Systems Education. IEEE.

[33] Rodrigo B Mansilha, Lorenzo Saino, Marinho P Barcellos, Massimo Gallo, Emilio
Leonardi, Diego Perino, and Dario Rossi. 2015. Hierarchical content stores in
high-speed ICN routers: Emulation and prototype implementation. In Proceedings
of the 2nd ACM Conference on Information-Centric Networking. ACM.

[34] Tudor Marian, Ki Suh Lee, and Hakim Weatherspoon. 2012. NetSlices: scalable
multi-core packet processing in user-space. In Proceedings of the eighth ACM/IEEE
symposium on Architectures for networking and communications systems. ACM.

[35] Ilias Marinos, Robert NM Watson, and Mark Handley. 2014. Network stack
specialization for performance. In ACM SIGCOMM Computer Communication
Review, Vol. 44. ACM, 175–186.

[36] Joao Martins, Mohamed Ahmed, Costin Raiciu, Vladimir Olteanu, Michio Honda,
Roberto Bifulco, and Felipe Huici. 2014. ClickOS and the art of network function
virtualization. In Proceedings of the 11th USENIX Conference on Networked Systems
Design and Implementation. USENIX Association.

[37] Steven McCanne and Van Jacobson. 1993. The BSD Packet Filter: A New Archi-
tecture for User-level Packet Capture. In USENIX winter, Vol. 93.

[38] Sebastiano Miano, Matteo Bertrone, Fulvio Risso, Massimo Tumolo, and Mauri-
cio Vásquez Bernal. 2018. Creating Complex Network Service with eBPF: Experi-
ence and Lessons Learned. In IEEE International Conference on High Performance
Switching and Routing.

[39] David S. Miller. 2017. Generic XDP. https://git.kernel.org/torvalds/c/
b5cdae3291f7

[40] Robert Morris, Eddie Kohler, John Jannotti, and M Frans Kaashoek. 1999. The
Click modular router. ACM SIGOPS Operating Systems Review 33, 5 (1999).

[41] Juniper Networks. 2018. Juniper Contrail Virtual Router. https://github.com/
Juniper/contrail-vrouter

[42] perf authors. 2018. perf: Linux profiling with performance counters. https:
//perf.wiki.kernel.org/index.php/Main_Page

[43] Simon Peter, Jialin Li, Irene Zhang, Dan RK Ports, Doug Woos, Arvind Krishna-
murthy, Thomas Anderson, and Timothy Roscoe. 2016. Arrakis: The operating
system is the control plane. ACM Transactions on Computer Systems (TOCS) 33, 4
(2016).

[44] Ben Pfaff, Justin Pettit, Teemu Koponen, Ethan J Jackson, Andy Zhou, Jarno
Rajahalme, Jesse Gross, Alex Wang, Joe Stringer, Pravin Shelar, et al. 2015. The
Design and Implementation of Open vSwitch. In Proceedings of the 12th USENIX
Symposium on Networked Systems Design and Implementation (NSDI ’15).

[45] Ntop project. 2018. PF_RING ZC (Zero Copy). https://www.ntop.org/products/
packet-capture/pf_ring/pf_ring-zc-zero-copy/

[46] Luigi Rizzo. 2012. Netmap: a novel framework for fast packet I/O. In 21st USENIX
Security Symposium (USENIX Security 12).

[47] Luigi Rizzo and Giuseppe Lettieri. 2012. Vale, a switched ethernet for virtual ma-
chines. In Proceedings of the 8th international conference on Emerging networking
experiments and technologies. ACM.

[48] Pedro M Santiago del Rio, Dario Rossi, Francesco Gringoli, Lorenzo Nava, Luca
Salgarelli, and Javier Aracil. 2012. Wire-speed statistical classification of network
traffic on commodity hardware. In Proceedings of the 2012 Internet Measurement
Conference. ACM.

[49] William Tu. 2018. [ovs-dev] AF_XDP support for OVS. https://mail.openvswitch.
org/pipermail/ovs-dev/2018-August/351295.html

[50] IO Visor. 2018. BCC BPF Compiler Collection. https://www.iovisor.org/
technology/bcc

[51] VMWare. 2018. p4c-xdp. https://github.com/vmware/p4c-xdp
[52] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. 2016.

StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs.
In 2016 USENIX Annual Technical Conference (USENIX ATC 16). USENIX Associa-
tion, 43–56.

[53] Qi Zhang. 2018. [dpdk-dev] PMD driver for AF_XDP. http://mails.dpdk.org/
archives/dev/2018-February/091502.html

66

https://elixir.bootlin.com/linux/v4.18-rc1/source/samples/bpf/xdp_fwd_kern.c
https://elixir.bootlin.com/linux/v4.18-rc1/source/samples/bpf/xdp_fwd_kern.c
https://cilium.readthedocs.io/en/latest/bpf/
https://cilium.readthedocs.io/en/latest/bpf/
https://github.com/cilium/cilium
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://suricata.readthedocs.io/en/latest/capture-hardware/ebpf-xdp.html
https://elixir.bootlin.com/linux/v4.18-rc1/source/tools/bpf/bpftool/Documentation/bpftool.rst
https://elixir.bootlin.com/linux/v4.18-rc1/source/tools/bpf/bpftool/Documentation/bpftool.rst
https://trex-tgn.cisco.com/
https://bird.network.cz/
https://www.kernel.org/doc/html/latest/trace/index.html
https://www.kernel.org/doc/html/latest/trace/index.html
https://github.com/facebookincubator/katran
https://github.com/facebookincubator/katran
https://www.dpdk.org/
https://frrouting.org/
https://www.spinics.net/lists/netdev/msg407537.html
https://www.spinics.net/lists/netdev/msg407537.html
https://github.com/tohojo/xdp-paper
https://www.openonload.org/
https://www.openonload.org/
http://www.netperf.org/
http://www.netperf.org/
https://elixir.bootlin.com/linux/v4.18-rc1/source/tools/lib/bpf
https://elixir.bootlin.com/linux/v4.18-rc1/source/tools/lib/bpf
https://git.kernel.org/torvalds/c/b5cdae3291f7
https://git.kernel.org/torvalds/c/b5cdae3291f7
https://github.com/Juniper/contrail-vrouter
https://github.com/Juniper/contrail-vrouter
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://www.ntop.org/products/packet-capture/pf_ring/pf_ring-zc-zero-copy/
https://mail.openvswitch.org/pipermail/ovs-dev/2018-August/351295.html
https://mail.openvswitch.org/pipermail/ovs-dev/2018-August/351295.html
https://www.iovisor.org/technology/bcc
https://www.iovisor.org/technology/bcc
https://github.com/vmware/p4c-xdp
http://mails.dpdk.org/archives/dev/2018-February/091502.html
http://mails.dpdk.org/archives/dev/2018-February/091502.html

	Abstract
	1 Introduction
	2 Related work
	3 The design of XDP
	3.1 The XDP Driver Hook
	3.2 The eBPF Virtual Machine
	3.3 BPF Maps
	3.4 The eBPF Verifier
	3.5 Example XDP program
	3.6 Summary

	4 Performance evaluation
	4.1 Packet Drop Performance
	4.2 CPU Usage
	4.3 Packet Forwarding Performance
	4.4 Discussion

	5 Real-world use cases
	5.1 Software Routing
	5.2 Inline DoS Mitigation
	5.3 Load Balancing

	6 Future directions of XDP
	6.1 Limitations on eBPF programs
	6.2 User Experience and Debugging
	6.3 Driver Support
	6.4 Performance Improvements
	6.5 QoS and Rate Transitions
	6.6 Accelerating Transport Protocols
	6.7 Zero-copy to userspace
	6.8 XDP as a building block

	7 Conclusion
	References

