
One Sketch to Rule Them All:
Rethinking Network Flow Monitoring with UnivMon

Zaoxing Liu†, Antonis Manousis?, Gregory Vorsanger†, Vyas Sekar?, Vladimir Braverman†
† Johns Hopkins University ? Carnegie Mellon University

ABSTRACT
Network management requires accurate estimates of met-
rics for many applications including traffic engineering (e.g.,
heavy hitters), anomaly detection (e.g., entropy of source
addresses), and security (e.g., DDoS detection). Obtain-
ing accurate estimates given router CPU and memory con-
straints is a challenging problem. Existing approaches fall
in one of two undesirable extremes: (1) low fidelity general-
purpose approaches such as sampling, or (2) high fidelity
but complex algorithms customized to specific application-
level metrics. Ideally, a solution should be both general
(i.e., supports many applications) and provide accuracy com-
parable to custom algorithms. This paper presents Univ-
Mon, a framework for flow monitoring which leverages re-
cent theoretical advances and demonstrates that it is possible
to achieve both generality and high accuracy. UnivMon uses
an application-agnostic data plane monitoring primitive; dif-
ferent (and possibly unforeseen) estimation algorithms run
in the control plane, and use the statistics from the data plane
to compute application-level metrics. We present a proof-
of-concept implementation of UnivMon using P4 and de-
velop simple coordination techniques to provide a “one-big-
switch” abstraction for network-wide monitoring. We eval-
uate the effectiveness of UnivMon using a range of trace-
driven evaluations and show that it offers comparable (and
sometimes better) accuracy relative to custom sketching so-
lutions across a range of monitoring tasks.

CCS Concepts
•Networks → Network monitoring; Network measure-
ment;

Keywords
Flow Monitoring, Sketching, Streaming Algorithms
Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22–26, 2016, Florianopolis, Brazil
c© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934906

1 Introduction
Network management is multi-faceted and encompasses a
range of tasks including traffic engineering [11, 32], attack
and anomaly detection [49], and forensic analysis [46]. Each
such management task requires accurate and timely statis-
tics on different application-level metrics of interest; e.g., the
flow size distribution [37], heavy hitters [10], entropy mea-
sures [38, 50], or detecting changes in traffic patterns [44].

At a high level, there are two classes of techniques to esti-
mate these metrics of interest. The first class of approaches
relies on generic flow monitoring, typically with some form
of packet sampling (e.g., NetFlow [25]). While generic flow
monitoring is good for coarse-grained visibility, prior work
has shown that it provides low accuracy for more fine-grained
metrics [30, 31, 43]. These well-known limitations of sam-
pling motivated an alternative class of techniques based on
sketching or streaming algorithms. Here, custom online al-
gorithms and data structures are designed for specific met-
rics of interest that can yield provable resource-accuracy trade-
offs (e.g., [17, 18, 20, 31, 36, 38, 43]).

While the body of work in data streaming and sketching
has made significant contributions, we argue that this trajec-
tory of crafting special-purpose algorithms is untenable in
the long term. As the number of monitoring tasks grows, this
entails significant investment in algorithm design and hard-
ware support for new metrics of interest. While recent tools
like OpenSketch [47] and SCREAM [41] provide libraries to
reduce the implementation effort and offer efficient resource
allocation, they do not address the fundamental need to de-
sign and operate new custom sketches for each task. Fur-
thermore, at any given point in time the data plane resources
have to be committed (a priori) to a specific set of metrics
to monitor and will have fundamental blind spots for other
metrics that are not currently being tracked.

Ideally, we want a monitoring framework that offers both
generality by delaying the binding to specific applications
of interest but at the same time provides the required fidelity
for estimating these metrics. Achieving generality and high
fidelity simultaneously has been an elusive goal both in the-
ory [33] (Question 24) as well as in practice [45].

In this paper, we present the UnivMon (short for Univer-
sal Monitoring) framework that can simultaneously achieve
both generality and high fidelity across a broad spectrum of
monitoring tasks [31, 36, 38, 51]. UnivMon builds on and

101

extends recent theoretical advances in universal streaming,
where a single universal sketch is shown to be provably ac-
curate for estimating a large class of functions [15, 16, 19,
21, 22]. In essence, this generality can enable us to delay
the binding of the data plane resources to specific monitor-
ing tasks, while still providing accuracy that is comparable
(if not better) than running custom sketches using similar re-
sources.

While our previous position paper suggested the promise
of universal streaming [39], it fell short of answering several
practical challenges, which we address in this paper. First,
we demonstrate a concrete switch-level realization of Uni-
vMon using P4 [12], and discuss key implementation chal-
lenges in realizing UnivMon. Second, prior work only fo-
cused on a single switch running UnivMon for a specific
feature (e.g., source addresses) of interest, whereas in prac-
tice network operators want a panoramic view across multi-
ple features and across traffic belonging to multiple origin-
destination pairs. To this end, we develop lightweight-yet-
effective coordination techniques that enable UnivMon to ef-
fectively provide a “one big switch” abstraction for network-
wide monitoring [34], while carefully balancing the moni-
toring load across network locations.

We evaluate UnivMon using a range of traces [1, 2] and
operating regimes and compare it to state-of-art custom sketch-
ing solutions based on OpenSketch [47]. We find that for a
single network element, UnivMon achieves comparable ac-
curacy, with an observed error gap ≤ 3.6% and average er-
ror gap ≤ 1%. Furthermore, UnivMon outperforms OpenS-
ketch in the case of a growing application portfolio. In a
network-wide setting, our coordination techniques can re-
duce the memory consumption and communication with the
control plane by up to three orders of magnitude.

Contributions and roadmap: In summary, this paper makes
the following contributions:
• A practical architecture which translates recent theoretical

advances to serve as the basis for a general-yet-accurate
monitoring framework (§3, §4).
• An effective network-wide monitoring approach that pro-

vides a one-big switch abstraction (§5).
• A viable implementation using emerging programmable

switch architectures (§6).
• A trace-driven analysis which shows that UnivMon pro-

vides comparable accuracy and space requirements com-
pared to custom sketches (§7).
We begin with background and related work in the next

section. We highlight outstanding issues and conclude in §8.

2 Background and Related Work
Many network monitoring and management applications de-
pend on sampled flow measurements from routers (e.g., Net-
Flow or sFlow). While these are useful for coarse-grained
metrics (e.g., total volume) they do not provide good fidelity
unless these are run at very high sampling rates, which is
undesirable due to compute and memory overhead.

This inadequacy of packet sampling has inspired a large

body of work in data streaming or sketching. This derives
from a rich literature in the theory community on stream-
ing algorithms starting with the seminal “AMS” paper [9]
and has since been an active area of research (e.g., [19, 24,
26, 28]). At the high level, the problem they address is as
follows: Given an input sequence of items, the algorithm
is allowed to make a single or constant number of passes
over the data stream while using sub-linear (usually poly-
logarithmic) space compared to the size of the data set and
the size of the dictionary. The algorithm then provides an ap-
proximate estimate of the desired statistical property of the
stream (e.g., mean, median, frequency moments). Streaming
is a natural fit for network monitoring and has been applied
to several tasks including heavy hitter detection [31], entropy
estimation [38], change detection [36], among others.

A key limitation that has stymied the practical adoption of
streaming approaches is that the algorithms and data struc-
tures are tightly coupled to the intended metric of interest.
This forces vendors to invest time and effort in building spe-
cialized algorithms, data structures, and corresponding hard-
ware without knowing if these will be useful for their cus-
tomers. Given the limited resources available on network
routers and business concerns, it is difficult to support a wide
spectrum of monitoring tasks in the long term. Moreover, at
any instant the data plane resources are committed before-
hand to the application-level metrics and other metrics that
may be required in the future (e.g., as administrators start
some diagnostic tasks and require additional statistics) will
fundamentally not be available.

The efforts closest in spirit to our UnivMon vision is the
minimalist monitoring work of Sekar et al. [45] and OpenS-
ketch by Yu et al., [47]. Sekar et al. showed empirically
that flow sampling and sample-and-hold [31] can provide
comparable accuracy to sketching when equipped with sim-
ilar resources. However, this work offers no analytical basis
for this observation and does not provide guidelines on what
metrics are amenable to this approach.

OpenSketch [47] addresses an orthogonal problem of mak-
ing it easier to implement sketches. Here, the router is equipped
with a library of predefined functions in hardware (e.g., hash-
maps or count-min sketches [26]) and the controller can re-
program these as needed for different tasks. While OpenS-
ketch reduces the implementation burden, it still faces key
shortcomings. First, because the switches are programmed
to monitor a specific set of metrics, there will be a fundamen-
tal lack of visibility into other metrics for which data plane
resources have not been committed, even if the library of
functions supports those tasks. Second, to monitor a portfo-
lio of tasks, the data plane will need to run many concurrent
sketch instances, which increases resource requirements.

In summary, prior work presents a fundamental dichotomy:
generic approaches that offer poor fidelity and are hard to
reason about analytically vs. sketch-based approaches that
offer good guarantees but are practically intractable given
the wide range of monitoring tasks of interest.

Our recent position paper makes a case for a “RISC” ap-
proach for monitoring [39], highlighting the promise of re-
cent theoretical advances in universal streaming [19,21]. How-

102

3.	 Metric	 Estimation

App	 1

Manifest computation

UnivMon
Control
Plane

UnivMon
Data
Plane

App	 2 App	 N

Topology
Routing	

#Sketches,
Dimension,
Memory

1. Distribute
Manifests

2.	 Collect	 Sketch	 counters

…

Figure 1: Overview of UnivMon: The data plane
nodes perform the monitoring operations and report
sketch summaries to the control plane which calculates
application-specific metric estimates.

ever, this prior work fails to address several key practical
challenges. First, it does not discuss how these primitives
can actually be mapped into switch processing pipelines. In
fact, we observe that the data-control plane split that they
suggest is impractical to realize as they require expensive
sorting/sifting primitives (see §6). Second, this prior work
takes a narrow single-switch perspective. As we show later,
naively extending this to a network-wide context can result
in inefficient use of compute resources on switches and/or
result in inaccurate estimates (see §5). This paper develops
network-wide coordination schemes and demonstrate an im-
plementation in P4 [12]. Further, we show the fidelity of
UnivMon on a broader set of traces and metrics.

3 UnivMon architecture
In this section, we provide a high-level overview of the Uni-
vMon framework. We begin by highlighting the end-to-end
workflow to show the interfaces between (a) the UnivMon
control plane and the management applications and (b) be-
tween the UnivMon control and data plane components. We
discuss the key technical requirements that UnivMon needs
to satisfy and why these are challenging. Then, we briefly
give an overview of the control and data plane design to set
up the context for the detailed design in the following sec-
tions.1

Figure 1 shows an end-to-end view of the UnivMon frame-
work. The UnivMon data plane nodes run general-purpose
monitoring primitives that process the incoming stream of
packets it sees and maintains a set of counter data structures
associated with this stream. The UnivMon control plane as-
signs monitoring responsibilities across the nodes. It peri-
odically collects statistics from the data plane, and estimates
the various application-level metrics of interest.

Requirements and challenges: There are three natural re-
quirements that UnivMon should satisfy:
• [R1.] Fidelity for a broad spectrum of applications: Ide-

ally UnivMon should require no prior knowledge of the

1We use the terms routers, switches, and nodes interchange-
ably.

set of metrics to be estimated, and yet offer strong guar-
antees on accuracy.
• [R2.] One-big-switch abstraction for monitoring: There

may be several network-wide management tasks interested
in measuring different dimensions of traffic; e.g., source
IPs, destination ports, IP 5-tuples. UnivMon should pro-
vide a “one big switch” abstraction for monitoring to the
management applications running atop UnivMon, so that
the estimates appear as if all the traffic entering the net-
work was monitored at a giant switch [34].
• [R3.] Feasible implementation roadmap: While pure soft-

ware solutions (e.g., Open vSwitch [42]) may be valu-
able in many deployments, for broader adoption and per-
formance requirements, the UnivMon primitives used to
achieve [R1] and [R2] must have a viable implementation
in (emerging) switch hardware [12, 13].
Given the trajectory of prior efforts that offer high gener-

ality and low fidelity (e.g, packet sampling) vs. low general-
ity and high fidelity (e.g., custom sketches), [R1] may appear
infeasible. To achieve [R2], we observe that if each router
acts on the traffic it observes independently, it can become
difficult to combine the measurements and/or lead to signif-
icant imbalance in the load across routers. Finally, for [R3],
we note that even emerging flexible switches [3,12,13] have
constraints on the types of operations that they can support.

Approach Overview: Next, we briefly outline how the Uni-
vMon control and data plane designs address these key re-
quirements and challenges:
• UnivMon data plane: The UnivMon plane uses sketching

primitives based on recent theoretical work on universal
streaming [19, 21]. By design, these so-called universal
sketches require no prior knowledge of the metrics to be
estimated. More specifically, as long as these metrics sat-
isfy a series of statistical properties discussed in detail in
§4, we can prove theoretical guarantees on the memory-
accuracy tradeoff for estimating these metrics in the con-
trol plane.
• UnivMon control plane: Given that the data plane sup-

ports universal streaming, the control plane needs no ad-
ditional capabilities w.r.t. [R1] once it collects the sketch
information from the router. It runs simple estimation al-
gorithms for every management application of interest as
we discuss in §4 and provides simple APIs and libraries
for applications to run estimation queries on the collected
counters. To address [R2], the UnivMon control plane
generates sketching manifests that specify the monitoring
responsibility of each router. These manifests specify the
set of universal sketch instances for different dimensions
of interest (e.g., for source IPs, for 5-tuples) that each
router needs to maintain for different origin-destination
(OD) pair paths that it lies on. This assignment takes
into account the network topology and routing policies
and knowledge of the hardware resource constraints of its
network elements.
In the following sections, we begin by providing the back-

ground on universal streaming that forms the theoretical ba-

103

sis for UnivMon. Then, in §5, we describe the network-
wide coordination problem that the UnivMon control plane
solves. In §6, we show how we implement this design in
P4 [7, 12].

4 Theoretical Foundations of UnivMon
In this section, we first describe the theoretical reasoning be-
hind universal streaming and the class of supported func-
tions [19, 21]. Then, we present and explain the underlying
algorithms from universal streaming which serve as a basis
for UnivMon. We also show how several canonical network
monitoring tasks are amenable to this approach.

4.1 Theory of Universal Sketching
For the following discussion, we consider an abstract stream
D(m,n) of length m with n unique elements. Let fi denote
the frequency of the i-th unique element in the stream.

The intellectual foundations of many streaming algorithms
can be traced back to the celebrated lemma by Johnson and
Lindenstrauss [27]. This shows that N points in Euclidean
space can be embedded into another Euclidean space with an
exponentially smaller dimension while approximately pre-
serving the pairwise distance between the points. Alon, Ma-
tias, and Szegedy used a variant of the Johnson-Lindenstrauss
lemma to approximately compute the second moment of the
frequency vector =

∑
i f

2
i (or the L2 norm =

√∑
i f

2
i) in

the streaming model [9], using a small (polylogarithmic)
amount of memory. The main question that universal stream-
ing seeks to answer is whether such methods can be extended
to more general statistics of the form

∑
g(fi) for an arbi-

trary function g. We refer to this statistic as the G-sum .

Class of Stream-PolyLog Functions: Informally, streaming
algorithms which have polylogarithmic space complexity,
are known to exist for G-sum functions, where g is mono-
tonic and upper bounded by the function O(f2i) [14, 19].2

Note that this only guarantees that some (possibly custom)
sketching algorithm exists if G-sum ∈ Stream-PolyLog and
does not argue that a single “universal” sketch can compute
all such G-sums.

Intuition Behind Universality: The surprising recent the-
oretical result of universal sketches is that for any function
g() where G-sum belongs to the class Stream-PolyLog de-
fined above can now be computed by using a single universal
sketch.

The intuition behind universality stems from the follow-
ing argument about heavy hitters in the stream. Informally,
item i is a heavy hitter w.r.t. g if changing its frequency fi
significantly affects the G-sum value as well. For instance,
consider the frequency vector (

√
n, 1, 1, . . . , 1) of size n;

here the first item is a L2 heavy hitter since its frequency
is a large fraction of the L2 norm of the frequency vector.
2This is an informal explanation; the precise characteriza-
tion is more technically involved and can be found in [19].
While streaming algorithms are also known for G-sum
when its g grows monotonically faster than f2i [17] they can-
not be computed in polylogarithmic space due to the lower
bound Ω(n1−2/k) where k > 2 [23].

For function g, let G-core be the set containing g-heavy el-
ements. g-heavy elements can be defined as, for 0 < γ < 1,
any element i ∈ [n] such that g(fi) > γ

∑
j g(fj).

Now, let us consider two cases:

1. There is one sufficiently large g-heavy hitter in the stream:
If the frequency vector has one (sufficiently) large heavy
hitter, then most of mass is concentrated in this value.
Now, it can be shown that a heavy hitter for the L2 norm
of the frequency vector is also a heavy hitter for com-
putable g [14, 19]. Thus, to compute G-core, we can
simply find L2 heavy hitters (L2-HH) using some known
techniques (e.g., [9, 24]) and use it to estimate G-sum .

2. There is no single g-heavy hitter in the stream and no sin-
gle element contributes significantly to the G-sum:
When there is no single large heavy hitter, it can be shown
that G-sum can be approximated w.h.p. by finding heavy
hitters on a series of sampled substreams of increasingly
smaller size. The exact details are beyond the scope of
this paper [19] but the main intuition comes from tail
bounds (Chernoff/Hoeffding). Each substream is defined
recursively by the substream before it, and is created by
sampling the previous frequency vector by replacing each
coordinate of the frequency vector with a zero value with
probability 0.5. Repeating this procedure k times reduces
the dimensionality of the problem by a factor of 2k. Then,
summing across heavy hitters of all these recursively de-
fined vectors, we create a single “recursive sketch” which
gives a good estimate of G-sum [21].

4.2 Algorithms for Universal Sketching
Using the intuition from the two cases described above, we
now have the following universal sketch construction using
an online sketching stage and an offline estimation stage.
The proof of the theorems governing the behavior of these
algorithms is outside the scope of this paper and we refer
readers to the previous work of Braverman et al [19, 21].
In this section, we focus on providing a conceptual view
of the universal sketching primitives. As we will discuss
later, the actual data plane and control plane realization will
be slightly different to accommodate switch hardware con-
straints (see §6).

In the online stage, as described in Algorithm 1, we main-
tain log(n) parallel copies of a “L2-heavy hitter” (L2-HH)
sketch (e.g., [24]), one for each substream as described in
case 2 above. For the jth parallel instance, the algorithm
processes each incoming packet 5-tuple and uses an array
of j pairwise independent hash functions hi : [n] → {0, 1}
to decide whether or not to sample the tuple. When 5-tuple
tup arrives in the stream, if for all h1 to hj , hi(tup) = 1,
then the tuple is added to Dj , the sampled substream. Then,
for substream Dj , we run an instance of L2-HH as shown
in Algorithm 1, and visualized in Figure 2. Each L2-HH in-
stance outputs Qj that contains L2 heavy hitters and their
estimated counts from Dj . This creates substreams of de-
creasing lengths as the j-th instance is expected to have all
of the hash functions agree to sample half as often as the
(j − 1)-th instance. This data structure is all that is required

104

Figure 2: High-level view of universal sketch

Algorithm 1 UnivMon Online Sketching Step
Input: Packet stream D(m,n) = {a1, a2, . . . , am}

1. Generate log(n) pairwise independent hash func-
tions h1 . . . hlog(n) : [n]→ {0, 1}.

2. Run L2-HH sketch on D and maintain HH set Q0.

3. For j = 1 to log(n), in parallel:

(a) when a packet ai in D arrives, if all h1(ai) ×
h2(ai) · · · × hj(ai) = 1, sample and add ai to
sampled substream Dj .3

(b) Run L2-HH sketch on Dj and maintain heavy
hitters Qj

Output: Q = {Q0, . . . , Qlog(n)}

for the online portion of our approach.
In the offline stage, we use Algorithm 2 to combine the

results of the parallel copies of Algorithm 1 to estimate dif-
ferent G-sum functions of interest. This method is based on
the Recursive Sum Algorithm from [21]. The input to this
algorithm is the output of Algorithm 1; i.e., a set of {Qj}
buckets maintained by the L2-HH sketch from parallel in-
stance j. Let wj(i) be the counter of the i-th bucket (heavy
hitter) in Qj . hj(i) is the hash of the value of the i-th bucket
in Qj where hj is the hash function described in Algorithm
1 Step 1. It can be shown that the output of Algorithm 2 is
an unbiased estimator of G-sum [19, 21]. In this algorithm,
each Y is recursively defined, where Yj is function g ap-
plied to each bucket of Qj , the L2-HH sketch for substream
Dj , and the sum taken on the value of those buckets and all
Yj′ , j

′ > j. Note that Qlog(n) is the set of heavy hitters from
the sparsest substreamDlog(n) in Algorithm 1, and we begin
by computing Ylog(n). Thus, Y0 can be viewed as computing
G-sum in parts using these sampled streams.

The key observation here is that the online component,
Algorithm 1, which will run in the UnivMon data plane is
agnostic to the specific choice of g in the offline stage. This
is in stark contrast to custom sketches where the online and
offline stages are both tightly coupled to the specific statistic
we want to compute.

4.3 Application to Network Monitoring
As discussed earlier, if a functionG-sum ∈ Stream-PolyLog,
then it is amenable to estimation via the universal sketch.
Next, we show that a range of network measurement tasks
can be formulated via a suitable G-sum ∈ Stream-PolyLog.
3In this way, we obtain log(n) streams D1, D2 . . . Dlog(n);
i.e., for j = 1 . . . log n, the number of unique items n in
Dj+1, is expected to be half of Dj .

Algorithm 2 UnivMon Offline Estimation Algorithm
Input: Set of heavy hitters Q = {Q0, . . . , Qlog(n)}

1. For j = 0 . . . log(n), call g() on all counters wj(i) in
Qj . After g(), the i-th entry in Qj is g(wj(i)).

2. Compute Ylog(n) =
∑
i g(wlog(n)(i)).

3. For each j from log(n)− 1 to 0, compute:

Yj=2Yj+1+
∑
i∈Qj

(1-2hj+1(i)) g(wj(i))

Output: Y0

For the following discussion, we consider network traffic as
a stream D(n,m) with m packets and at most n unique
flows. When referring to the definitions of Heavy Hitters,
note that L2 heavy hitters are a stronger notion that sub-
sumes L1 heavy hitters.

Heavy Hitters: To detect heavy hitters in the network traf-
fic, our goal is to identify the flows that consume more than
a fraction γ of the total capacity [31]. Consider a function
g(x) = x such that the corresponding G-core outputs a list
of heavy hitters with(1± ε)-approximation of their frequen-
cies. For this case, these heavy hitters are L1-heavy hitters
and g(x) is upperbounded by x2. Thus we have an algorithm
that provides G-core. This is technically a special case of
the universal sketch; we are not ever computing a G-sum
function and using G-core directly in all cases.

DDoS Victim Detection: Suppose we want to identify if
a host X is experiencing a Distributed Denial of Service
(DDoS) attack. We can do so using sketching by check-
ing if more than k unique flows from different sources are
communication with X [47]. To show that the simple DDoS
victim detection problem is solvable by the universal sketch,
consider a function g that g(x) = x0 and g(0) = 0. Here
g is upper bounded by f(x) = x2 and sketches already ex-
ist to solve this exact problem. Thus, we know G-sum is
in Stream-PolyLog and we approximate G-sum in polylog-
arithmic space using the universal sketch. In terms of in-
terpreting the results of this measurement, if G-sum is esti-
mated to be larger than k, a specific host is a potential DDoS
victim.

Change Detection: Change detection is the process of iden-
tifying flows that contribute the most to traffic change over
two consecutive time intervals. As this computation takes
place in the control plane, we can store the output of the
universal sketches from multiple intervals without impact-
ing online performance. Consider two adjacent time inter-
vals tA and tB . If the volume for a flow x in interval tA
is SA[x] and SB [x] over interval tB . The difference signal
for x is defined as D[x] = |SA[x] − SB [x]|. A flow is a
heavy change flow if the difference in its signal exceeds φ
percentage of the total change over all flows. The total dif-
ference is D =

∑
x∈[n]D[x]. A flow x is defined to be a

heavy change iff D[x] ≥ φ ·D. The task is to identify these
heavy change flows. We assume the size of heavy change
flows is above some threshold T over the total capacity c.
We can show that the heavy change flows are L1 heavy hit-
ters on interval tA (a1 · · · an/2) and interval tB (b1 · · · bn/2),

105

where L1(tA, tB) =
∑
|ai − bi|. G-sum here is L1 norm,

which belongs to Stream-PolyLog, andG-core can be solved
by universal sketch. The G-sum outputs the estimated size
of the total change D and G-core outputs the possible heavy
change flows. By comparing the outputs from G-sum and
G-core, we can detect and determine the heavy change flows
that are above some threshold of all flows.

Entropy Estimation: We define entropy with the expres-
sionH ≡ −

∑n
i=1

fi
m log(fim) [38] and we define 0 log 0 = 0

here. The entropy estimation task is to estimateH for source
IP addresses (but could be performed for ports or other fea-
tures). To compute the entropy, H = −

∑n
i=1

fi
m log(fim) =

log(m) − 1
m

∑
i fi log(fi). As m can be easily obtained,4

the difficulty lies in calculating
∑
i fi log(fi). Here the func-

tion g(x) = x log(x) is bounded by g(x) = x2 and thus its
G-sum is in Stream-PolyLog andH can be estimated by uni-
versal sketch.

Global Iceberg Detection: Consider a system or network
that consists of N distributed nodes (e.g., switches). The
data set Sj at node j contains a stream of tuples < itemid ,
c>where itemid is an item identity from a setU = {µ1 . . . µn}
and c is an incremental count. For example, an item can
be a packet or an origin-destination (OD) flow. We define
fr i =

∑
j

∑
<µi,c>∈Sj

c, the frequency of the item µi when
aggregated across all the nodes. We want to detect the pres-
ence of items whose total frequency across all the nodes
adds up to exceed a given threshold T . In other words, we
would like to find out if there exists an element µi ∈ U
such that fr i ≥ T . (In §5, we will explain a solution to
gain a network-wide universal sketch. Here, we assume here
that we maintain an abstract universal sketch across all nodes
by correctly combining all distributed sketches.) Consider a
function g(x) = x such that the corresponding G-core out-
puts a list of global heavy hitters with(1±ε)−approximation
of their frequencies. For this case, since g-heavy hitters are
L1 heavy hitters, we have an algorithm that providesG-core.

5 Network-wide UnivMon
In a network-wide context, we have flows from several origin-
destination (OD) pairs, and applications may want network-
wide estimates over multiple packet header combinations
of interest. For instance, some applications may want per-
source IP estimates, while others may want characteristics
in terms of the entire IP-5-tuple. We refer to these different
packet header features and feature-combinations as dimen-
sions.

In this section, we focus on this network-wide monitor-
ing problem of measuring multiple dimensions of interest
traversing multiple OD-pairs. Our goal is to provide equiva-
lent coverage and fidelity to a “one big switch abstraction”,
providing the same level of monitoring precision at the net-
work level as at the switch level. We focus mostly for the
case where each OD-pair has a single network route and de-
scribe possible extensions to handle multi-pathing.

4e.g., a single counter or estimated as a G-sum .

Figure 3: Example topology to explain the one-big-
switch notion and to compare candidate network-wide
solutions

5.1 Problem Scope
We begin by scoping the types of network-wide estimation
tasks we can support and formalize the one-big-switch ab-
straction that we want to provide in UnivMon. To illustrate
this, we use the example in Figure 3 where we want to mea-
sure statistics over two dimensions of interest: 5-tuple and
source-IP.

In this example, we have four OD-pairs; suppose the set
of traffic flows on each of these is denoted by P11, P12, P21,
and P22. We can divide the traffic in the network into four
partitions, one per OD-pair. Now, imagine we abstract away
the topology and consider the union of the traffic across these
partitions flowing through one logical node representing the
entire network; i.e., computing some estimation function
F (P11] P12] P21] P22), where] denotes the disjoint set
union operation.

For this work, we restrict our discussion to network-wide
functions where we can independently compute the F esti-
mates on each OD-pair substream and add them up. In other
words, we restrict our problem scope to estimation functions
F s such that:

F (P11]P12]P21]P22) = F (P11)+F (P12)+F (P21)+F (P22)

Note that this still captures a broad class of network-wide
tasks such as those mentioned in section 4.3. One such ex-
ample measurement is finding heavy hitters for destination
IP addresses. An important characteristic of the UnivMon
approach is that in the network-wide setting the output of
sketches in the data plane can then be added together in the
control plane to give the same results as if all of the packets
passed through one switch. The combination of the sepa-
rate sketches is a property of the universal sketch primitive
used in the data plane and is independent of the final statistic
monitored in the control plane, allowing the combination to
work for all measurements supported by UnivMon. We do
however acknowledge that some tasks fall outside the scope

106

of this partition model; an example statistic that is out of
scope would be measuring the statistical independence of
source and destination IP address pairs (i.e. if a source IP is
likely to appear with a given destination IP, or not), as this in-
troduces cross-OD-pair dependencies. We leave extensions
to support more general network-wide functions for future
work (see §8).

The challenge here is to achieve correctness and efficiency
(e.g., switch memory, controller overhead) while also bal-
ancing the load across the data plane elements. Informally,
we seek to minimize the total number of sketches instanti-
ated in the network and the maximum number of sketches
that any single node needs to maintain.

5.2 Strawman Solutions and Limitations
Next, we discuss strawman strategies and argue why these
fail to meet one or more of our goals w.r.t. correctness, effi-
ciency, and load balancing. We observe that we can combine
the underlying sketch primitives at different switches as long
as we use the same random seeds for our sketches, as the
counters are additive at each level of the UnivMon sketch.
With this, we only need to add the guarantee that we count
each packet once to assure correctness. In terms of resource
usage, our goal is to minimize the number of sketches used.

Redundant Monitoring (RM): Suppose for each of k di-
mensions of interest, we maintain a sketch on every node,
with each node independently processing traffic for the OD-
pairs whose paths it lies on. Now, we have the issue of com-
bining sketches to get an accurate network-wide estimate. In
particular, adding all of the counters from the sketches would
be incorrect, as packets would be counted multiple times. In
the example topology, to correctly count packets we would
need to either only use the sketches atA orB, or, conversely,
combine the sketches for source IP at O1 and O2 or D1 and
D2. In terms of efficiency, this RM strategy maintains a
sketch for all k dimensions at each node and thus we main-
tain a total of kN sketches across N nodes. Our goal, is to
maintain s total sketches, where s << kN .

Ingress Monitoring (IM): An improvement over the RM
method is to have only ingress nodes maintaining every sketch.
Thus, for each OD pair, all sketch information is maintained
in a single node. By not having duplicate sketches per OD
pair, we will not double count and therefore can combine
sketches together. This gives us the correctness guarantee
missing in RM. In Figure 3, IM would maintain sketches at
O1 and O2. However, for Ni ingress nodes, we would run
kNi sketches, and if Ni ≈ N we spend a similar amount
of resources to RM, which is still high. Additionally, these
sketches woul be would all be present on a small number of
nodes, where other nodes with available compute resources
would not run any sketches.

Greedy Divide and Conquer (GDC): To overcome the
concentration of sketches in IM above, one potential solution
is to evenly divide sketch processing duties across the path.
Specifically, each node has a priority list of sketches, and
tags packets with the current sketches that are already main-
tained for this flow so that downstream nodes know which

remaining sketches to run. For instance, in Figure 3, GDC
would maintain the source IP sketch at O1 and O2, and the
5-tuple sketch at A. This method is correct, as each sketch
for each OD pair is maintained once. However, it is difficult
to properly balance resources as nodes at the intersection of
multiple paths could be burdened with higher load.
Reactive Query and Sketch (QS): An alternative approach
is to use the controller to ensure better sketch assignment.
For instance, whenever a new flow is detected at a node, we
query the controller to optimally assign sketches. In Figure
3, the controller would optimally put the source IP sketch
at A and the 5-tuple sketch at B (or vice versa). With this
method, we can be assured of correctness. However, the
reactive nature means that QS generates many requests to
the controller.

5.3 Our Approach
Next, we present our solution, which uses the UnivMon con-
troller to coordinate switches to guarantee correctness and
efficiency but without incurring the reactive query load of
the QS strategy described above.

Periodically, the UnivMon controller gives each switch a
sketching manifest. For each switch A and for each OD-
pair’s route that A lies on, the manifest specifies the dimen-
sions for whichA needs to maintain a sketch. When a packet
arrives at a node, the node uses the manifest to determine
the set of sketching actions to apply. When the controller
needs to compute a network-wide estimate, we pull sketches
from all nodes and for each dimension, combine the sketches
across the network for that dimension. This method mini-
mizes communication to the control plane while still making
use of the controller’s ability to optimize resource use.

The controller solves a simple constrained optimization
problem that we discuss below. Note that maintaining two
sketches uses much more memory than adding twice as many
elements to one sketch. Thus, a key part of this optimiza-
tion is to ensure that we try to reuse the same sketch for a
given dimension across multiple OD pairs. In Figure 3, we
would first assign A the source IP sketch, then B the 5-tuple
sketch for the OD pair (O1, D1). When choosing where to
place the sketches for the OD pair (O2, D2), the algorithm
matches the manifests such that the manifest for (O2, D2)
uses the source IP sketch already at A and the 5-tuple sketch
already at B.

We formulate the controller’s decision to place sketches
as an integer linear program (ILP) shown in Figure 4. Let
sjk be a binary decision variable denoting if the switch j is
maintaining a sketch for dimension j. The goal of the op-
timization is to ensure that every OD-pair is suitably “cov-
ered” and that the load across the switches is balanced. Let
rk be the amount of memory for a sketch for dimension k
and let R denote maximum amount of memory available on
a single node. Note that the amount of memory for a sketch
can be chosen in advance based on the accuracy required.
As a simple starting point, we focus primarily on the mem-
ory resource consumption assuming that all UnivMon opera-
tions can be done at line-rate; we can extend this formulation
to incorporate processing load as well.

107

Minimize: N ×Maxload + Sumload , subject to

∀i, k :
∑
j∈pi

sjk ≥ 1 (1)

∀j : Load j =
∑
k

rk × sjk (2)

∀j :
∑

sjkrk ≤ R (3)

∀j : Maxload ≥ Load j (4)

∀j : Sumload =
∑
j

Load j (5)

Figure 4: ILP to compute sketching manifests
Eq (1) captures our coverage constraint that we maintain

each sketch once for each OD-pair.5 We model the per-node
load in Eq (2) and ensure that it respects the router capac-
ity in Eq (3). Our objective function balances two compo-
nents: the maximum load that any one node faces and the
total number of sketches maintained.6

5.4 Extension to Multi-path

Figure 5: Example topology to showcase difficulty of
multi-path

Adapting the above technique to multi-path requires some
modification, but is feasible. For simplicity, we still as-
sume that packets are routed deterministically (e.g., by pre-
fix rules), but may have multiple routes. We defer settings
that depend on randomized or non-deterministic routing for
future work.

Even in this deterministic setting, there are two potential
problems. First, ensuring packets are only counted once is
important to avoid false positives, as in the single path case.
Second, if the packets with a heavy feature (e.g., the desti-
nation address is heavy) are divided over many routes, it can
increase the difficulty of accurately finding heavy hitters, re-
moving false positives and preventing false negatives.

The first issue, guaranteeing packets are counted only once,
is solvable by the ILP presented above. For each path used
by an OD pair, we create a unique sub-pair which we treat
as an independent OD pair. This is shown in Figure 5 by the
5Our coverage constraint allows multiple sketches of the
same kind to be placed in the same path. This is because
in some topologies, it may not be feasible to have an equal-
ity constraint. In this case, the controller post-processes the
solution and removes duplicates before assigning sketches
for a given OD pair.
6The N term for MaxLoad helps to normalize the values.

red O1-D1 path and the blue O1-D1 path. By computing the
ILP with multiple paths per OD pair as needed, sketches are
distributed across nodes, and single counting is guaranteed.
This method works best when the total number of paths per
OD pair is constant relative to the total number of nodes, and
larger numbers of paths will cause the sketches to concen-
trate on the source or destination nodes, possibly requiring
additional solutions.

The second issue occurs when multi-path routing causes
the frequency of an item to be split between too many sketches.
In the single-path setting, if an OD pair has a globally heavy
feature, then it will be equally heavy or heavier in the sketch
where it is processed. However in the multi-path case, it is
possible for some OD pairs to have more paths than others,
and thus it becomes possible for items that are less frequent
but have fewer routes to be incorrectly reported heavy, and in
turn fail to report true heavy elements in the control plane.
This problem is shown in Figure 5. In this case, we have
10,000 packets from node O1 to D1 split across two paths,
and 6,000 packets from O2 to D2. For simplicity, assume
we are only looking for the "heaviest" source IP, the source
IP with the highest frequency, and that the nodes have a sin-
gle IP address, (i.e. Packets go from IPO1

to IPD1
and IPO1

IPD2
). For this metric, the sketch at A will report IPO1

as
a heavy source address with count 5,000, and B will report
IPO2

as a heavy source address with count 6,000. At the data
plane these values are compared again, and the algorithm
would return IPO2

, a false positive, and miss IPO1
, a false

negative. To solve this issue, instead of sending the heavy
hitter report from individual sketches as described in Algo-
rithm 1, the counters from each sketch must be sent directly
to the control plane to be added, reconstructing the entire
sketch and allowing the correct heavy hitters to be identi-
fied. In our example, the counters for the O1 at A and B
would be added, and IPO1

would be correctly identified as
the heavy hitter. This approach is already used in the P4
implementation discussed below, but is not a requirement of
UnivMon in general. We note that when using the method
described below in Section 6.2, identifying the true IP ad-
dress of the heavy item is harder in the multi-path setting,
but is solved by increasing γ relative to the maximum num-
ber of sketches per true OD pair, which is naturally limited
by the ILP. With these modifications, the heavy hitters are
correctly found from the combined sketch, and the one big
switch abstraction are maintained in a multi-path setting.

6 UnivMon Implementation
In this section, we discuss our data plane implementation in
P4 [7, 12]. We begin by giving an overview of key design
tradeoffs we considered. Then, we describe how we map
UnivMon into corresponding P4 constructs.

6.1 Implementation overview
At a high level, realizing the UnivMon design described in
the previous sections entails four key stages:

1. A sampling stage which decides whether an incoming
packet will be added to a specific substream.

108

Sampling Sketching Top-k HH App-Estimation
Implementation Stages

Option 1 Option 2

S Sk Top-k App
Data Plane Control Plane

S Sk Top-k App
Data Plane Control Plane

Pros: Storage - CommOverhead
Cons: HW Complexity

table sampling1 {
actions {

sample_1;
}

} table Sket_1 {
actions {

sket_1;
}

}
Figure 6: An illustration of UnivMon’s stages along with
the two main implementation options.

2. A sketching stage which calculates sketch counters from
input substreams and populates the respective sketch counter
arrays.

3. A top-k computation stage which identifies (approximately)
the k heaviest elements of the input stream.

4. An estimation stage which collects the heavy element
frequencies and calculates the desired metrics.

Let us now map these stages to our data and control plane
modules from Figure 1. Our delayed binding principle im-
plies that the estimation stage maps to the UnivMon con-
trol plane. Since the sampling and sketching are processing
packets, they naturally belong in the data plane to avoid con-
trol plane overhead.

One remaining question is whether the top-k computation
stage is in the data or control plane (Figure 6). Placing the
top-k stage in the data plane has two advantages. First, the
communication cost between the data and control plane will
be low, as only the top-k rather than raw counters need to
be transferred. Second, the data plane only needs to keep
track of the flowkeys (e.g., source IP) of the k heaviest el-
ements at any given point in time, and thus not incur high
memory costs. However, one stumbling block is that real-
izing this stage requires (i) sorting counter values and (ii)
storing information about the heavy elements in some form
of a priority queue. Unfortunately, these primitives may be
hard to implement in hardware and are not supported in P4
yet. Thus, we make a pragmatic choice to split the top-k
stage between the control and the data planes. We identify
the top-k heavy flowkeys in the dataplane and then we use
the raw data counters to calculate their frequencies in the
control plane. The consequence is that we incur higher com-
munication overhead to report the raw counter data structure,
but the number of flowkeys stored in the data plane remains
low.

UnivMon’s raw counters and flowkeys are stored on the
target’s on-chip memory (TCAM and SRAM). We argue that
in practice the storage overhead of UnivMon is manageable
even for hardware targets with limited SRAM [4, 8, 47]. We
show that for the largest traces that we evaluate and with-
out losing accuracy, the total size of the raw counters can
be less than 600 KB whereas the cost of storing flowkeys

(assuming k is ≤ 20) is only a few KBs per measurement
epoch. Thus, this decision to split the top-k between the two
planes computation is practical and simplifies the data plane
requirements.

6.2 Mapping UnivMon data plane to P4
Based on the above discussion, the UnivMon data plane im-
plements sampling, sketching, and “heavy” flowkey storage
in P4. In a P4 program, packet processing is implemented
through Match+Action tables, and the control flow of the
program dictates the order in which these tables are applied
to incoming packets. Given the sketching manifests from
the control plane, we generate a control program that defines
the different pipelines that a packet needs to be assigned to.
These pipelines are specific to the dimension(s) (i.e., source
IP, 5-tuple) for which the switch needs to maintain a univer-
sal sketch. We begin by explaining how we implemented
these functions and then describe a sample control flow.

Sampling: P4 enables programmable calculations on spe-
cific header fields using user-defined functions. We use this
to sample incoming packets, with a configurable flowkey
that can be any subset of the 5-tuple (srcIP, dstIP, srcPort,
dstPort, protocol). We define l pairwise-independent hash
functions, where l is the number of levels from §4. These
functions take as input the flowkey and output a binary value.
We store this output bit as packet metadata. A packet is sam-
pled at level i if the outputs of the hash functions of all levels
≤ i is equal to 1. We implement sampling for each level as
a table that matches all packets and whose action is to apply
the sampling hash function of that level. The hash metadata
in the packets are used in conditional statements in the con-
trol flow to append the packet to the first i substreams. Pack-
ets that are not sampled are not subject to further UnivMon
processing.7

Sketching: The sketching stage is responsible for maintain-
ing counters for each one of the l substreams. From these
sketch counters, we can estimate the L2-HH for each stage
and then the overall top-k heavy hitters and their counts.
While UnivMon does not impose any constraints on the L2-
HH algorithm to be used, in our P4 implementation we use
Count Sketch [24]. The sketching computation for each level
is implemented as a table that matches every packet belong-
ing to that level’s substream and its actions update the coun-
ters, stored in the sketch counter arrays. Similar to the sam-
pling stage, we leverage user-defined hash functions that take
as input the same flowkey as in the sampling stage. We use
their output to retrieve the indexes of the sketch register ar-
rays cells that correspond to a particular packet and update
their value as dictated by the Count Sketch algorithm.

P4 provides a register abstraction which offers a form of
stateful memory that can store user-defined data and that
can be arranged into one dimensional arrays of user-defined
length. Register cells can be read or written by P4 action
statements and are also accessible through the control plane
API. Given that our goal is to store sketch counter values
7There may be other routing/ACL actions to be applied to
the packet but this is outside our scope.

109

which do not represent byte or packet counts, we use reg-
ister arrays to store and update sketch counters. The size of
the array and the bitlength of each array cell are user-defined
and can be varied based on the required memory-accuracy
tradeoff as well as on the available on-chip memory of the
hardware target. Each sketch is an array of t rows and w
columns. We instantiate register arrays of length t ∗ w, and
the bitlength of each cell is based on the maximum expected
value of a counter.

The one remaining issue is storing flowkeys correspond-
ing to the “heavy” elements since these will be needed by the
estimation stage running in the control plane. One option is
to use a priority queue to maintain the top k heavy hitters on-
line, as it is probably the most efficient and accurate choice
to maintain heavy flowkeys. However, this can incur more
than constant update time for each element, which makes
it difficult to implement on hardware switches. To address
the issue, we use an alternative approach which is to main-
tain a fixed sized table of heavy keys and use constant time
updates for each operation. It is practical and acceptable
when the size of the table is small (e.g., 10-50) and the ac-
tual number of heavy flows doesn’t greatly exceed this size.
The lookup/update operations could be very fast (in a single
clock cycle) when leveraging some special types of memory
(e.g., TCAM) on hardware switches.

Another scheme we use is as follows, and we leave im-
proved sketches for finding heavy flowkeys as future work.
For γ-threshold heavy hitters, there are at most 1/γ of them.
While packets are being processed, we maintain an up-to-
date L2 value (of the frequency vector), specifically L2 =
(L2

2 + (ci + 1)2 −(ci)
2)1/2, where ci is each flow’s current

count and we create log(1/γ) buckets of size k. In the online
stage, when updating the counters in L2-HH, ci is obtained
by reading current sketch counters.

We then maintain buckets marked with L2/2, L2/4, . . . ,
γL2. For each element that arrives, if its counter is greater
thanL2/2, insert it into theL2/2 bucket using a simple hash;
otherwise, if its counter is greater thanL2/4, insert it into the
L2/4 bucket, and so forth. When the value of L2 doubles
itself, we delete the last γL2 bucket and we add a new L2/2
bucket. This scheme ensures that O(k log(1/γ)) flowkeys
are stored, and at the end of the stream we can return most
top k items heavier than γL2.

P4 Control Flow: As a simple starting point, we use a se-
quential control flow to avoid cloning every incoming packet
l (i.e., number of levels) times. This means that every packet
is processed by a sketching, a storage and a sampling table
sequentially until the first level where it doesn’t get sampled.
More specifically, after a packet passes the parsing stage dur-
ing which P4 extracts its header fields, it is first processed
by the sketching table of level_0. The “heavy” keys for that
stage are updated and then it is processed by the sampling
table of level_1. If the packet gets sampled at level_1, it is
sketched at this level, the “heavy” keys are updated and the
procedure continues until the packet reaches the last level or
until it is not sampled.

6.3 Control plane
We implement the UnivMon control plane as a set of cus-
tom C++ modules and libraries. We implement modules
for (1) Assigning sketching responsibilities to the network
elements, and (2) implementing the top-k and estimation
stages. The P4 framework allows us to define the API for
control-data plane communication. We currently use a sim-
ple RPC protocol that allows us to import sketching mani-
fests and to query the contents of data plane register arrays

After the heavy flowkeys and their respective counters
have been collected, the frequencies of the k-most frequent
elements in the stream are extracted. The heavy elements
along with the statistical function of the metric to be esti-
mated are then fed to the recursive algorithm of UnivMon’s
estimation stage.

7 Evaluation
We divide our evaluation into two parts. First, we focus
on a single router setup and compare UnivMon vs. custom
sketches via OpenSketch [47]. Second, we demonstrate the
benefits of our network-wide coordination mechanisms.

7.1 Evaluation setup
We begin by describing our trace-driven evaluation setup.

Applications and error metrics: We have currently imple-
mented translation libraries for five monitoring tasks: Heavy
Hitter detection (HH), DDoS detection (DDoS), Change De-
tection (Change), Entropy Estimation (Entropy), and Global
Iceberg Detection (Iceberg). For brevity, we only show re-
sults for metrics computed over one feature, namely the source
IP address; our results are qualitatively similar for other di-
mensions too.

For Heavy Hitters and Global Iceberg detection, we set
a threshold T = 0.05% of the link capacity and identify all
large flows that consume more traffic than that threshold. We
obtain the average relative error on the counts of each identi-
fied large flow; i.e., |True−Estimate|

True . For Change Detection,
whose frequency has changed more than a threshold φ of the
total change over all flows across two monitoring windows.
We chose this threshold to be 0.05% and calculate the aver-
age relative error similar to HH. For Entropy Estimation and
DDoS, we evaluate the relative error on estimated entropy
value and the number of distinct source IPs.

Configuration: We normalize UnivMon’s memory usage
with the custom sketches by varying three key parameters:
number of rows t and number of columnsw in Count-Sketch
tables, and the number of levels l in the universal sketch. In
total UnivMon uses t × w × l counters. In OpenSketch,
we configure the memory usage in a similar way by varying
number of rows t and counters per row w in all the sketches
they use. When comparing the memory usage with OpenS-
ketch, we calculate the total number of sketch counters as-
suming that each integer counter occupies 4 bytes. Both Uni-
vMon and OpenSketch use randomized algorithms; we run
the experiment 10 times with random hash seeds and report
the median cross these runs.

110

Trace Loc Date and Time
1. CAIDA’15 Equinix-Chicago 2015/02/19
2. CAIDA’15 Equinix-Chicago 2015/05/21
3. CAIDA’15 Equinix-Chicago 2015/09/17
4. CAIDA’15 Equinix-Chicago 2015/12/17
5. CAIDA’14 Equinix-Sanjose 2014/06/19

Table 1: CAIDA traces in the evaluation

Traces: For this evaluation, we use five different one-hour
backbone traces (Table 1) collected at backbone links of a
Tier1 ISP between (i) Chicago, IL and Seattle, WA in 2015
and (ii) between San Jose and Los Angeles in 2014 [1, 2].
We split the traces into different representative time inter-
vals (5s, 30s, 1min, 5min). For example, each one hour trace
contains 720 5s-epoch data points and we report min, 25%,
median, 75%, and max on whisker bars. By default, we re-
port results for a 5-second trace. Each 5s packet-trace con-
tains 155k to 286k packets with ∼55k distinct source IP ad-
dresses and ∼40k distinct destination IP addresses. The link
speed of these traces is 10 Gbps.
Experiment Setup: For our P4 implementation prototype,
we used the P4 behavioral simulator, which is essentially a
P4-enabled software switch [6]. To validate the correctness
of our P4 implementation, we compare it against a software
implementation of the data plane and control plane algo-
rithms, written in C++. We evaluate P4 prototype on Trace
1 and run software implementation in parallel on Trace 1- 5.
The results between the two implementations are consistent
as the relative error between the results of the two imple-
mentations does not exceed 0.3%. To evaluate OpenSketch,
we use its simulator written in C++ [5].

7.2 Single Router Evaluation
Comparison under fixed memory setting: First, we com-
pare UnivMon and OpenSketch on the applications that OpenS-
ketch supports: HH, Change, and DDoS. In Figures 7a and
7b, we assign 600KB memory and use all traces in order to
estimate the error when running UnivMon and OpenSketch.
We find that the absolute error is very small for both ap-
proaches. We observe that OpenSketch provides slightly bet-
ter results for all three metrics. However we note that Uni-
vMon uses 600KB memory to run three tasks concurrently
while OpenSketch is given 600KB to run each task. Figure
7a and 7b confirm that this observation holds on multiple
traces; the error gap between UnivMon and OpenSketch is
≤3.6%.
Accuracy vs. Memory: The previous result considered a
fixed memory value. Next, we study the sensitivity of the
error to the memory available. Figure 8a and 8b shows that
the error is already quite small for all the HH and DDoS ap-
plications and that the gap is almost negligible with slightly
increased memory ≥ 1MB.

Figure 8c shows the results for the Change Detection task.
For this task, the original OpenSketch paper uses a stream-
ing algorithm based on reversible k-ary sketches [44]. We
implement an extension to OpenSketch using a similar idea
as UnivMon.8 Our evaluation results show that our exten-
8We maintain two recent Count-Min sketches using the

0.01
1

5

10

OC192-P4
OC192-1

OC192-2
OC192-3

OC192-4
OC192-5

E
rr

o
r

R
a

te
 (

%
)

Heavy Hitter
Change Detection

DDoS

(a) UnivMon

0.01

1

2

3

OC192-1
OC192-2

OC192-3
OC192-4

OC192-5

E
rr

o
r

R
a

te
 (

%
)

Heavy Hitter
Change Detection

DDoS

(b) OpenSketch
Figure 7: Error rates of HH, Change and DDoS for Uni-
vMon and OpenSketch

sion offers better accuracy vs. memory tradeoff than OpenS-
ketch’s original method [44]. For completeness, we also re-
port the memory usage of OpenSketch’s original design (us-
ing the k-ary sketch). From Figure 8c, we see UnivMon
provides comparable accuracy even though UnivMon has a
much smaller sketch table on each level of its hierarchical
structure. This is because the “diff” across sketches are well
preserved in UnivMon’s structure.
Fixed Target Errors: Next, we evaluate the memory needed
to achieve the same error rates (≤1%). In Figures 9 and 10 as
we vary the monitoring window, we can see that only small
amount of memory increase is required for both UnivMon
and OpenSketch to achieve 1% error rates. In fact, we find
that UnivMon does not require more memory to maintain a
stable error rate for increased number of flows in the traffic.
This is largely because sketch-based approaches usually just
take logarithmic memory increase in terms of input size to
maintain similar error guarantees. Furthermore, the nature
of traffic distribution also helps as there are only a few very
heavy flows and the entire distribution is quite ‘flat’.
Other metrics: We also considered metrics not in the OpenS-
ketch library in Figure 11 to confirm that UnivMon is able to
calculate a low-error estimate. Specifically, we consider the
entropy of the distribution and the second frequency moment
F2 = f21 + f22 · · ·+ f2m for m distinct elements.9 Again, we
find that with reasonable amounts of memory (≥ 500KB)
the error of UnivMon is very low.
Impact of Application Portfolio: Next, we explore how
UnivMon and OpenSketch handle a growing portfolio of

same hash functions; combine two sketches by one sketch
“subtracts” the other; and use reversible sketch to trace back
the keys.
9This is a measure of the “skewness” and is useful to calcu-
late repeated rate or Gini index of homogeneity.

111

0.01

1

0.2 0.4 0.6 0.8 1

E
rr

o
r

R
a
te

 (
%

)

Memory Usage (MB)

UnivMon
OpenSketch

(a) HH

0.11
2

5

15

0.1 0.4 0.8 1 2

E
rr

o
r

R
a
te

 (
%

)

Memory Usage (MB)

UnivMon
OpenSketch

(b) DDoS

0.1
2

5

15

0.25 0.8 1 2 3

E
rr

o
r

R
a
te

 (
%

)

Memory Usage (MB)

UnivMon
OpenSketch(CM)

OpenSketch(K-ary)

(c) Change
Figure 8: Error vs. Memory for HH, DDoS, Change

200

300

5s 30s 1m 5m

M
e
m

o
ry

 U
s
a
g
e
 (

K
B

)

Monitoring Time Interval

OS-trace1
OS-trace2
OS-trace3
OS-trace4
OS-trace5

UM-trace1
UM-trace2
UM-trace3
UM-trace4
UM-trace5

Figure 9: HH: average memory usage to achieve a 1%
error rate for different time intervals

0.3
0.5

1.0

1.5

2.0

5s 30s 1m 5m

M
e
m

o
ry

 U
s
a
g
e
 (

K
B

)

Monitoring Time Interval

OS-trace1
OS-trace2
OS-trace3
OS-trace4
OS-trace5

UM-trace1
UM-trace2
UM-trace3
UM-trace4
UM-trace5

Figure 10: Change: average memory usage to achieve a
1% error rate for different time intervals

0.11
2

5

15

0.1 0.4 0.8 1 1.5

E
rr

o
r

R
a

te
 (

%
)

Memory Usage (MB)

UnivMon(Entropy)
UnivMon(F2)

Figure 11: Error rates of Entropy and F2 estimation

monitoring tasks with a fixed memory. We set the switch
memory to 600KB for both UnivMon and OpenSketch and
run three different application sets: AppSet1={HH}, AppSet2
={HH,DDoS}, and AppSet3={HH,DDoS,Change}. We as-
sume that OpenSketch divides the memory uniformly across
the constituent applications; i.e., in AppSet1 600KB is de-
voted to HH, but in AppSet2 and Appset3, HH only gets
300KB and 200KB respectively. Figure 12 shows the “er-
ror gap” between UnivMon and OpenSketch (UnivMon −
OpenSketch); i.e., positive values imply UnivMon is worse
and vice versa. As expected, we find that when running con-
current tasks, the error gap decreases as each task gets less
memory in OpenSketch. That is, with more concurrent and
supported tasks, UnivMon can still provide guaranteed re-
sults on each of the applications.
Choice of Data Structures: UnivMon uses a a sketching

-10

-5

-1
1

5

10

Appset1
Appset2

Appset3

E
rr

o
r

G
a

p
 (

%
)

Heavy Hitter
DDoS

Change Detection

Figure 12: The impact of a growing portfolio of monitor-
ing applications on the relative performance

0.2

10

100

HH DDoS Change Entropy

E
rr

o
r

R
a
te

(%
)

UnivMon with Different Data Structures (600KB)

Count-Sketch
Pick-and-Drop

Count-Min-Sketch

Figure 13: Analyzing different HH data structures

algorithm that identifies L2 heavy hitters as a building block.
Two natural questions arise: (1) How do different heavy
hitter algorithms compare and (2) Can we use other popu-
lar heavy hitter identifiers, such as Count-Min sketch? We
implemented and tested the Pick-and-Drop algorithm [20]
and Count-Min sketch [26] as building blocks for UnivMon.
Figure 13 shows that Pick-and-Drop and CM sketch lose
the generality of UnivMon as they can provide accurate re-
sults only for HH and Change tasks. This is because, intu-
itively, only Lp(p = 1 or p ≥ 3) heavy hitters are identi-
fied. The technical analysis of universal sketch shows that
only L2 heavy hitters contribute significantly to the G-Sum
when G-Sum is upper bounded by some L2 norm. As dis-
cussed in Section 4.3, the G-Sum functions corresponding
to HH and Change are actually L1 norms. Therefore, the es-
timated L1 heavy hitters output by Count-Min or Pick-and-
Drop work well for HH and Change tasks, but not Entropy
or DDoS. When combining heavy hitter counters in the re-
cursive step of calculation, we will simply miss too many
significant heavy elements for all tasks.
Processing Overhead: One concern might be the computa-
tional cost of the UnivMon vs. custom sketch primitives. We
used the Intel Performance Counter Monitor [29] to evalu-
ate compute overhead (e.g., Total cycles on CPU) on Uni-
vMon and OpenSketch’s software simulation libraries. For
any given task, our software implementation was only 15%
more expensive than OpenSketch. When we look at all three
applications together, however, the UnivMon takes only half
the compute cycles as used by OpenSketch in total. While

112

0.1

1

ATT-N.A. GEANT BellSouth

E
rr

o
r

R
a
te

 (
%

)

Network Wide Evaluation (600KB per sketch)

Ingress
Greedy-D.&C.

Q.&S.
UnivMon

(a) Error rates of global iceberg detection

 0

 500

 1000

 1500

 2000

ATT-N.A. GEANT BellSouth

A
v
e
ra

g
e
 M

e
m

o
ry

(K
B

)

Network Wide Evaluation (600KB per sketch)

Ingress
Greedy-D.&C.

Q.&S.
UnivMon

(b) Average memory consumption

0.1k

1k

2k

ATT-N.A. GEANT BellSouth

T
o
ta

l
re

q
u
e
s
ts

 t
o
 c

o
n
tr

o
lle

r

Network Wide Evaluation (600KB per sketch)

Ingress
Greedy-D.&C.

Q.&S.
UnivMon

(c) Total number of requests to controller
Figure 14: Network-wide evaluation on major ISP backbone topologies

Topology OD Pairs Dim. Time (s) Total Sketches
Geant2012 1560 4 0.09 68
Bellsouth 2550 4 0.10 60
Dial Telecom 18906 4 2.8 252
Geant2012 1560 8 0.22 136
Bellsouth 2550 8 0.28 120
Dial Telecom 18906 8 12.6 504

Table 2: Time to compute sketching manifests using ILP

we acknowledge that we cannot directly translate into ac-
tual hardware processing overheads, this suggests that Uni-
vMon’s compute footprint will be comparable and possibly
better.

7.3 Network-wide Evaluation
For the network-wide evaluation, we consider different topolo-
gies from the Topology Zoo dataset [35]. As a specific network-
wide task, we consider the problem of estimating source IP
and destination IP “icebergs”. We report the average relative
errors across these two tasks.
Benefits of Coordination: Figure 14a, Figure 14b, and
Figure 14c present the error, average memory consumption,
and total controller requests of four solutions: Ingress Moni-
toring(IM), Greedy Divide and Conquer(GDC), Query and
Sketch(QS), and our approach(UnivMon). We pick three
representative topologies: AT&T North America, Geant, and
Bell South. We see that UnivMon provides an even distribu-
tion of resources on each node while providing results with
high accuracy. Furthermore, the control overhead is several
orders of magnitude smaller than purely reactive approaches.
ILP solving time: One potential concern is the time to solve
the ILP. Table 2 shows the time to compute the ILP solution
on a Macbook Pro with a 2.5 GHz Intel Core i7 processor us-
ing glpsol allowing at most k sketches per switch, where
k is the number of dimensions maintained. We see that the
ILP computation takes at most a few seconds which suggest
that updates can be pushed to switches with reasonable re-
sponsiveness as the topology or routing policy changes.

7.4 Summary of Main Findings
Our analysis of UnivMon’s performance shows that:

1. For a single router with 600KB of memory, we observe
comparable median error rate values between UnivMon
and OpenSketch, with a relative error gap ≤ 3.6%. The
relative error decreases significantly with a growing ap-
plication portfolio.

2. When comparing sensitivity to error and available mem-
ory, we observe that UnivMon provides comparable ac-
curacy with OpenSketch with similar, or smaller memory
requirements.

3. The network-wide evaluation shows that UnivMon pro-
vides an even distribution of resources on each node while
providing results with high accuracy.

8 Conclusions and Future Work
In contrast to the status quo in flow monitoring that can of-
fer generality or fidelity but not both simultaneously, Univ-
Mon offers a dramatically different design point by leverag-
ing recent theoretical advances in universal streaming. By
delaying the binding of data plane primitives to specific (and
unforeseen) monitoring UnivMon provides a truly software-
defined monitoring approach that can fundamentally change
network monitoring. We believe that this “minimality” of
the UnivMon design will naturally motivate hardware ven-
dors to invest time and resources to develop optimized hard-
ware implementations, in the same way that a minimal data
plane was key to get vendor buy-in for SDN [40].

Our work in this paper takes UnivMon beyond just a the-
oretical curiosity and demonstrates a viable path toward a
switch implementation and a network-wide monitoring ab-
straction. We also demonstrate that UnivMon is already very
competitive w.r.t. custom solutions and that the trajectory
(i.e., as the number of measurement tasks grows) is clearly
biased in favor of UnivMon vs. custom solutions.

UnivMon already represents a substantial improvement
over the status quo, That said, we identify several avenues
for future work to further push the envelope. First, in terms
of the data plane, while the feasibility of mapping UnivMon
to P4 is promising and suggests a natural hardware mapping,
we would like to further demonstrate an actual hardware im-
plementation on both P4-like and other flow processing plat-
forms. Second, in terms of the one-big-switch abstraction,
we need to extend our coordination and sketching primitives
to capture other classes of network-wide tasks that entail
cross-OD-pair dependencies. Third, while the ILP is quite
scalable for many reasonable sized topologies, we may need
other approximation algorithms (e.g., via randomized round-
ing) to handle even larger topologies. Fourth, in terms of the
various dimensions of interest to track, we currently main-
tain independent sketches; a natural question if we can avoid

113

explicitly creating a sketch per dimension. Finally, while be-
ing application agnostic gives tremendous power, it might be
useful to consider additional tailoring where operators may
want the ability to adjust the granularity of the measurement
to dynamically focus on sub-regions of interest [48].

Acknowledgments: We thank our shepherd Mohammad
Alizadeh and the SIGCOMM reviewers for their comments
that helped improve the paper. This work was supported in
part by NSF awards CCF-1536002, IIS-1447639, Raytheon
BBN Technologies, and by a Google Faculty Award.

9 References
[1] Caida internet traces 2014 sanjose. http://goo.gl/uP5aqG.
[2] Caida internet traces 2015 chicago. http://goo.gl/xgIUmF.
[3] Intel flexpipe. http://goo.gl/H5qPP2.
[4] Netfpga technical specifications. http://netfpga.org/1G_specs.html.
[5] Opensketch simulation library. https://goo.gl/kyQ80q.
[6] P4 behavioral simulator. https://github.com/p4lang/p4factory.
[7] P4 specification. http://goo.gl/5ttjpA.
[8] Why big data needs big buffer switches. https://goo.gl/ejWUIq.
[9] N. Alon, Y. Matias, and M. Szegedy. The space complexity of

approximating the frequency moments. In Proc., STOC, 1996.
[10] N. Bandi, A. Metwally, D. Agrawal, and A. El Abbadi. Fast data

stream algorithms using associative memories. In Proc., SIGMOD,
2007.

[11] T. Benson, A. Anand, A. Akella, and M. Zhang. Microte: Fine
grained traffic engineering for data centers. In Proc., CoNEXT, 2011.

[12] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker.
P4: Programming protocol-independent packet processors.
SIGCOMM Comput. Commun. Rev., July 2014.

[13] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McKeown,
M. Izzard, F. Mujica, and M. Horowitz. Forwarding metamorphosis:
Fast programmable match-action processing in hardware for sdn. In
Proc., SIGCOMM, 2013.

[14] V. Braverman and S. R. Chestnut. Universal Sketches for the
Frequency Negative Moments and Other Decreasing Streaming
Sums. In APPROX/RANDOM, 2015.

[15] V. Braverman, S. R. Chestnut, R. Krauthgamer, and L. F. Yang.
Streaming symmetric norms via measure concentration. CoRR, 2015.

[16] V. Braverman, S. R. Chestnut, D. P. Woodruff, and L. F. Yang.
Streaming space complexity of nearly all functions of one variable on
frequency vectors. In Proc., PODS, 2016.

[17] V. Braverman, J. Katzman, C. Seidell, and G. Vorsanger. An optimal
algorithm for large frequency moments using o(nˆ(1-2/k)) bits. In
APPROX/RANDOM, 2014.

[18] V. Braverman, Z. Liu, T. Singh, N. V. Vinodchandran, and L. F.
Yang. New bounds for the CLIQUE-GAP problem using graph
decomposition theory. In In Proc., MFCS, 2015.

[19] V. Braverman and R. Ostrovsky. Zero-one frequency laws. In Proc.,
STOC, 2010.

[20] V. Braverman and R. Ostrovsky. Approximating large frequency
moments with pick-and-drop sampling. In APPROX/ROMDOM,
2013.

[21] V. Braverman and R. Ostrovsky. Generalizing the layering method of
indyk and woodruff: Recursive sketches for frequency-based vectors
on streams. In APPROX/RAMDOM. 2013.

[22] V. Braverman, R. Ostrovsky, and A. Roytman. Zero-one laws for
sliding windows and universal sketches. In APPROX/RANDOM,
2015.

[23] A. Chakrabarti, S. Khot, and X. Sun. Near-optimal lower bounds on
the multi-party communication complexity of set disjointness. In
IEEE CCC, 2003.

[24] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items
in data streams. In Automata, Languages and Programming. 2002.

[25] B. Claise. Cisco systems netflow services export version 9. RFC
3954.

[26] G. Cormode and S. Muthukrishnan. An improved data stream
summary: The count-min sketch and its applications. J. Algorithms,
2005.

[27] S. Dasgupta and A. Gupta. An elementary proof of a theorem of
johnson and lindenstrauss. Random Struct. Algorithms, Jan. 2003.

[28] M. Datar, A. Gionis, P. Indyk, and R. Motwani. Maintaining stream
statistics over sliding windows. SIAM J. Comput., June 2002.

[29] R. Dementiev, T. Willhalm, O. Bruggeman, P. Fay, P. Ungerer,
A. Ott, P. Lu, J. Harris, P. Kerly, P. Konsor, A. Semin, M. Kanaly,
R. Brazones, and R. Shah. Intel performance counter monitor - a
better way to measure cpu utilization. http://goo.gl/tQ5gxa.

[30] N. Duffield, C. Lund, and M. Thorup. Estimating flow distributions
from sampled flow statistics. In Proc., SIGCOMM, 2003.

[31] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. In Proc., SIGCOMM, 2002.

[32] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford, and
F. True. Deriving traffic demands for operational ip networks:
Methodology and experience. IEEE/ACM Trans. Netw., June 2001.

[33] P. Indyk, A. McGregor, I. Newman, and K. Onak. Open problems in
data streams, property testing, and related topics. 2011.

[34] N. Kang, Z. Liu, J. Rexford, and D. Walker. Optimizing the "one big
switch" abstraction in software-defined networks. In Proc., CoNEXT,
2013.

[35] S. Knight, H. Nguyen, N. Falkner, R. Bowden, and M. Roughan. The
internet topology zoo. Selected Areas in Communications, IEEE
Journal on, october 2011.

[36] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen. Sketch-based
change detection: methods, evaluation, and applications. In Proc.,
ACM SIGCOMM IMC, 2003.

[37] A. Kumar, M. Sung, J. J. Xu, and J. Wang. Data streaming
algorithms for efficient and accurate estimation of flow size
distribution. In Proc., SIGMETRICS, 2004.

[38] A. Lall, V. Sekar, M. Ogihara, J. Xu, and H. Zhang. Data streaming
algorithms for estimating entropy of network traffic. In Proc.,
SIGMETRICS/Performance, 2006.

[39] Z. Liu, G. Vorsanger, V. Braverman, and V. Sekar. Enabling a "risc"
approach for software-defined monitoring using universal streaming.
In Proc., ACM HotNets, 2015.

[40] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner. Openflow:
Enabling innovation in campus networks. SIGCOMM Comput.
Commun. Rev., Mar. 2008.

[41] M. Moshref, M. Yu, R. Govindan, and A. Vahdat. SCREAM: Sketch
Resource Allocation for Software-defined Measurement. In Proc.,
CoNEXT, 2015.

[42] B. Pfaff, J. Pettit, T. Koponen, K. Amidon, M. Casado, and
S. Shenker. Extending networking into the virtualization layer. In
Proc., HotNets, 2009.

[43] A. Ramachandran, S. Seetharaman, N. Feamster, and V. Vazirani.
Fast monitoring of traffic subpopulations. In Proc., IMC, 2008.

[44] R. Schweller, A. Gupta, E. Parsons, and Y. Chen. Reversible sketches
for efficient and accurate change detection over network data
streams. In Proc., IMC, 2004.

[45] V. Sekar, M. K. Reiter, and H. Zhang. Revisiting the case for a
minimalist approach for network flow monitoring. In Proc., IMC,
2010.

[46] Y. Xie, V. Sekar, D. A. Maltz, M. K. Reiter, and H. Zhang. Worm
origin identification using random moonwalks. In S&P. IEEE
Computer Society, 2005.

[47] M. Yu, L. Jose, and R. Miao. Software defined traffic measurement
with opensketch. In Proc., NSDI, 2013.

[48] L. Yuan, C.-N. Chuah, and P. Mohapatra. Progme: towards
programmable network measurement. IEEE/ACM TON, 2011.

[49] Y. Zhang. An adaptive flow counting method for anomaly detection
in sdn. In Proc., CoNEXT, 2013.

[50] H. C. Zhao, A. Lall, M. Ogihara, O. Spatscheck, J. Wang, and J. Xu.
A data streaming algorithm for estimating entropies of od flows. In
Proc., IMC, 2007.

[51] H. C. Zhao, A. Lall, M. Ogihara, and J. J. Xu. Global iceberg
detection over distributed data streams. In Proc., ICDE, 2010.

114

