
Validating Datacenters At Scale
Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal, Ashish Bhargava,
Paul-Andre C Bissonnette, Shane Foster, Andrew Helwer, Mark Kasten, Ivan Lee,

Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanukumar Pinnamraju, Adrian Power,
Neha Milind Raje, Parag Sharma

Microsoft

networkverification@microsoft.com

ABSTRACT

We describe our experiences using formal methods and automated
theorem proving for network operation at scale. The experiences
are based on developing and applying the SecGuru and RCDC (Re-
ality Checker for Data Centers) tools in Azure. SecGuru has been
used since 2013 and thus, is arguably a pioneering industrial deploy-
ment of network verification. SecGuru is used for validating ACLs
and more recently RCDC checks forwarding tables at Azure scale.
A central technical angle is that we use local contracts and local
checks, that can be performed at scale in parallel, and without main-
taining global snapshots, to validate global properties of datacenter
networks. Specifications leverage declarative encodings of configu-
rations and automated theorem proving for validation. We describe
how intent is automatically derived from network architectures
and verification is incorporated as prechecks for making changes,
live monitoring, and for evolving legacy policies. We document
how network verification, grounded in architectural constraints,
can be integral to operating a reliable cloud at scale.

CCS CONCEPTS

• Networks → Network management; Network monitoring;
Cloud computing; • Computing methodologies → Model veri-

fication and validation; •Computer systems organization→
Reliability; Availability;

KEYWORDS

Availability, cloud computing, formal verification, network man-
agement, network monitoring, network verification, reliability

ACM Reference Format:

Karthick Jayaraman, Nikolaj Bjørner, Jitu Padhye, Amar Agrawal, Ashish
Bhargava, Paul-Andre C Bissonnette, Shane Foster, Andrew Helwer, Mark
Kasten, Ivan Lee, Anup Namdhari, Haseeb Niaz, Aniruddha Parkhi, Hanuku-
mar Pinnamraju, Adrian Power, Neha Milind Raje, Parag Sharma. 2019.
Validating Datacenters At Scale. In SIGCOMM ’19: 2019 Conference of the
ACM Special Interest Group on Data Communication, August 19–23, 2019,
Beijing, China. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/
3341302.3342094

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SIGCOMM ’19, August 19–23, 2019, Beijing, China
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-5956-6/19/08. . . $15.00
https://doi.org/10.1145/3341302.3342094

1 INTRODUCTION

Routing and network access restrictions in today’s hyperscale cloud
datacenters involves hundreds of thousands of routers and mil-
lions of end-points. Conceptually, correctness of configurations
that control routing and network access is a global property: Are
all available shortest paths available for routing? Is access from one
group of devices to another ensured/prevented? Specifying and enforc-
ing such properties appears on the surface as an insurmountable
challenge: how does one extract specifications that capture the
intended operation, coined as intent [25], of these networks, and
how can extracted intent be checked efficiently? Several approaches
inspired by the paradigm of treating networks as programs [44] have
emerged in recent years to address reachability and access restric-
tions. These include tackling scalability through network-optimized
data-structures [22, 23, 47, 50], methods for handling incremental
updates [21, 23, 50], and discovering structural properties of data-
centers, such as symmetries [4, 41]. The question of how intent is
captured is also an area with several approaches, noteworthy using
template properties, a.k.a. network beliefs [30], as labels that can
be applied to networks.

Our experience with deploying network verification in Azure
suggests that there is another useful perspective for verifying reach-
ability. We claim that network intent for a structured datacenter
network, can be derived from its architecture. Thus, intent is avail-
able in databases that maintain a description of network topology
and address locality. Verification methods, in turn, can be local-
ized to one device at a time, in isolation, enabling scalability. ACL
checking and checking forwarding tables, discussed in depth in this
paper, are prime scenarios of network verification using local veri-
fication techniques. RCDC can check all-pairs of redundant routes
in a datacenter with up to 104 routers in less than 3 minutes on a
single CPU. In comparison, sophisticated and highly tuned meth-
ods for incremental checking forwarding behavior, including [21],
reports on experiments with networks having between 12 and 316
nodes with overhead in milliseconds for incremental checks, yet
from cold start require O(|V |3) solver calls for the all pair short-
est path reachability problems. This addresseses useful properties,
but doesn’t directly address equal cost multi-path routing prop-
erties. Libra [50] reports scalability to 104 switches, and relies on
MapReduce jobs among 50 machines to bring global verification
of properties down to a minute. To reduce the number of nodes,
|V |, to a feasible range, symmetry reduction techniques may apply,
but an available reduction [41] taking 100 minutes for a datacenter
with fewer than 400 routers renders this avenue several order of
magnitudes slower than local checks. The resources required for
local checks are trivial in comparison to global approaches.

200

https://doi.org/10.1145/3341302.3342094
https://doi.org/10.1145/3341302.3342094
https://doi.org/10.1145/3341302.3342094

SIGCOMM ’19, August 19–23, 2019, Beijing, China Jayaraman et al.

We view locality analogously to program verification based on
programs annotated with inductive loop invariants that can be
checked locally by verifying proof obligations known as Hoare
triples. In contrast, symbolic model checking methodologies ad-
dress the case where programs are not already annotated with
inductive loop invariants and the tools have to work much harder
to synthesize the invariants. With the locally discharged verifica-
tion conditions, correctness of the entire program is derived in a
compositional way. Similarly, global properties of the datacenter
networks are derived from how the routers are connected. We claim
that locality derives from the necessity that datacenter designs ad-
here to the law of parsimony that allows devices to be configured
in modular and uniform ways. Thus, we are not faced with an ar-
bitrary verification problem, but a scenario where the contracts
on routers follow a fixed set of rules. These rules derive from the
datacenter architecture which remains essentially fixed. The state
of the network may fluctuate, for example as a result of link fail-
ures, software, firmware or hardware bugs, or manual configuration
changes. The contracts derived from the architecture, though, are
expected to hold across such state changes. For example, we expect
all devices to have at least a minimum set of uplinks available. This
is a fundamental observation that allows to significantly reduce
the set of moving parts that have to be addressed, and ultimately
enables our local methodology. Checking ACLs and forwarding
share several traits: policies are checked using symbolic techniques,
either simple SMT queries or lookups into optimized hash-tries,
they derive from the dataplane state, and they are deployed as
services in a change validation workflow.

We also argue, as documented by our experiences, that network
verification is a necessary part of deploying modern hyperscale
datacenters. Verification would also be useless unless there is a
process for remediation. To this end, we describe our experiences
with routing and network access restrictions over nearly six years
of deployments and over different incarnations of Azure’s designs.

Contributions. The paper makes the following contributions:

(1) Automatic intent extraction: We describe a methodology
for automatically deriving intent for structured datacenter
networks from architectural metadata comprising topology
and address locality.

(2) Local validation: A novel technique for decomposing end-
end reachability invariants to a set of local contracts.

(3) Design and implementation of an industrial deployment
for continuously verifying routing and network access re-
strictions of a hyperscale network.

(4) Experiences: We describe experiences from a set of use
cases for managing forwarding policies and network access
control.We have deployed our techniques for livemonitoring
of production state and as prechecks for ensuring that the
impact of changes is along the intent.

The contributions are described in a context of four themes:
What defines reality and how is it captured? In our setting, real-

ity is given as configurations that reside on network devices. The
forwarding information base (FIB) determines packet forwarding
behavior. Access Control Lists (ACLs) control network access re-
strictions.

How do we learn intent? We automatically extract intent based
on facts about our network topology and architecture. Azure has a
metadata service that maintains facts such as the IP prefixes hosted
in the top-of-rack switch routers, the details of the neighbors, and
how the BGP sessions are configured between routers.

How is reality validated against intent? Our approach is based
on locally validating device state in the backdrop of global network
properties that follow from the network design. Notably, validation
does not assume or require forming global snapshots. We claim that
correctness of a structured datacenter is based on local properties
of routers. This ensures scalability as checks can be parallelized.

Are results actionable? Verification produces reports that are
used to trigger alerts or automatic remediation actions. Reports
that require human inspection are processed by raising alerts with
appropriate severity for network operators. Error reports that are
from well-understood failure modes trigger automatic remediation.

The experiences provided in this paper aim to shed light on
the role of verification in a DevOps cloud scenario. Our efforts
document how this setting has its own distinguishing characteris-
tics compared to, for instance, the role of verification in hardware
designs and static analysis of software. Our setting involves ver-
ification of live systems that change through upgrades and new
datacenter designs and is managed by operators who in part have
built components. We document how verification is integrated to
gate deployments. Yet, they share one commonality: our approach
for extracting forwarding intent is based on specifications baked
into a systems architecture, similar to how an instruction set specifi-
cation can be said to capture the intent of how a CPU should operate.
Note that network verification also broadly covers areas that are
orthogonal to ours, such as program verification and symbolic sim-
ulation of P4 programs [28, 43], NATs [49], middle-boxes [39], and
control plane verification [3, 13], and finally verification of WAN
properties where our assumptions of uniform designs may not hold.

Our work or experiences do not raise any ethical issues.

2 FORWARDING BEHAVIOR

Azure has a hyperscale network comprising hundreds of thousands
of network devices. These translate to billions of reachability in-
variants to verify that all datacenter traffic preserves our intent. We
describe our approach for formulating intent, reality, and our tech-
nique for efficiently validating reality against intent. We deployed
these techniques in RCDC, a system for continuously monitoring
drift of forwarding policies. We also developed pre checks leverag-
ing a high-fidelity network emulator for verifying that all changes
to the network leave the devices in a state that preserves our intent.
We describe the experiences of operating both these systems.

2.1 Datacenter Network Architecture

We first provide a brief primer on the Azure datacenter network
architecture. It builds on previous work [17, 24] that describes the
architecture and design rationale.

The Azure datacenter network uses a hierarchical Clos topol-
ogy leveraging commodity switch hardware. It uses External BGP
(EBGP) as the routing protocol, and equal-cost multipath (ECMP)
for load balancing traffic across all links. These aspects combined

201

Validating Datacenters At Scale SIGCOMM ’19, August 19–23, 2019, Beijing, China

Figure 1: Datacenter Topology Diagram

offer high bandwidth and low latency for both east-west and north-
south traffic.

Figure 1 illustrates Azure’s datacenter network topology. The
top-of-rack (ToR) switches connect a set of servers hosted in a rack.
A number of top-of-rack switches are connected together by a set
of aggregating switches referred to as the leaf switches. We will
refer to the set of racks that are connected together as a cluster.
Leaf switches form the cluster boundary. Leaf switches are in turn
connected together by a set of aggregating switches referred to
as the spine switches. Spine switches form the boundary for the
datacenter. Spine switches connect the datacenter network to the
Azure regional spine network.

All network devices are configured to establish EBGP sessions
over direct point-to-point links interconnecting them. The other
aspect of the EBGP configuration is the ASN allocation scheme.
Azure’s ASN allocation scheme uses private ASN numbers to avoid
conflicts with the Internet. The scheme assigns a unique ASN num-
ber to all spine devices serving a datacenter, all leaf devices serving
a cluster, and each ToR switch. We reuse ToR ASN numbers such
that they are unique within a cluster. Therefore, upstream BGP
sessions on the ToR are configured to accept BGP announcements
for prefixes hosted in other ToRs with the same ASN number.

The top-of-rack switches are configured to announce their VLAN
prefixes to their neighboring leaf devices. The leaf and spine devices
are configured to announce the received prefixes to their neighbors;
they do not use route aggregation because such aggregations can
result in black-holing of traffic due to a single-link failure. The
regional spine devices are configured to strip off the private ASNs
from the AS_PATH property when relaying the routes received
from the spine devices. This is done to prohibit ASN collisions
between different datacenters. The regional spine, datacenter spine,
and leaf devices are all configured to relay default routes received
from upstream devices to downstream devices.

Azure’s network design assures that all server-server traffic has
low latency by coercing the following path conditions: The path
between two servers from different clusters in the same datacenter

1 VRF name: default
2 Codes: C - connected, S - static, K - kernel,
3 O - OSPF, IA - OSPF inter area, ...
4 B E - eBGP, ...
5 ...
6
7 Gateway of last resort:
8 B E 0.0.0.0/0 [200/0] via 30.10.192.12, ...
9 via ...
10 via ...
11
12
13 B E 10.3.129.224/28 [200/0] via 10.10.192.12, ...
14 via ...
15 ...
16
17 '''

Figure 2: A routing table from a network device.

comprise a ToR hosting the source server, a leaf switch in the source
cluster, a spine switch, a leaf switch in the destination cluster, and
finally a ToR hosting the destination server. Similarly, the path
between two servers in the same cluster comprise a leaf device in
the cluster. These paths assure low latency, and the multiple paths
available support maximum bandwidth.

2.2 Forwarding Information Base

The forwarding information base (FIB) of a router determines
its forwarding behavior. It is a table, where each entry associates a
destination prefix to a set of next hop addresses. Figure 2 contains
a routing table from a network device. The network devices use
this information to program the FIB, which is maintained in switch
application specific integrated circuit (ASIC). Whenever a router re-
ceives a packet, it selects the next hop address to forward the packet
using two steps. First, it selects the entry with the longest prefix
containing the destination address in the packet header. For exam-
ple, a packet targeting an address matching prefix 10.3.129.224/28
would be processed by the routing rule at line 13. Second, it selects
one of next hops from the list of next hops. The routing rule at line

202

SIGCOMM ’19, August 19–23, 2019, Beijing, China Jayaraman et al.

8 is called the default route, and is selected when no other rule in
the table matches the destination address.

2.3 Reality and Intent

We use the FIB to represent the reality of a device with respect
to its forwarding behavior. The forwarding behavior of the entire
network is determined by forwarding behavior of each device.

For a datacenter, we postulate intent for forwarding behavior as:

Intent 1. All pairs ToR reachability.

Intent 2. Traffic should always follow a shortest path.

Intent 3. All redundant shortest paths should be available.

The paths between any two ToRs should either be of length 4
or 2. Intra-datacenter paths, i.e., paths between ToRs in different
clusters but the same datacenter, must be of length 4. For example, in
Figure 1, any path between T0-1 with ASN 65510 and T0-1 with ASN
65410, must consist of a T1 with ASN 65534, T2 with ASN 65535,
and T1 with ASN 65533. Intra-cluster paths, i.e., paths between
ToRs in the same cluster must be of length 2. For example, any
path between T0-1 with ASN 65510 and T0-2 with ASN 65511 must
be of length 2. Availability of redundant paths provides maximal
flexibility to routing strategies, such as ECMP.

We derive the concrete invariants for each datacenter based on
facts about placement of address ranges and topology. We get these
facts from a metadata service that maintains these facts.

2.4 Local Validation

A straightforward approach for validating enforcement of intended
forwarding policies against the actual network comprises of two
steps. First, we need to obtain a stable snapshot of the routing tables
from all the devices and form the composite routing table for the
entire network. Second, we can then validate the intent against the
composite routing table. Obtaining a stable snapshot of the entire
network is an engineering feat [50]. Each router in the network
may update its routing table using possibly unsynchronized clocks.
Merging them in the wrong timestamp order may lead to an incon-
sistent state that does not occur in practice, and therefore lead to
false positives. In contrast, obtaining a stable state from a single
switch is deterministic. The complexity of validating the snapshot
without additional domain insights is at least cubic in the network
graph for all pairs of shortest paths. Furthermore, it exhibits an
exponential number of ECMP redundant paths measured by the
diameter of the network graph. Even as the diameter is low, 4 in our
case, the fan-outs with degree 4-12 produce roughly 1000 different
paths per pair of end-points. Validating correctness of the network
with hundreds of thousands of ToRs requires verifying a billion
routing invariants for all pairs of ToRs.

In bypassing these challenges, we developed a local validation
technique. It exploits Azure network’s highly regular structure to
decompose the end-end reachability invariants into a set of local
contracts for every device. Each network device plays a fixed role
for a set of address ranges. If the role is enforced in each device,
then end-end reachability follows as a consequence. The contracts
are expressible as conditions that are local to a device, and the
correctness of their enforcement can be validated in each device
independently. Therefore, we can parallelize validation and thus

scale. Correctness of local forwarding behavior is invariant to small
fluctuations in network state, as they are dealt with by routing
strategies, obviating the need for obtaining a synchronized snapshot
of the entire network.

We illustrate how we decompose the end-end reachability in-
variants into local contracts using a running example. Figure 3
contains a datacenter topology that is scaled down for the purpose
of illustrating contracts, and Figure 4 describes the corresponding
local contracts. There are four link failures in Figure 3. We create
contracts based on expected topology, and therefore will ignore cur-
rent state of the links when generating contracts. Subsection 2.4.4
describes how these failures lead to contract violations.

A local forwarding contract for a device consists of a prefix and
a set of next hops, and states the expectation that all packets whose
destination address matches the given prefix must be forwarded
to the specified next hops. Each device has two types of contracts,
namely specific and default contracts. A specific contract states
the expectation for concrete prefixes. A default contract states the
expectation for packets whose destination address does not match
the prefixes in any of the specific forwarding rules, and therefore
follows a default route. The prefix for this contract is specified as
0.0.0.0/0, however, it is referring to the complement of the union
of all prefixes in each of the routing rules.

2.4.1 ToR Contracts. Each ToR has a default contract with next
hops set to its neighboring leaf devices. For example, the default
contract for ToR1 specifies {A1,A2,A3,A4} as the next hops.

Each ToR has a specific contract for every prefix hosted in the
datacenter besides the prefix that it is configured to announce, and
the next hops are set to its neighboring leaf devices. For example,
ToR1 has specific contracts for PrefixB , PrefixC , and PrefixD with
next hops set to {A1,A2,A3,A4}.

2.4.2 Leaf Contracts. Each leaf device has a default contract
with next hops set to its neighboring spine devices. For example,
the default contract for A1 specifies D1 as the next hop.

Each leaf device has a specific contract for every prefix hosted
in the datacenter. They always forward traffic directly to the ToR
devices in the cluster they are covering. For example,A1 has specific
contracts for PrefixA and PrefixB with next hops set to ToR1 and
ToR2 respectively. Other datacenter prefixes are forwarded to spine
devices that connect to the leaf devices that connect directly to the
prefix. For example, A2 has a specific route for Pre f ixC with next
hop set to D2, which in turn connects to B2.

2.4.3 Spine Contracts. Each spine device has a default route
with next hops set to its neighboring regional spine devices. For
example, the default contract for D1 specifies {R1,R3} as the next
hops.

Each spine device has a specific route for every prefix in the
datacenter with the next hops set to its neighboring leaf devices
from the cluster hosting the prefix. For example, D1 has specific
contracts for PrefixA and PrefixB (prefixes hosted in ClusterA) with
next hop set to A1, which is the only device from Cluster A that
connects to D1. Similarly, D1 also has specific contracts for PrefixC
and PrefixD with next hop set to B1.

2.4.4 Contracts in Action. We illustrate how the link failures
in Figure 3 cause violations in the local contracts. ToR1 has lost

203

Validating Datacenters At Scale SIGCOMM ’19, August 19–23, 2019, Beijing, China

Figure 3: Scaled down topology for illustrating lo-

cal contracts.

Prefix Next Hops
0/0 {A1,A2,A3,A4}
PrefixB {A1,A2,A3,A4}
PrefixC {A1,A2,A3,A4}
PrefixD {A1,A2,A3,A4}

ToR1 contracts.
Prefix Next Hops
0/0 {D1}
PrefixA {ToR1}
PrefixB {ToR2}
PrefixC {D1}
PrefixD {D1}

Prefix Next Hops
0/0 {R1,R3}
PrefixA {A1}
PrefixB {A1}
PrefixC {B1}
PrefixD {B1}

A1 contracts. D1 contracts.

Figure 4: Example illustrating local contracts.

its uplinks to devices A3 and A4, and ToR2 has lost its uplinks to
devices A1 and A2. As a result, ToR1, A1, A2, D1, and D2 have a
contract failure for PrefixB ; these devices do not have a specific
route for PrefixB , and packets targeting these destinations choose
the default route. ToR2, A3, A4, D3, and D4 have a similar failure
for PrefixA. Finally, both ToR1 and ToR2 have a default contract
failure because the default route in both devices have only two next
hops compared to the expected four next hops. These failures cause
all traffic targeting PrefixB from ToR1 to take a longer route. First,
such packets must follow default routes all the way up to R1 or
R2. R1, R2, D3, D4, A3, and A4 have no contract failures for PrefixB .
Therefore, the packets must be able to follow the specific routes in
those devices to reach ToR2.

In this example, the default contract failures in both ToR1 and
ToR2 cause the longer route for traffic from ToR1 to ToR2, and vice
versa. The absence of default route contract failures in all devices,
and specific contracts failures relating to PrefixB in the R devices
ensures the availability of longer routes.

The severity of the failure depends on the number of servers
affected by the device, and the number of additional faults required
to cause an availability impact. For example, the severity of an
error in R1 is higher than a similar error in D1. From an operations
perspective, it makes sense to address errors in the order of severity.
This is particularly important for costly remediations such as those
involving manual steps.

2.4.5 Local Contracts Imply Global Reachability.

Claim 1. If local contracts are preserved in the ToR, leaf, and spine
devices, then all pairs of ToRs in the datacenter are reachable to one
another through the maximal set of shortest paths provided by the
redundant routers deployed in the datacenter.

The local contracts allow us to formulate a global claim about
forwarding behavior within a datacenter. In summary, the local
contracts on each device ensure that traffic is forwarded along fully
redundant routes, e.g. with a fan-out corresponding to the number
of redundant routers in each cluster (in Figure 1 called k,n,m,p) in

each level. The forwarding behavior also ensures that the shortest
paths, which are either of length 2 or 4, are taken.

In the abstract, local validation amounts to checking policies
Pv : H → 2H×V that at node v map a header h ∈ H into a set of
next nodes and potentially modified headers. It requires a mapping
into the natural numbers δ : H × V → N (perhaps helpful to
think of as a time to live), such that whenever (h′,v ′) ∈ Pv (h), then
δ (h,v) > δ (h′,v ′) and such that when δ (h,v) = 0, then v is the
intended destination for header h. It requires a cardinality bound
C : H×V → N , that provides lower bounds on number of next hops
(for ECMP routing strategies), and has the property C(h,v) > 0
whenever δ (h,v) > 0. It is satisfied by network policies when |{v ′ |

(h′,v ′) ∈ Pv (h)}| ≥ C(h,v). Our setting is even more specific than
cardinality bounds, it specifies which next hops must be reached,
it does not involve rewriting headers, and it requires the ordering
induced by δ to follow shortest paths. Thus, local validation for
forwarding applies if suitable δ and C can be determined across
deployed policies.

2.5 Verification Engine

The verification engine takes as input a prefix-based forwarding
policy P and a contract C , and produces a list of rules in P that
violate the contract. The list is empty if P satisfies C .

By default, the verification engine leverages Z3 [11] by encoding
policies and contracts as bit-vector logic formulas, and extracts
answers using satisfiability checking. This approach provides a
flexible query language and performance is within a second for
routing tables extracted from our datacenters. For the most common
workload, we developed a specialized and much faster algorithm.
It enabled scaling verification to several thousands of devices us-
ing very modest CPU resources. The algorithm exploits the fact
that address ranges in the contract and routing rules are proper
address prefixes (a mask on an IP address that fixes a range of most
significant bits). We describe both algorithms.

2.5.1 Bit-Vector Logic Modeling. The predicate for a routing rule
that directs packets targeting IP addresses in a prefix 10.20.20.0/24

204

SIGCOMM ’19, August 19–23, 2019, Beijing, China Jayaraman et al.

to next hops A, B, C, or D comprises the following two parts:

ri .prefix(®x) = (10.20.20.0 ≤ ®x ≤ 10.20.20.255) (1)
ri .nexthops = A ∨ B ∨C ∨ D (2)

The first part of the predicate checks whether the given address
®x is within the address range described by the prefix, The second
part of the predicate is disjunction of Boolean variables, each corre-
sponding to a next hop interface.

The meaning of a policy P is defined as a predicate P(®x) that
returns the forwarding decision encoded as formula. It is a next
hop expression, if a route exists for the destination. Otherwise, it is
a Boolean constant drop representing that the packet was dropped.
Suppose a policy has rules r1,..,rn , where the rules in the routing
policy are sorted in descending order of the prefix length. Then the
meaning of the policy is defined by induction on n:

Definition 2.1 (Longest Prefix Matching Policy). Define P , Pi (for
0 ≤ i < n) and Pn as:

P(®x) = P1(®x)

Pi (®x) = if ri .prefix(®x) then ri .nexthops else Pi+1(®x)
Pn (®x) = drop

A contract for a routing policy defines the expectation for for-
warding behavior of all packets whose destination address matches
an address prefix. The semantics is similar to the routing rule. The
outcomes of verifying P using C are either of the following:

(1) C .range(®x)∧P∧¬C .nexthops is unsatisfiable. The forwarding
behavior for the prefix stated in the contract is preserved by
the policy.

(2) C .range(®x)∧P∧¬C .nexthops is satisfiable: The routing policy
selects a different set of next hops in comparison to the
behavior expected by the contract.

Several variants of contract checking are possible. For example, we
can check whether C .range(®x) ∧ ¬(P ⇔ C .nexthops) is satisfiable
to enforce that a policy agrees with a contract with respect to all
output ports.

Validating a routing contract for the default route, i.e., 0.0.0.0/0
is handled as a special case. Say the policy P has a default route
rdefault . For validating a contract Cdefault for the default route, we
check that:

rdefault .nexthops = Cdefault .nexthops

The intent of validating such a contract is to verify the forwarding
behavior of packets that are not handled by any of the routing rules.

2.5.2 Trie-based Algorithm. We represent prefix-based routing
policies into a hash-trie such that the shortest prefix match, corre-
sponding to the default route labels the root node of the trie, and
such that a node referencing a routing rule ri is added as a child
of a node referencing a routing rule r j if the prefix of ri extends r j ,
and ri is not an extension of another rule that also extends r j .

Validating the default route contract is performed by comparing
the next hops in the contract and the default route.

For verifying each contract C , we select the candidate routing
rules from the trie as follows:

{ri | (C .range ⊆ ri .prefix) ∨ (ri .prefix ⊆ C .range)}

Figure 5: Architecture Diagram

Collecting this set of rules is efficient when C .range is a proper
prefix, because traversal of the hash-trie can be limited to nodes
that correspond to rules that are returned. We walk through this
list in the descending order of prefix length and do the following:

• Check if the nexthops match those required by the contract.
If they don’t, then we add the rule to the list of rules violating
the contract.

• Add ri .prefix to a list L.
• If theC .range is a subset or equals the union of prefixes in L,
then we stop. Otherwise, repeat the steps for the next rule.

Finally, we return the list of violating rules.

2.6 Live Monitoring of Forwarding Behavior

We describe a service that we built for continuously verifying the
forwarding behavior leveraging local validation. We describe the
types of latent bugs we detected, and how we remediated them
before they caused an outage.

The Azure datacenter network is designed with adequate re-
dundancies to tolerate a certain number of link or BGP session
failures. For example, each top-of-rack switch is connected tom
leaf switches and is configured to use equal-cost multi-path (ECMP)
routing. Therefore, each switch hasm next hops for traffic going in
the north direction. Therefore, the top-of-rack switches can tolerate
up tom − 1 failures without being isolated from the network.

It is typical to have a few link failures in a production datacenter.
For example, we sometimes mitigate lossy links by shutting down
BGP on such links. Only when these failures exceed a threshold
we have reachability issues such as longer paths or unreachable
destinations. The value of RCDC is in detecting latent bugs, i.e.,
devices that have already experienced a few failures such that
additional failures could cause an outage. Remediating these bugs
in a timely fashion will help us avoid outages.

2.6.1 System Architecture. RCDC comprises 3 micro services,
namely a device contract generator, a forwarding table puller, and a
routing table validator. Figure 5 contains the architecture diagram
for the validation service. The device contract generator consumes
facts from the metadata system, generates a comprehensive set of

205

Validating Datacenters At Scale SIGCOMM ’19, August 19–23, 2019, Beijing, China

contracts for each device, and pushes them to a NoSQL data store.
The routing table puller pulls routing tables from all the network
devices periodically, pushes them to an NoSQL data store, and also
posts a notification in an cloud queue. The routing table validator
consumes each notification, pulls both the routing table and con-
tracts from the NoSQL data store, validates them, and pushes the
results to a stream analytics system. Alerts are triggered based on
the results.

RCDC is designed for horizontal scalability. The service is parti-
tioned into several instances. Each instance is configured to monitor
the devices in a set of datacenters. The service instance, the NoSQL
data store, and the queue are chosen to have minimal latency from
the set of devices being monitored. Each service instance is config-
ured to monitor O(10K) devices. Fetching each routing table takes
200-800ms, and validating takes O(100) milliseconds. The frequency
of validation is configurable.

The stream analytics systems features a query interface that
facilitates interactive querying of the results. The alerts and remedi-
ations are triggered by a set of queries that correlate the validation
errors with additional metadata, classify errors, and direct them ap-
propriately for remediation. For example, if links are operationally
down, then these are most likely because of cabling faults and are
remediated by replacing the cables. On the other hand, if the BGP
sessions are administratively shut, then they are unshut and moni-
tored for health. If they become unhealthy, then they are shut again
and directed for further investigation.

2.6.2 Errors. After deploying RCDC, initial reports identified a
few hundred latent bugs. Although the absolute number of bugs
represent less than one percent of the total number of devices in
the network, these still pose a risk to reliability. We describe a set
of highly diverse root causes for errors recovered by the RCDC.

Software Bug 1. A software bug in the network device oper-
ating system caused a RIB-FIB inconsistency. Those devices used
significantly fewer next hops for the default route compared to
expected, and therefore violated the default contracts.

Software Bug 2. Another software bug caused the port inter-
faces on some devices to be treated as layer 2 switch ports instead
of layer 3 routed ports, resulting in the device not assigning any IP
addresses to the interfaces. As a result, BGP sessions could not be
set up on any of the interfaces in those devices, and therefore their
routing tables violated all forwarding contracts.

Hardware Failures. Hardware failures on the optical cables
caused some links to be operationally down. As a result, BGP ses-
sions on those links were down too; the devices on either end had
fewer next hops for traffic targeting the other device violating the
local contracts.

Operation Drift. We detected BGP sessions that were shut
down administratively to mitigate lossy links, but never remediated.
Therefore, all devices on either side of the link violated the routing
invariants.

Migrations. Migrating traffic from a decommissioned to new
infrastructure comprises multiple steps. Some of these steps may be
manual operations, and therefore have high potential for misconfig-
urations. For example, the leaf devices of both the decommissioned
and the new infrastructure were configured with the same ASN

0 10 20 30

0

0.2

0.4

0.6

Days

In
te
nt
-d
rif
te

rr
or
st
o
to
ta
le
rr
or
s.

High Risk Errors
Low Risk Errors

Figure 6: Burndown Graph of Errors.

numbers. As a result, the top-of-rack switches hosted in both in-
frastructures did not see the specific route announcements of each
other. Therefore, the top-of-rack switches violated all the specific
contracts. There were no reachability issues because the traffic be-
tween these two clusters were following default routes and reaching
the correct destination. However, the lack of specific routes could
potentially cause the traffic to use a longer path in the presence
of some link failures, and result in higher latency. Therefore, the
specific contract violations must be remediated in time.

Policy Errors.We detected several types of policy configuration
errors in a part of our network infrastructure that was in part
manually configured. We describe two examples. Network devices
are configured with policies called route maps that determine the
type of BGP announcements that they must accept or send. A
policy misconfiguration resulted in devices rejecting default route
announcements from upstream devices. Another misconfiguration
in the ECMP setup resulted in some of the devices using just a single
next hop for upstream traffic instead of all the available upstream
devices. The contract violations detected all these issues.

2.6.3 Performance. Most devices in our datacenter network
have routing tables with several thousands of prefixes. A topology
generator that produces synthetic benchmarks with characteris-
tics similar to the Azure network is available from [29]. Checking
a device in a typical Azure datacenter involves checking several
thousands of contracts. RCDC takes 180ms to verify all contracts on
a single device on average. RCDC can check all-pairs of redundant
routes in a datacenter with up to 104 routers in less than 3 minutes
on a single CPU.

2.6.4 Remediation. Errors are classified by risk factor based on
the number of servers it impacts, and the number of additional faults
required to cause an impact. For example, a top-of-the-rack switch
that has only a single next hop for default route represents a high-
risk error, since any additional failure can isolate the top-of-rack
switch and cause availability issues for the servers hosted below.
Similarly, if a significant number of spine devices in a datacenter
have errors relating to specific prefixes, then those errors represent

206

SIGCOMM ’19, August 19–23, 2019, Beijing, China Jayaraman et al.

Figure 7: Workflow for validating network changes before

they are applied in production.

a high-risk because they are required for assuring the longer paths
for several servers. High risk errors are addressed with higher
priority, and low risk errors are addressed after.

Validation reports are used to derive automatic alerts, that in turn
trigger an automated triaging process. The triaging process collects
additional information to direct the error further, determines the
risk of the error, and pushes them to an appropriate queue for reme-
diation. For example, errors that requires replacing faulty cables are
pushed to a queue maintained for datacenter operations personnel.
In all these queues, the high priority errors are remediated before
addressing the low-priority errors.

Figure 6 illustrates the observed burndown trend of routing
intent-drift errors. The y-axis shows the relative proportion of the
high-risk and low-risk errors to total number of errors. It documents
a clear downward trend of errors since RCDC was deployed near
day 5. It illustrates how the risk assessment helped the DevOps
teams prioritize fixing high risk errors quickly.

2.7 Preventing Dangerous Changes

A built-in limitation of live monitoring is that it can only detect
dangerous changes after they have occurred. To prevent a large
class of faulty updates from entering in the first place Azure uses
a high-fidelity network emulator [27]. It runs a full stack of virtual-
ized device software, connected with virtual links using the same
topology as the production network, and configured with live con-
figurations and routing state from production devices. To explore
more scenarios and scale much further, Azure also uses a network
simulator to extract live configurations [31]. RCDC is then used
on FIBs extracted from these networks, reporting the same class of
errors as on the live network. This pipeline is integral in a pre-check
process (Figure 7) that is used prior to rolling out configuration
changes, whether during a repave or as part of periodic refresh, to
production networks. It is used to detect issues arising from root
causes such as software bugs, policy errors, and interoperability
issues triggered by a specific change.

2.8 Assumptions and Limitations

RCDC assumes a structured datacenter network such as Azure,
where the topology and address locality are tracked. We expect our
assumptions to hold for datacenter networks based on VL2 [17].
These assumptions enable decomposing the reachability properties

to local contracts. Also, RCDC detects changes that affect the steady
state routing behavior. In contrast, it may not detect transient errors.
For example, it cannot detect a transient routing loop while BGP is
still in a transient state.

3 NETWORK CONNECTIVITY

RESTRICTIONS

Azure secures its infrastructure and customer services by host-
ing them in customized isolation boundaries using network con-
nectivity restrictions. For example, Azure management service
interfaces are walled off from the Internet and arbitrary customer
access. In addition, customer services are also isolated from one
another. These restrictions are enforced in network devices such
as routers and top-of-rack switches, hypervisor packet filters, and
firewalls. Managing these restrictions is fraught with complexity
and cannot rely on human inspection or trial and error. This sec-
tion describes three case studies of deploying static verification
techniques for managing these types of policies.

We developed a library called SecGuru for facilitating automatic
validation of network connectivity policies using Z3 [11]. The li-
brary implements mechanisms for encoding policies and contracts
into bit-vector logic, and verifying that the contracts are preserved
by the policies. We provide a brief background on the semantics of
these policies, describe the design of a verification engine for these
policies, and finally describe three case studies that describe our
experience of deploying these techniques and the outcome of work
in terms of avoiding customer impact.

3.1 Background

This section provides a brief primer on network device access-
control lists, network security groups, and their syntax and seman-
tics. Network devices can be configured with an access-control
list (ACL) to enforce restrictions on traffic flowing through the
device. Figure 8 contains an example ACL. This ACL is authored
in Cisco’s IOS language, used by most Cisco devices. Network de-
vices from other vendors use similar languages. Network security
groups (NSG) help customers enforce connectivity restrictions on
resources deployed inside their virtual network (Figure 9). All IP
addresses used in Figures 8 & 9 are for illustrative purposes only.

The syntax of the two policies vary, but semantics is similar. In
both cases, a policy is a set of rules. Each rule describes a packet
filter and an action. The packet filter describes permissible values
for source and destination addresses, source and destination ports,
and protocol. The expression 10.0.0.0/8 specifies an address range
10.0.0.0 to 10.255.255.255. That is, the first 8 bits are fixed and the
remaining 24 (= 32-8) vary. A wild card is indicated by Any. For
ports, Any encodes the range from 0 to 216 − 1. The action is either
Permit or Deny. They indicate whether packets matching the range
should be allowed through the firewall.

Both policies have the first-applicable rule semantics, where
the device processes an incoming packet per the first rule that
matches its description. If no rules match, then the incoming packet
is denied by default. Therefore, the order in which the rules appear
is important. For ACL, the order is implicit in the sequence of rules.
For NSG, the priority field specifies the order: smaller numbers
have higher priority.

207

Validating Datacenters At Scale SIGCOMM ’19, August 19–23, 2019, Beijing, China

1 remark Isolating private addresses
2 deny ip 0.0.0.0/32 any
3 deny ip 10.0.0.0/8 any
4 deny ip 172.16.0.0/12 any
5 deny ip 192.0.2.0/24 any
6 ...
7 remark Anti spoofing ACLs
8 deny ip 104.208.32.0/20 any
9 deny ip 168.61.144.0/20 any
10 ...
11 remark permits for IPs without
12 port and protocol blocks
13 permit ip any 104.208.32.0/24
14
15 remark standard port and protocol
16 blocks
17 deny tcp any any eq 445
18 deny udp any any eq 445
19 deny tcp any any eq 593
20 deny udp any any eq 593
21 ...
22 deny 53 any any
23 deny 55 any any
24 ...
25 remark permits for IPs with
26 port and protocol blocks
27 permit ip any 104.208.32.0/20
28 permit ip any 168.61.144.0/20
29 ...

Figure 8: Network device access-control list.

1 [{
2 "Name": "Allow Prefix 1",
3 "Id": "Prefix2",
4 "Etag": "45aa-c152",
5 "Properties": {
6 "ProvisioningState": "Succeeded",
7 "Protocol": "TCP",
8 "SourcePortRange": "1024-65535;500",
9 "SourceAddressPrefix": "SQLMI_TAG;40.79.210.20/32;
10 20.190.140.128/25",
11 "DestinationPortRange": "1433",
12 "DestinationAddressPrefix": "Any",
13 "Action": "Allow",
14 "Priority": 6000,
15 "Direction": "Inbound" }
16 },
17 {
18 "Name": "Deny override",
19 "Id": "Prefix2",
20 "Etag": "45aa-c152",
21 "Properties": {
22 "ProvisioningState": "Succeeded",
23 "Protocol": "Any",
24 "SourcePortRange": "Any",
25 "SourceAddressPrefix": "Any",
26 "DestinationPortRange": "Any",
27 "DestinationAddressPrefix": "Any",
28 "Action": "Deny",
29 "Priority": 100,
30 "Direction": "Inbound" }
31 }]

Figure 9: Network security groups.

Figure 10: SecGuru architecture.

The ACL in Figure 8 has five sections: §1, lines 2-6, filter traffic
that targets private IP addresses. For example, line 3 blocks traffic
targeting 10.0.0.0/8, which is a private address range per RFC1918;
§2, lines 8-10, are for anti-spoofing; §3, lines 13-14, permit traffic
targeting IP addresses that should be permissible without any port
blocks; §4, lines 17-24, block a standard set of ports and protocols
on all Internet traffic targeting any destination inside the network;
§5, lines 27-29, permit traffic to a set of address ranges.

3.2 Verification Engine

SecGuru takes a policy and a set of contracts as input, and produces
the outcome of analysis as output (Figure 10). In the case of network
device ACLs, the policy is the configuration of the network device
and the name of the ACL that it contains and needs to be analyzed.
In the case of NSGs, the policy is a file containing the NSG rules.
Each contract, similar to a policy rule, describes a packet filter and
expectation of whether the packets matching the description must
be permitted or denied. SecGuru encodes policies and contracts as
predicates in bit-vector logic, and leverages satisfiability checking
to extract answers. The intuition behind this design is that network
connectivity restrictions are essentially a set of constraints over IP
addresses, ports, and protocol, each of which are bit-vectors of vary-
ing sizes. Modeling policy analysis questions as logical formulas
allows analysis to be semantic and agnostic to the low-level device
syntax used for access control. A tool derived from how SecGuru

encodes and checks ACLs, and specialized to Windows Firewalls,
is open source [20].

The outcome of SecGuru analyzing a policy, (P), and a contract,
(C), is one of the following:

(1) C → P is valid: The contract is preserved by the policy, i.e.,
the set of all traffic patterns described byC is a subset of the
set of all traffic patterns accepted by the policy.

(2) C ∧ ¬P is satisfiable: The contract is not preserved by the
policy, i.e., some traffic patterns accepted byC are denied by
P . In this case, the error report also identifies the rule in the
policy that violated the contract.

We describe how policies and contracts are encoded as predicates
using an example. The rules corresponding to lines 3 and 13 of
Figure 8 have the associated predicates:

r3 :
(10.0.0.0 ≤ srcIp ≤ 10.255.255.255) ∧
protocol = 4

r13 :
(104.208.32.0 ≤ dstIp ≤ 104.208.32.255)∧
protocol = 4

We use ri (®x) to refer to the predicate associated with the i’th
rule in a policy. The tuple ®x abbreviates

⟨srcIp, srcPort, dstIp, dstPort, protocol⟩.

We use r .Action to access the action field of a rule. It is either Allow
or Deny.

The meaning of a policy P is defined as a predicate P(®x) that
evaluates to true when a packet with header ®x is allowed to pass
through. There are two conventions for combining the rules in a
policy, namely Deny Overrides and First Applicable. We describe the
semantics of policies according to these two conventions.

Network device ACLs and NSGs use the first applicable rule
semantics. Suppose an ACL has rules r1, . . . , rn that are either Allow
or Deny rules, then the meaning is defined (linear in the size of the
policy) by induction on n:

208

SIGCOMM ’19, August 19–23, 2019, Beijing, China Jayaraman et al.

Definition 3.1 (First Applicable Policies). Define P , Pi (for 0 ≤ i <
n) and Pn as:

P(®x) = P1(®x)

Pi (®x) = ri (®x) ∨ Pi+1(®x) if ri .action = Allow

Pi (®x) = ¬ri (®x) ∧ Pi+1(®x) if ri .action = Deny

Pn (®x) = false

Definition 3.2 (Deny Overrides Policies). Let Allow = {r ∈ P |

r .action = Allow} and likewise Deny = {r ∈ P | r .status = Deny}.
The meaning of P with the Deny Overrides convention is the for-
mula (linear in the size of the policy):

P(®x) = (
∨

r ∈Allow

r (®x)) ∧ (
∧

r ∈Deny
¬r (®x))

Thus, a packet is admitted if some Allow rule applies and none
of the Deny rules apply.

We showed howpolicies correspond to predicates over bit-vectors.
Both policies using the Deny Overrides and the First Applicable
semantics correspond to logical formulas. The predicates treat the
parameters as bit-vectors and use comparison (less than, greater-
than, equals) operations on the bit-vectors as unsigned numbers.
Modern SMT, Satisfiability Modulo Theories, solvers contain effi-
cient decision procedures for bit-vector logic. Bit-vector logic is
expressive: it captures the operations that are common on machine
represented fixed-precision integers, such as modular addition, sub-
traction, multiplication, bit-wise logical operations, and compar-
isons. The solvers leverage pre-processing simplifications at the
level of bit-vectors and most solvers reduce formulas to proposi-
tional satisfiability where state-of-the-art SAT solving engines are
used. In the worst case the underlying solver could use an algo-
rithm that is asymptotically much worse than algorithms that have
been specifically tuned to policy analysis (as for instance developed
in [1, 5]). However, our experience shows that our approach easily
scales to an order of magnitude beyond what is required for mod-
ern datacenters. For example, analyzing an ACL comprising a few
hundred rules takes approximately 300ms and analyzing an ACL
comprising a few thousand rules takes a second.

3.3 Managing Legacy Policies

Azure deploys anACL in all network devices that peer with Internet
service providers. The structure of this ACL is similar to the ACL
described in Figure 8. It is called an Edge ACL, and had inorganically
grown to comprise several thousand rules. For example, for every
new prefix that Azure acquired, we needed planned updates to
§2, and §3 or §5. In addition to the sections in Figure 8, there were
also several service specific rules. For example, several services
enforced a whitelist of addresses for their instances in the Edge
ACL. There were also several deny rules interspersed at several
places in the ACL to mitigate zero day attacks. All the changes
together resulted in the ACL growing to several thousand lines.
The semantics and the size together made it difficult for engineers
to assess the impact of changes to the ACL manually. As a result,
we had a few availability issues from misconfiguring the ACL.

We had to refactor the ACL to make it more manageable. The in-
tent for the new ACL was to only enforce private address isolation,
anti-spoofing protection, and protections common for all services.

0 20 40 60 80 100 120

0

200

400

600

800

Days

Li
ne

m
od

ifi
ca
tio

ns

Lines added
Lines deleted

Total lines changed

Figure 11: Managing the complexity of a legacy ACL.

Service specific protections would be moved to end-host mecha-
nisms such as host firewalls. The scope of the change was huge
because the ACL impacts nearly every service in Azure. A simple
typo could potentially cause several services to be inaccessible. We
needed a methodology for safely transitioning the current ACL to
the new ACL without causing any negative impact for any service.

Our methodology was to design a phased plan for refactoring
the ACL. The idea was to incrementally transform the ACL to
the expected goal state. We designed each change to consist of
a set of prechecks, the change, postchecks, and finally a rollback
methodology if the postchecks fail. Prechecks are to ensure that
the change, if performed on the actual device, would result in an
new ACL that preserves the intent. Failing prechecks must provide
information to help fix the error in the change. Postchecks are to
ensure that the change leaves the production device in the expected
state. The production devices are partitioned into distinct groups,
and the change is deployed in one group at a time. Successful
postchecks in a group are a precondition for deploying the change in
the next group. Deploying the change in groups helps in limiting the
impact from misconfigurations to a subset of services. For example,
partitions can be designed based on devices supporting a particular
region.

We leveraged SecGuru to perform prechecks and postchecks.
SecGuru consumes the device configuration extracted from the
device, the name of the ACL, and a set of contracts. Each contract
expressed a reachability invariant such as private datacenter ad-
dresses must not be reachable from the Internet or a list of services
that must be reachable on port 80 and 443 from the Internet. These
contracts are essentially a set of regression tests for the ACL. The
prechecks were designed to be executed on a test network device.
The test network device was first configured with the existing ACL
and then re-configured with the new ACL. The new configura-
tion that incorporated the modified ACL was then fed as input to
SecGuru along with the contracts. This methodology allowed us to

209

Validating Datacenters At Scale SIGCOMM ’19, August 19–23, 2019, Beijing, China

0 50 10
0

15
0

20
0

25
0

30
0

0

0.2

0.4

0.6

0.8

1

Days

Cu
st
om

er
Re

po
rt
ed

Er
ro
rs

Figure 12: Burndown graph of customer issues.

validate that the effective ACL after making the change preserves
all the contracts. For example, if resource limitations on the device
cause certain additional rules to be ignored, then the effective ACL
in the configuration would violate the contracts. If all the prechecks
pass, then the change was deployed on the production device. With
each refactoring step, we added additional contracts to cover the
most recent updates. We deployed SecGuru in our production mon-
itoring service to perform the checks on every production device
on demand. These became our post-checks.

Figure 11 describes the changes that we performed on the ACL.
Each change incrementally deleted several rules that were either
unnecessary or redundant, and also added new rules as necessary.
The prechecks we deployed helped us identify several misconfigura-
tions whenmaking these changes. For example, pre-checks detected
typos, such as incorrect prefixes, that caused several services to
be unreachable. In the absence of prechecks, these changes would
have caused an outage. In the end, we were able to reduce the ACL
to less than 1000 lines without outages or business impact.

3.4 Safeguarding Network Security Groups

In a recent experience, Azure released a new cloud-based fully
managed database solution. In an on-premises network, customers
would deploy and manage their own private database services and
the applications that interact with them. Customers would deploy
their applications in virtual networks and purchase a managed ser-
vice instance of the database that would be automatically deployed
in their virtual networks. A distinguishing feature of the managed
database is that it would periodically backup data. The backup is
initiated and orchestrated by an infrastructure service that is not
part of the virtual network. Therefore, a critical requirement is
that the database instance must be able to reach the infrastructure
service. A common problem was that customers were inadvertently
misconfiguring the NSGs applied to their virtual networks and
blocking access to the infrastructure service. As a result, the peri-
odic backups were failing. All such issues reported by customers
were diagnosed to NSG policies that were blocking access.

Customers who were making changes to the NSG policies were
not aware that they were blocking database backups. The first
applicable semantics of NSGs made it hard for operators to reason
about such policies comprising several hundred rules. For some
enterprise customers, different teamsmanaged the NSG policies and
database services, and the team changing the NSG policies didn’t
know that they were blocking database backup. Thus, a customer
requirement emerged to prevent changes to NSG policies that block
database backups. Azure infrastructure has access to metadata
about all service addresses and whether the virtual network of a
customer included a database instance. Both these facts could be
leveraged for blocking unsafe changes to the NSG policies, and
avoid database backups from failing.

We extended SecGuru to analyze NSG policies. The analysis
engine would take as input a NSG policy and a set of reachability
invariants, and produce as output a status report with errors. The
report contains a list of invariants that failed, and for each invariant
that failed the specific rule in the NSG that caused the failure is also
enumerated. The list is empty if all invariants pass. We integrated
SecGuru validation into the API for changing NSG policies. We
designed service infrastructure to automatically add contracts for
ensuring reachability of the database instance with infrastructure
services. The API was designed to validate these contracts against
the new policy and fail with an error message if the new policy
could block database backups.

Figure 12 illustrates the rising trend of customer reported issues
relating to misconfigured NSG policies that blocked reachability
between the database instance and infrastructure service. When the
managed database instance service was initially launched, we saw
a steep increase in customer reported issues; since incorporating
SecGuru into the validation API, we observed a steep decrease
in such customer reported issues (around day 100 in the graph).
Fluctuations in the number of reported incidents are based on
customer volume and the adoption rate of the NSG checker.

3.5 Validating Distributed Firewalls

Azure enforces a common set of restrictions for every virtual ma-
chine. These restrictions ensure that guest virtual machines have
no access to infrastructure services, and are also isolated from one
another. These common restrictions are specified using a configura-
tion file and are automatically derived from a template. A problem
we encountered in the past is that bugs in the automation or policy
changes have resulted in restrictions being omitted in deployments.

We extracted a set of contracts that specify our security policy
for the common restrictions. The firewall policies described in the
configuration file follow the deny overrides semantics. We extended
SecGuru to model these policies, and incorporated the checking of
policies in automation that gates deployments of policies to only
those that pass validation. Incorporating validation as part of the
deployment process eradicated the previous case when restrictions
would accidentally be omitted.

3.6 Assumptions and Limitations

The functionality of SecGuru is generic to network access re-
strictions. Variants of SecGuru have since 2013 been developed
independently by network operators and researchers outside of

210

SIGCOMM ’19, August 19–23, 2019, Beijing, China Jayaraman et al.

Azure. Our use cases for SecGuru did so far not involve checking
combinations of firewall policies across devices. Potentially inter-
esting scenarios, such as checking customer virtual networks in
context of routing rules are simple extensions, but not in scope for
this paper.

4 RELATEDWORK

Checking forwarding and network access restrictions has long been
a central theme in engineering networks in datacenters, corporate,
campus and wide-area networks.

The seminal work in [46] introduces methodologies for statically
checking reachability properties in IP networks. Assuming that IP
forwarding rules induce a small graph, the different modalities, may
and must-reachability, are solved using graph algorithms. As for-
warding rules are typically formulated using masks on IP headers,
tools based on symbolic SAT solvingwere proposed in [32] such that
a potentially exponential number of forwarding behaviors could
be analyzed. To address scalability and performance, this work was
followed by tailored data-structures and algorithms [22, 23, 30] and
with further optimizations to solve reachability properties under
incremental network updates [21, 50]. These approaches handle
incremental updates efficiently as they compute the effect of up-
dates within smaller slices. A number of commercial products for
global reachability checks have emerged from [13, 22, 23]. Related
to these approaches, the Tiros system at AWS [14] addresses cus-
tomer network configurations by applying both SAT and Datalog
engines for global reachability checks.

A complementary, related, line of work considers consistent
incremental updates to networks, such that the transition from
one network forwarding state to another is transactional [9, 35,
42]. Meanwhile, [47] made a central observation that forwarding
behavior can often be partitioned into relatively few equivalence
classes, such that IP headers within each equivalence class enjoy the
same forwarding behavior. This insight enabled another perspective
on handling forwarding in IP networks by pre-processing, and
then relying on methods in line with [46] for checking reachability
properties. Further coalescing of forwarding behavior was shown
to be possible by considering symmetries and bisimulations in
datacenter networks [41] and in control plane configurations [4]. A
common assumption in all these approaches is the quest for tools
that can automatically discover network structure and perform
global network analysis on networks. Our starting point, on the
other hand, is a fixed datacenter design, where routers are classified
to have fixed roles and forwarding behavior follows pre-defined
patterns, even in the presence of faults.

Early tools for checking network access restrictions applied sim-
ulation, such as the commercial firewall analyzer AlgoSec [2] based
on Fang [34] and its successor Lumeta [45]. They let administra-
tors answer queries involving router and firewall configurations.
Extending simulation, [26] proposes a structured firewall query lan-
guage, supported by trie-based data-structures. Subsequent tools
also used specialized algorithms and data-structures, such as Van-
tage [5, 6, 16, 18, 33] corresponding to variants of binary decision
diagrams [8] or intervals. Tools that use declarative encodings and
logic-based solvers have emerged in the past decade and found their

way into startups and the major cloud providers. Declarative meth-
ods were used in [36, 37], first using logic programming tools, and
in subsequent work using SMT solvers. The Margrave firewall anal-
ysis engine [38] encodes firewall rules and queries into first-order
logic and uses the KodKod relational algebra solver based on propo-
sitional SAT technologies. Firewall rules are encoded into integer
linear arithmetic available in SMT solvers in [48]. Recent advances
involves SAT and SMT based logic engines to synthesize or repair
firewall policies and even control plane policies [7, 10, 12, 19, 40, 51].
A key distinction of our work is that we automatically extract intent
based on architecture and metadata, and incorporate checking into
change processes and deployment workflows.

5 CONCLUSION

This paper addresses dataplane verification in large datacenters and
is used as an integral part of configuration and monitoring. The
journey that led us to our approach started in an era where datacen-
ter designs were still evolving, and of-the-shelf tools for verifying
configurations were in an infancy. The experiences described in this
paper were part of the journey: as new services were added, new
failure scenarios were revealed and in the cases documented here
mapped to validation with RCDC or SecGuru. A central question
included what is the network intent and how is it captured?. Once
addressed, the operational aspect becomes important: where does
verification fit into the DevOps pipeline: with pre-checks, as part of
live monitoring, or as a tool for evolving legacy policies? The final
component of our quest is flexibility and scalability by using ef-
ficient theorem provers that work over formalisms that are easy
to map into from configurations and specifications, and identify-
ing structural properties that enable local scalable techniques that
tackle the main queries of interest in the datacenters. We claim
that our approaches transfer beyond the setting described in this
paper, but note that the underlying claim for the effectiveness of
SecGuru and RCDC relies on the assumption that important and
even system-wide correctness properties can be checked locally
by inspecting device configurations in isolation. For the viability
of local methods we assumed that network architectures remain
mostly fixed, while network state could change at variable rates.
Several opportunities for checking network configurations abound.
For example, an extension to WAN properties could catch issues
with peering, but checking theWAN is riddled with new challenges:
routing tables are order of magnitudes larger than for datacenters
impeding downloads and analysis and relevant intent is different.

The quest for global network verification dominance continues.

ACKNOWLEDGMENTS

We would like to thank the reviewers, our shepherd Minlan Yu,
Ryan Beckett, and Kevin Schoonover for their very constructive and
useful feedback that helped improve the paper in several ways. We
would also like to thank Monica Machado who provided both initial
inspiration for the design of RCDC and involvement in designing
the datacenter contracts; Charlie Kaufman and Geoff Outhred for
their influence on the design of SecGuru; Sreenivas Addagatla for
architectural guidance; and for numerous interactions with Nuno
Lopes and Andrey Rybalchenko around validation of configurations
produced by the Network Logic Solver.

211

Validating Datacenters At Scale SIGCOMM ’19, August 19–23, 2019, Beijing, China

REFERENCES

[1] Hrishikesh B. Acharya and Mohamed G. Gouda. 2009. Linear-Time Verification
of Firewalls. In ICNP. 133–140.

[2] Algorithmic Security Inc. 2006. Firewall Analyzer: Make your firewall really safe.
www.algosec.com (Whitepaper).

[3] Shrutarshi Basu, Nate Foster, Hossein Hojjat, Paparao Palacharla, Christian
Skalka, and Xi Wang. 2017. Life on the Edge: Unraveling Policies into Con-
figurations. In ACM/IEEE Symposium on Architectures for Networking and Com-
munications Systems, ANCS 2017, Beijing, China, May 18-19, 2017. 178–190.

[4] Ryan Beckett, Aarti Gupta, Ratul Mahajan, and DavidWalker. 2018. Control plane
compression. In Proceedings of the 2018 Conference of the ACM Special Interest
Group on Data Communication, SIGCOMM 2018, Budapest, Hungary, August 20-25,
2018. 476–489.

[5] Sandeep Bhatt, Cat Okita, and Prasad Rao. 2008. Fast, Cheap, and in Control:
Towards Pain-Free Security. In USENIX Systems Administration Conference. 75–
90.

[6] Sandeep Bhatt and Prasad Rao. 2007. Enhancements to the Vantage Firewall
Analyzer. Technical Report HPL-2007-154R1. HP Laboratories.

[7] Chiara Bodei, Pierpaolo Degano, Letterio Galletta, Riccardo Focardi, Mauro Tem-
pesta, and Lorenzo Veronese. 2018. Language-Independent Synthesis of Firewall
Policies. In 2018 IEEE European Symposium on Security and Privacy, EuroS&P 2018,
London, United Kingdom, April 24-26, 2018. 92–106.

[8] Randal E. Bryant. 1992. Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams. ACM Comput. Surv. 24, 3 (1992), 293–318.

[9] Pavol Cerný, Nate Foster, Nilesh Jagnik, and Jedidiah McClurg. 2016. Optimal
Consistent Network Updates in Polynomial Time. In Distributed Computing -
30th International Symposium, DISC 2016, Paris, France, September 27-29, 2016.
Proceedings. 114–128.

[10] Haoxian Chen, Anduo Wang, and Boon Thau Loo. 2018. Towards Example-
Guided Network Synthesis. In Proceedings of the 2nd Asia-Pacific Workshop on
Networking, APNet 2018, Beijing, China, August 02-03, 2018. 65–71.

[11] L. de Moura and N. Bjørner. 2008. Z3: An Efficient SMT Solver. In TACAS 08.
[12] Ahmed El-Hassany, Petar Tsankov, Laurent Vanbever, and Martin T. Vechev.

2017. Network-Wide Configuration Synthesis. In Computer Aided Verification -
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part II. 261–281.

[13] Ari Fogel, Stanley Fung, Luis Pedrosa, Meg Walraed-Sullivan, Ramesh Govindan,
Ratul Mahajan, and Todd D. Millstein. 2015. A General Approach to Network
Configuration Analysis. In 12th USENIX Symposium on Networked Systems Design
and Implementation, NSDI 15, Oakland, CA, USA, May 4-6, 2015. USENIX Associa-
tion, 469–483. https://www.usenix.org/conference/nsdi15/technical-sessions/
presentation/fogel

[14] Andrew Gacek, John Backes, Byron Cook, Neha Rungta, Sam Bayless, Catherine
Dodge, Carsten Varming, Alan Hu, Bill Kocik, Evgenii Kotelnikov, Jure Kukovec,
Sean McLaughlin, Jason Reed, John Sizemore, Mark Stalzer, Preethi Srinivasan,
Pavle Subotic, Blake Whaley, Yiwen Wu, and Temesghen Kahsai. 2019. Reacha-
bility Analysis for AWS-based Networks. In Computer Aided Verification - 31st
International Conference, CAV.

[15] Sergey Gorinsky and János Tapolcai (Eds.). 2018. Proceedings of the 2018 Confer-
ence of the ACM Special Interest Group on Data Communication, SIGCOMM 2018,
Budapest, Hungary, August 20-25, 2018. ACM. http://dl.acm.org/citation.cfm?id=
3230543

[16] Mohamed G. Gouda and Alex X. Liu. 2007. Structured firewall design. Computer
Networks 51, 4 (2007), 1106–1120.

[17] Albert Greenberg, James R. Hamilton, Navendu Jain, Srikanth Kandula,
Changhoon Kim, Parantap Lahiri, David A. Maltz, Parveen Patel, and Sudipta
Sengupta. 2009. VL2: A Scalable and Flexible Data Center Network. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data Communication (SIGCOMM ’09).
ACM, New York, NY, USA, 51–62.

[18] Swati Gupta, Kristen LeFevre, and Atul Prakash. 2009. SPAN: a unified framework
and toolkit for querying heterogeneous access policies. In HotSec. USENIX, 5–5.

[19] William T. Hallahan, Ennan Zhai, and Ruzica Piskac. 2017. Automated repair by
example for firewalls. In 2017 Formal Methods in Computer Aided Design, FMCAD
2017, Vienna, Austria, October 2-6, 2017. 220–229.

[20] Andrew Helwer. 2018. Z3Prover/FirewallChecker. https://github.com/Z3Prover/
FirewallChecker

[21] Alex Horn, Ali Kheradmand, and Mukul R. Prasad. 2017. Delta-net: Real-time
Network Verification Using Atoms. In 14th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2017, Boston, MA, USA, March 27-29,
2017. 735–749.

[22] Peyman Kazemian, Michael Chan, Hongyi Zeng, George Varghese, Nick McKe-
own, and Scott Whyte. 2013. Real Time Network Policy Checking Using Header
Space Analysis. In Proceedings of the 10th USENIX Symposium on Networked
Systems Design and Implementation, NSDI 2013, Lombard, IL, USA, April 2-5, 2013.
99–111.

[23] Ahmed Khurshid, Xuan Zou, Wenxuan Zhou, Matthew Caesar, and P. Brighten
Godfrey. 2013. VeriFlow: Verifying Network-Wide Invariants in Real Time. In

Presented as part of the 10th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 13). USENIX, Lombard, IL, 15–27. https://www.usenix.
org/conference/nsdi13/technical-sessions/presentation/khurshid

[24] Petr Lapukhov, Ariff Premji, and Jon Mitchell. 2016. Use of BGP for Routing in
Large-Scale Data Centers. RFC 7938. https://doi.org/10.17487/RFC7938

[25] Andrew Lerner. 2017. Intent-based Networking. https://blogs.gartner.com/
andrew-lerner/2017/02/07/intent-based-networking

[26] Alex X. Liu, Mohamed G. Gouda, Huibo H. Ma, and Anne H. H. Ngu. 2004.
Firewall Queries. In International Conference On Principles Of DIstributed Systems.
197–212.

[27] Hongqiang Harry Liu, Yibo Zhu, Jitu Padhye, Jiaxin Cao, Sri Tallapragada, Nuno P.
Lopes, Andrey Rybalchenko, Guohan Lu, and Lihua Yuan. 2017. CrystalNet:
Faithfully Emulating Large Production Networks. In Proceedings of the 26th
Symposium on Operating Systems Principles, Shanghai, China, October 28-31, 2017.
ACM, 599–613. https://doi.org/10.1145/3132747.3132759

[28] Jed Liu, William Hallahan, Cole Schlesinger, Milad Sharif, Jeongkeun Lee, Robert
Soulé, Han Wang, Calin Cascaval, Nick McKeown, and Nate Foster. 2018. p4v:
practical verification for programmable data planes, See [15], 490–503. https:
//doi.org/10.1145/3230543.3230582

[29] Nuno Lopes. [n. d.]. Cloud Topology Generator. http://web.ist.utl.pt/nuno.lopes/
netverif/netverif-scripts-0.2.tar.bz2

[30] Nuno P. Lopes, Nikolaj Bjørner, Patrice Godefroid, Karthick Jayaraman, and
George Varghese. 2015. Checking Beliefs in Dynamic Networks. In 12th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 15, Oakland,
CA, USA, May 4-6, 2015. 499–512.

[31] Nuno P. Lopes and Andrey Rybalchenko. 2019. Fast BGP Simulation of Large Dat-
acenters. In Verification, Model Checking, and Abstract Interpretation - 20th Interna-
tional Conference, VMCAI 2019, Cascais, Portugal, January 13-15, 2019, Proceedings
(Lecture Notes in Computer Science), Constantin Enea and Ruzica Piskac (Eds.),
Vol. 11388. Springer, 386–408. https://doi.org/10.1007/978-3-030-11245-5_18

[32] Haohui Mai, Ahmed Khurshid, Rachit Agarwal, Matthew Caesar, Brighten God-
frey, and Samuel Talmadge King. 2011. Debugging the data plane with anteater. In
Proceedings of the ACM SIGCOMM 2011 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications, Toronto, ON, Canada,
August 15-19, 2011. 290–301.

[33] Robert M. Marmorstein and Phil Kearns. 2005. An Open Source Solution for
Testing NAT’d and Nested iptables Firewalls. In LISA. 103–112.

[34] Alain J. Mayer, Avishai Wool, and Elisha Ziskind. 2000. Fang: A Firewall Analysis
Engine. In IEEE Symposium on Security and Privacy. 177–187.

[35] Jedidiah McClurg, Hossein Hojjat, Pavol Cerný, and Nate Foster. 2015. Efficient
synthesis of network updates. In Proceedings of the 36th ACM SIGPLAN Conference
on Programming Language Design and Implementation, Portland, OR, USA, June
15-17, 2015. 196–207.

[36] Sanjai Narain, Gary Levin, Sharad Malik, and Vikram Kaul. 2008. Declarative
Infrastructure Configuration Synthesis and Debugging. J. Netw. Syst. Manage.
16, 3 (Sept. 2008), 235–258.

[37] Sanjai Narain, Rajesh Talpade, and Gary Levin. 2009. Network Configuration Val-
idation. In Guide to Reliable Internet Services and Application, Charles Kalmanek,
Richard Yang, and Sudip Misra (Eds.).

[38] Timothy Nelson, Christopher Barratt, Daniel J. Dougherty, Kathi Fisler, and
Shriram Krishnamurthi. 2010. The margrave tool for firewall analysis. In LISA.
USENIX Association, Berkeley, CA, USA, 1–8.

[39] Aurojit Panda, Ori Lahav, Katerina J. Argyraki, Mooly Sagiv, and Scott Shenker.
2017. Verifying Reachability in Networks withMutable Datapaths. In 14th USENIX
Symposium on Networked Systems Design and Implementation, NSDI 2017, Boston,
MA, USA, March 27-29, 2017, Aditya Akella and Jon Howell (Eds.). USENIX Asso-
ciation, 699–718. https://www.usenix.org/conference/nsdi17/technical-sessions/
presentation/panda-mutable-datapaths

[40] Ruzica Piskac. 2018. New Applications of Software Synthesis: Verification of
Configuration Files and Firewall Repair. In Static Analysis - 25th International
Symposium, SAS 2018, Freiburg, Germany, August 29-31, 2018, Proceedings. 71–76.

[41] Gordon D. Plotkin, Nikolaj Bjørner, Nuno P. Lopes, Andrey Rybalchenko, and
George Varghese. 2016. Scaling network verification using symmetry and surgery.
In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL 2016, St. Petersburg, FL, USA, January 20 - 22,
2016. 69–83.

[42] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. 2011. Consistent
updates for software-defined networks: change you can believe in!. In Tenth ACM
Workshop on Hot Topics in Networks (HotNets-X), HOTNETS ’11, Cambridge, MA,
USA - November 14 - 15, 2011. 7.

[43] Radu Stoenescu, Dragos Dumitrescu, Matei Popovici, Lorina Negreanu, and
Costin Raiciu. 2018. Debugging P4 programs with vera, See [15], 518–532. https:
//doi.org/10.1145/3230543.3230548

[44] George Varghese. 2015. Technical Perspective: Treating Networks Like Programs.
Commun. ACM 58, 11 (Oct. 2015), 112–112. https://doi.org/10.1145/2823394

[45] Avishai Wool. 2001. Architecting the Lumeta Firewall Analyzer. In Proceedings
of the 10th Conference on USENIX Security Symposium - Volume 10 (SSYM’01).
USENIX Association, Berkeley, CA, USA, Article 7.

212

www.algosec.com
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
https://www.usenix.org/conference/nsdi15/technical-sessions/presentation/fogel
http://dl.acm.org/citation.cfm?id=3230543
http://dl.acm.org/citation.cfm?id=3230543
https://github.com/Z3Prover/FirewallChecker
https://github.com/Z3Prover/FirewallChecker
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/khurshid
https://doi.org/10.17487/RFC7938
https://blogs.gartner.com/andrew-lerner/2017/02/07/intent-based-networking
https://blogs.gartner.com/andrew-lerner/2017/02/07/intent-based-networking
https://doi.org/10.1145/3132747.3132759
https://doi.org/10.1145/3230543.3230582
https://doi.org/10.1145/3230543.3230582
http://web.ist.utl.pt/nuno.lopes/netverif/netverif-scripts-0.2.tar.bz2
http://web.ist.utl.pt/nuno.lopes/netverif/netverif-scripts-0.2.tar.bz2
https://doi.org/10.1007/978-3-030-11245-5_18
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-mutable-datapaths
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/panda-mutable-datapaths
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/3230543.3230548
https://doi.org/10.1145/2823394

SIGCOMM ’19, August 19–23, 2019, Beijing, China Jayaraman et al.

[46] Geoffrey G. Xie, Jibin Zhan, David A. Maltz, Hui Zhang, Albert G. Greenberg,
Gísli Hjálmtýsson, and Jennifer Rexford. 2005. On static reachability analysis of IP
networks. In INFOCOM 2005. 24th Annual Joint Conference of the IEEE Computer
and Communications Societies, 13-17 March 2005, Miami, FL, USA. 2170–2183.

[47] Hongkun Yang and Simon S. Lam. 2016. Real-Time Verification of Network
Properties Using Atomic Predicates. IEEE/ACM Trans. Netw. 24, 2 (2016), 887–
900.

[48] N. Ben Souayeh Ben Youssef and Adel Bouhoula. 2010. Automatic Conformance
Verification of Distributed Firewalls to Security Requirements. In IEEE ICSC.
834–841.

[49] Arseniy Zaostrovnykh, Solal Pirelli, Luis Pedrosa, Katerina J. Argyraki, and
George Candea. 2017. A Formally Verified NAT. In Proceedings of the Conference

of the ACM Special Interest Group on Data Communication, SIGCOMM 2017, Los
Angeles, CA, USA, August 21-25, 2017. 141–154.

[50] Hongyi Zeng, Shidong Zhang, Fei Ye, Vimalkumar Jeyakumar, Mickey Ju, Junda
Liu, Nick McKeown, and Amin Vahdat. 2014. Libra: Divide and Conquer to
Verify Forwarding Tables in Huge Networks. In 11th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 14). USENIX Association, Seat-
tle, WA, 87–99. https://www.usenix.org/conference/nsdi14/technical-sessions/
presentation/zeng

[51] Shuyuan Zhang, Abdulrahman Mahmoud, Sharad Malik, and Sanjai Narain. 2012.
Verification and synthesis of firewalls using SAT and QBF. In ICNP. 1–6.

213

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/zeng
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/zeng

	Abstract
	1 Introduction
	2 Forwarding Behavior
	2.1 Datacenter Network Architecture
	2.2 Forwarding Information Base
	2.3 Reality and Intent
	2.4 Local Validation
	2.5 Verification Engine
	2.6 Live Monitoring of Forwarding Behavior
	2.7 Preventing Dangerous Changes
	2.8 Assumptions and Limitations

	3 Network Connectivity Restrictions
	3.1 Background
	3.2 Verification Engine
	3.3 Managing Legacy Policies
	3.4 Safeguarding Network Security Groups
	3.5 Validating Distributed Firewalls
	3.6 Assumptions and Limitations

	4 Related Work
	5 Conclusion
	Acknowledgments
	References

