
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE/ACM TRANSACTIONS ON NETWORKING 1

P4xos: Consensus as a Network Service
Huynh Tu Dang, Pietro Bressana, Han Wang, Member, IEEE, Ki Suh Lee ,

Noa Zilberman, Senior Member, IEEE, Hakim Weatherspoon,

Marco Canini, Member, IEEE, ACM, Fernando Pedone, and Robert Soulé

Abstract— In this paper, we explore how a programmable
forwarding plane offered by a new breed of network switches
might naturally accelerate consensus protocols, specifically focus-
ing on Paxos. The performance of consensus protocols has long
been a concern. By implementing Paxos in the forwarding plane,
we are able to significantly increase throughput and reduce
latency. Our P4-based implementation running on an ASIC in
isolation can process over 2.5 billion consensus messages per sec-
ond, a four orders of magnitude improvement in throughput
over a widely-used software implementation. This effectively
removes consensus as a bottleneck for distributed applications
in data centers. Beyond sheer performance, our approach offers
several other important benefits: it readily lends itself to formal
verification; it does not rely on any additional network hardware;
and as a full Paxos implementation, it makes only very weak
assumptions about the network.

Index Terms— Fault tolerance, reliability, availability, network
programmability (SDN/NFV/in-network computing).

I. INTRODUCTION

IN THE past, we thought of the network as being simple,
fixed, and providing little functionality besides communi-

cation. However, this appears to be changing, as a new breed
of programmable switches match the performance of fixed
function devices [6], [57]. If this trend continues—as has
happened in other areas of the industry, such as GPUs, DSPs,
TPUs— then fixed function switches will soon be replaced by
programmable ones.

Manuscript received November 29, 2018; revised December 4, 2019 and
February 14, 2020; accepted April 27, 2020; approved by IEEE/ACM
TRANSACTIONS ON NETWORKING Editor Y. Guan. This work was supported
in part by the Leverhulme Trust under Grant ECF-2016-289, in part by
the Isaac Newton Trust, in part by the Swiss National Science Foundation
under Grant 200021_166132, in part by Western Digital, and in part by the
European Union’s Horizon 2020 Research and Innovation Program through
the ENDEAVOUR Project under Grant 644960. (Corresponding author:
Robert Soulé.)

Huynh Tu Dang is with Western Digital Technologies, Inc., Milpitas,
CA 95035 USA (e-mail: tu.dang@wdc.com).

Pietro Bressana and Fernando Pedone are with the Faculty of Informatics,
Università della Svizzera Italiana, 6904 Lugano, Switzerland.

Han Wang is with Intel Corporation, Santa Clara, CA 95054 USA.
Ki Suh Lee is with The Mode Group, San Francisco, CA 94134 USA.
Noa Zilberman is with the Department of Engineering Science, University

of Oxford, Oxford OX1 3PJ, U.K.
Hakim Weatherspoon is with the Department of Computer Science, Cornell

University, Ithaca, NY 14853 USA.
Marco Canini is with the Computer, Electrical and Mathematical Science

and Engineering Division (CEMSE), King Abdullah University of Science
and Technology (KAUST), Thuwal 23955, Saudi Arabia.

Robert Soulé is with the Department of Computer Science, Yale University,
New Haven, CT 06511 USA (e-mail: robert.soule@yale.edu).

Digital Object Identifier 10.1109/TNET.2020.2992106

Leveraging this trend, several recent projects have explored
ways to improve the performance of consensus protocols by
folding functionality into the network. Consensus protocols
are a natural target for network offload since they are both
essential to a broad range of distributed systems and services
(e.g., [7], [8], [54]), and widely recognized as a performance
bottleneck [16], [23].

Beyond the motivation for better performance, there is
also a clear opportunity. Since consensus protocols critically
depend on assumptions about the network [28], [34], [44],
[45], they can clearly benefit from tighter network integration.
Most prior work optimizes consensus protocols by strength-
ening basic assumptions about the behavior of the network,
e.g., expecting that the network provides reliable delivery
(e.g., Reed and Junqueira [49]) or ordered delivery (e.g.,
Fast Paxos [28], Speculative Paxos [48], and NOPaxos [30]).
István et al. [19], which demonstrated consensus acceleration
on FPGA, assumed lossless and strongly ordered commu-
nication. Somewhat similarly, Eris [29] uses programmable
switches to sequence transactions, thereby avoiding aborts.

This paper proposes an alternative approach. Recognizing
that strong assumptions about delivery may not hold in prac-
tice, or may require undesirable restrictions (e.g., enforcing
a particular topology [48]), we demonstrate how a program-
mable forwarding plane can naturally accelerate consensus
protocols without strengthening assumptions about the behav-
ior of the network. The key idea is to execute Paxos [24] logic
directly in switch ASICs. Inspired by the name of the network
data plane programming language we used to implement our
prototype, P4 [5], we call our approach P4xos.

Despite many attempts to optimize consensus [2], [27],
[28], [34], [37], [43], [48], [49], performance remains a prob-
lem [23]. There are at least two challenges for performance.
One is the protocol latency, which seems to be fundamental:
Lamport proved that in general it takes at least 3 communica-
tion steps to order messages in a distributed setting [26], where
a step means server-to-server communication. The second is
high packet rate, since Paxos roles must quickly process a
large number of messages to achieve high throughput.

P4xos addresses both of these problems. First, P4xos
improves latency by processing consensus messages in the
forwarding plane as they pass through the network, reduc-
ing the number of hops, both through the network and
through hosts, that messages must travel. Moreover, process-
ing packets in hardware helps reduce tail latency. Trying to
curtail tail latency in software is quite difficult, and often
depends on kludges (e.g., deliberately failing I/O operations).

1063-6692 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6419-2329
https://orcid.org/0000-0002-2825-6660

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE/ACM TRANSACTIONS ON NETWORKING

Second, P4xos improves throughput, as ASICs are designed
for high-performance message processing. In contrast, server
hardware is inefficient in terms of memory throughput and
latency, and there is additional software overhead due to mem-
ory management and safety features, such as the separation of
kernel- and user-space memory [14].

P4xos is a network service deployed in existing switching
devices. It does not require dedicated hardware. There are
no additional cables or power requirements. Consensus is
offered as a service to the system without adding additional
hardware beyond what would already be deployed in a data
center. Second, using a small shim-library, applications can
immediately use P4xos without modifying their application
code, or porting the application to an FPGA [19]. P4xos is
a drop-in replacement for software-based consensus libraries
offering a complete Paxos implementation.

P4xos provides significant performance improvements com-
pared with traditional implementations. In a data center
network, P4xos reduces the latency by ×3, regardless the
ASIC used. In a small scale, FPGA-based, deployment, P4xos
reduced the 99th latency by ×10, for a given throughput.
In terms of throughput, our implementation on Barefoot Net-
work’s Tofino ASIC chip [6] can process over 2.5 billion
consensus messages per second, a four orders of magnitude
improvement. An unmodified instance of LevelDB, running
on our small scale deployment, achieved ×4 throughput
improvement.

Besides sheer performance gains, our use of P4 offers
an additional benefit. By construction, P4 is not a
Turing-complete language—it excludes looping constructs,
which are undesirable in hardware pipelines—and as a result
is particularly amenable to verification by bounded model
checking. We have verified our implementation using the SPIN
model checker, giving us confidence in the correctness of the
protocol.

In short, this paper makes the following contributions:
• It describes a re-interpretation of the Paxos protocol, as an

example of how one can map consensus protocol logic
into stateful forwarding decisions, without imposing any
constraints on the network.

• It presents an open-source implementation of Paxos with
at least ×3 latency improvement and 4 orders of mag-
nitude throughput improvement vs. host based consensus
in data centers.

• It shows that the services can run in parallel to traditional
network operations, while using minimal resources and
without incurring hardware overheads (e.g., accelerator
boards, more cables) leading to a more efficient usage of
the network.

In a previous workshop paper [12], we presented a highly-
annotated version of the P4 source-code for phase 2 of the
Paxos protocol. This paper builds on that prior work in two
respects. First, it describes a complete Paxos implementation
for the data plane, including both phases 1 and 2. Second,
it provides a thorough evaluation that quantifies the resource
usage and performance of P4xos.

Overall, P4xos effectively removes consensus as a bottle-
neck for replicated, fault-tolerant services in a data center,

and shifts the limiting factor for overall performance to
the application. Moreover, it shows how distributed systems
can become distributed networked systems, with the network
performing services traditionally running on the host.

II. PAXOS PERFORMANCE BOTTLENECKS

We focus on Paxos [24] for three reasons. First, it makes
very few assumptions about the network (e.g., point-to-point
packet delivery and the election of a non-faulty leader), making
it widely applicable to a number of deployment scenarios.
Second, it has been proven correct (e.g., safe under asynchro-
nous assumptions, live under weak synchronous assumptions,
and resilience-optimum [24]). And, third, it is deployed in
numerous real-world systems, including Microsoft Azure Stor-
age [8], Ceph [54], and Chubby [7].

A. Paxos Background

Paxos is used to solve a fundamental problem for distributed
systems: getting a group of participants to reliably agree
on some value (e.g., the next valid application state). Paxos
distinguishes the following roles that a process can play:
proposers, acceptors and learners (leaders are introduced
later). Clients of a replicated service are typically proposers,
and propose commands that need to be ordered by Paxos
before they are learned and executed by the replicated state
machines. Replicas typically play the roles of acceptors (i.e.,
the processes that actually agree on a value) and learners.
Paxos is resilience-optimum in the sense that it tolerates the
failure of up to f acceptors from a total of 2f + 1 acceptors,
where a quorum of f + 1 acceptors must be non-faulty [26].
In practice, replicated services run multiple executions of
the Paxos protocol to achieve consensus on a sequence of
values [9] (i.e., multi-Paxos). An execution of Paxos is called
an instance.

An instance of Paxos proceeds in two phases. During
Phase 1, a proposer that wants to submit a value selects a
unique round number and sends a prepare request to at least
a quorum of acceptors. Upon receiving a prepare request with
a round number bigger than any previously received round
number, the acceptor responds to the proposer promising that
it will reject any future requests with smaller round numbers.
If the acceptor already accepted a request for the current
instance, it will return the accepted value to the proposer,
together with the round number received when the request was
accepted. When the proposer receives answers from a quorum
of acceptors, the second phase begins.

In Phase 2, the proposer selects a value according to the
following rule. If no value is returned in the responses,
the proposer can select a new value for the instance; however,
if any of the acceptors returned a value in the first phase,
the proposer must select the value with the highest round
number among the responses. The proposer then sends an
accept request with the round number used in the first phase
and the value selected to the same quorum of acceptors.
When receiving such a request, the acceptors acknowledge
it by sending the accepted value to the learners, unless the
acceptors have already acknowledged another request with a

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DANG et al.: P4xos: CONSENSUS AS A NETWORK SERVICE 3

Fig. 1. Leader bottleneck.

higher round number. When a quorum of acceptors accepts a
value consensus is reached.

If multiple proposers simultaneously execute the procedure
above for the same instance, then no proposer may be able to
execute the two phases of the protocol and reach consensus.
To avoid scenarios in which proposers compete indefinitely,
a leader process can be elected. Proposers submit values to
the leader, which executes the first and second phases of the
protocol. If the leader fails, another process takes over its
role. Paxos ensures (i) consistency despite concurrent leaders
and (ii) progress in the presence of a single leader.

B. Performance Obstacles

Given the central role that Paxos plays in fault-tolerant,
distributed systems, improving the performance of the pro-
tocol has been an intense area of study. From a high-level,
there are performance obstacles that impact both latency and
throughput.

Protocol Latency: The performance of Paxos is typically
measured in “communication steps”, where a communication
step corresponds to a server-to-server communication in an
abstract distributed system. Lamport proved that it takes at
least 3 steps to order messages in a distributed setting [26].
This means that there is not much hope for significant
performance improvements, unless one revisits the model
(e.g., Charron-Bost and Schiper [11]) or assumptions (e.g.,
spontaneous message ordering [28], [44], [45]).

These communication steps have become the dominant
factor for Paxos latency overhead. Our experiments show that
the Paxos logic execution time takes around 2.5us, without
I/O. Using kernel-bypass [14], a packet can be sent out of host
in 5us (median) [59]. One way delay in the data center is 100us
(median) [47], more than 10x the host! Implementing Paxos
in switch ASICs as “bumps-in-the-wire” processing allows
consensus to be reached in sub-round-trip time (RTT).

Figure 2 illustrates the difference in number of hops needed
by P4xos and traditional deployments: while in a standard
Paxos implementation every communication step requires tra-
versing the network (e.g., Fat-tree), in P4xos it is possible for
each network device to fill a role in achieving a consensus:
the spine as a leader, the aggregate as an acceptor, the last Top
of Rack (ToR) switch as a learner, and the hosts serving as
proposers and replicated applications. In this manner, P4xos
saves two traversals of the network compared to Paxos,
meaning ×3 latency improvement. Obviously, this comparison
represents a best-case scenario for P4xos, in which the replica
is on the path of f + 1 acceptors. The actual latency savings
will depend on the topology.

As shown in §VII-B, eliminating the hosts’ latency from
each communication step also significantly improves the

Fig. 2. Contrasting propagation time for best-case scenario P4xos deployment
with server-based deployment.

latency’s tail. The latency saving is not device dependent: the
same relative improvement will be achieved with any (pro-
grammable) chipset and set of hosts.

Throughput Bottlenecks: Beyond protocol latency, there are
additional challenges to improve the performance of con-
sensus [35]. To investigate the performance bottleneck for a
typical Paxos deployment, we measured the CPU utilization
for each of the Paxos roles when transmitting messages at
peak throughput. As a representative implementation of Paxos,
we used the open-source libpaxos library [31]. There are,
naturally, many Paxos implementations, so it is difficult to
make generalizations about their collective behavior. However,
libpaxos is a faithful implementation of Paxos that distin-
guishes all the Paxos roles. It has been extensively tested and
is often used as a reference implementation (e.g., [19], [32],
[46], [50]).

In the initial configuration, there are seven processes spread
across three machines running on separate core, distributed as
follows: Server 1 hosts 1 proposer, 1 acceptor, and 1 learner.
Server 2 hosts 1 leader and 1 acceptor. And, Server 3 hosts 1
acceptor and 1 learner.

We chose this distribution after experimentally verifying that
it produced the best performance for libpaxos. The details
of the hardware setup are explained in Section VII.

The client application sends 64-byte messages to the pro-
poser at a peak throughput rate of 64,949 values/sec. The
results, which show the average CPU utilization per role, are
plotted in Figure 1. They show that the leader is the bottleneck,
as it becomes CPU bound.

This is as expected. The leader must process the most
messages of any role in the protocol, and as a result, becomes
the first bottleneck. The bottleneck is largely due to the
overhead of handling a large number of network interrupts,
and copying data from kernel space into user space for the
application to process. The other components in the protocol
are similarly afflicted. A second experiment, not shown here
for brevity, has shown that once you remove the leader
bottleneck, the acceptor becomes the next bottleneck.

III. P4XOS DESIGN

P4xos is designed to address the two main obstacles for
achieving high-performance: (i) it reduces end-to-end latency

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE/ACM TRANSACTIONS ON NETWORKING

by executing consensus logic as messages pass through the
network, and (ii) it avoids network I/O bottlenecks in software
implementations by executing Paxos logic in the forwarding
hardware.

In a network implementation of Paxos, protocol messages
are encoded in a custom packet header; the data plane executes
the logic of leaders, acceptors, and learners; the logic of each
of the roles is partitioned by communication boundaries. A
shim library provides the interface between the application
and the network.

We expect that P4xos would be deployed in data center
in Top-of-Rack, Aggregate and Spine switches, as shown
in Figure 2. Each role in the protocol is deployed on a
separate switch. We note, though, that the P4xos roles are
interchangeable with software equivalents. So, for example,
a backup leader could be deployed on a standard server (with
a reduction in performance).

A. Paxos With Match-Action

Paxos is a notoriously complex and subtle protocol [9],
[25], [35], [51]. Typical descriptions of Paxos [9], [24], [25],
[35], [51] describe the sequence of actions during the two
phases of the protocol. In this paper, we provide an alternative
view of the algorithm, in which the protocol is described by
the actions that Paxos agents take in response to different
messages. In other words, we re-interpret the algorithm as a
set of stateful forwarding decisions. This presentation of the
algorithm may provide a different perspective on the protocol
and aid in its understanding.

Notation: Our pseudocode roughly correspond to P4 state-
ments. The Initialize blocks identify state stored in
registers. id[N] indicates a register array named id with
N cells. To simplify the presentation, we write id rather
than id[1] to indicate a register array with only 1 cell.
A two dimensional array with height N and width M is
implemented as a one dimensional array of length N×M in P4.
The notation “:= {0, . . . , 0}” indicates that every cell element
in the register should be initialized to 0. The match blocks
correspond to table matches on a packet header, and the case
blocks correspond to P4 actions. We distinguish updates to
the local state (“:=”), from writes to a packet header (“←”).
We also distinguish between unicast (forward) and multicast
(multicast).

Paxos Header: P4xos encodes Paxos messages in packet
headers. The header is encapsulated by a UDP packet header,
allowing P4xos packets to co-exist with standard (non-
programmable) network hardware. Moreover, we use the UDP
checksum to ensure data integrity.

Since current network hardware lacks the ability to generate
packets, P4xos participants must respond to input messages by
rewriting fields in the packet header (e.g., the message from
proposer to leader is transformed into a message from leader
to each acceptor).

The P4xos packet header includes six fields. To keep the
header small, the semantics of some of the fields change
depending on which participant sends the message. The
fields are as follows: (i) msgtype distinguishes the various

Fig. 3. P4xos proposer API.

Algorithm 1 Leader Logic
1: Initialize State:
2: instance := 0
3: upon receiving pkt(msgtype, inst, rnd, vrnd, swid, value)
4: match pkt.msgtype:
5: case REQUEST:
6: pkt.msgtype ← PHASE2A
7: pkt.rnd ← 0
8: pkt.inst ← instance
9: instance := instance + 1

10: multicast pkt to acceptors
11: default:
12: drop pkt

Paxos messages (e.g., REQUEST, PHASE1A, PHASE2A, etc.)
(ii) inst is the consensus instance number; (iii) rnd
is either the round number computed by the proposer or
the round number for which the acceptor has cast a vote;
vrnd is the round number in which an acceptor has cast a
vote; (iv) swid identifies the sender of the message; and
(v) value contains the request from the proposer or the
value for which an acceptor has cast a vote. Note that the
switch’s packet parser can only extract data into a limited-
length packet header vector (PHV), which is approximately a
few hundred bytes. Thus, our prototype requires that the entire
Paxos header, including the value, be less than the size of the
PHV.

Proposer: A P4xos proposer mediates client requests, and
encapsulates the request in a Paxos header. Ideally, this logic
could be implemented by an operating system kernel network
stack, allowing it to add Paxos headers in the same way that
transport protocol headers are added today. As a proof-of-
concept, we have implemented the proposer as a user-space
library that exposes a small API to client applications.

The P4xos proposer library is a drop-in replacement for
existing software libraries. The API consists of a single
submit function, shown in Figure 3. The submit function
is called when the application using Paxos wants to send
a value. The application simply passes a character buffer
containing the value, and the buffer size. The paxos_ctx
struct maintains Paxos-related state across invocations (e.g.,
socket file descriptors).

Leader: A leader brokers requests on behalf of proposers.
The leader ensures that only one process submits a message
to the protocol for a particular instance (thus ensuring that the
protocol terminates), and imposes an ordering of messages.
When there is a single leader, a monotonically increasing
sequence number can be used to order the messages. This
sequence number is written to the inst field of the header.

Algorithm 1 shows the pseudocode for the primary leader
implementation. The leader receives REQUEST messages from
the proposer. REQUEST messages only contain a value. The
leader must perform the following: write the current instance

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DANG et al.: P4xos: CONSENSUS AS A NETWORK SERVICE 5

number and an initial round number into the message header;
increment the instance number for the next invocation; store
the value of the new instance number; and broadcast the packet
to acceptors.

P4xos uses a well-known Paxos optimization [17], where
each instance is reserved for the primary leader at initialization
(i.e., round number zero). Thus, the primary leader does not
need to execute Phase 1 before submitting a value (in a
REQUEST message) to the acceptors. Since this optimization
only works for one leader, the backup leader—which may be
run on a switch, an FPGA, or in software—must reserve an
instance before submitting a value to the acceptors. To reserve
an instance, the backup leader must send a unique round
number in a PHASE1A message to the acceptors. For brevity,
we omit the backup leader algorithm since it essentially
follows the Paxos protocol.

Acceptor: Acceptors are responsible for choosing a single
value for a particular instance. For each instance of consensus,
each individual acceptor must “vote” for a value. Acceptors
must maintain and access the history of proposals for which
they have voted. This history ensures that only one value can
be decided for a particular instance, and allows the protocol
to tolerate lost or duplicate messages.

Algorithm 2 shows logic for an acceptor. Acceptors can
receive either PHASE1A or PHASE2A messages. Phase 1A
messages are used during initialization, and Phase 2A mes-
sages trigger a vote. The logic for handling both mes-
sages, when expressed as stateful routing decisions, involves:
(i) reading persistent state, (ii) modifying packet header fields,
(iii) updating the persistent state, and (iv) forwarding the
modified packets. The logic differs in which header fields are
involved.

Learner: Learners are responsible for replicating a value for
a given consensus instance. Learners receive votes from the
acceptors, and “deliver” a value if a majority of votes are the
same (i.e., there is a quorum).

Algorithm 3 shows the pseudocode for the learner logic.
Learners should only receive PHASE2B messages. When a
message arrives, each learner extracts the instance number,
switch id, and value. The learner maintains a mapping from a
pair of instance number and switch id to a value. Each time
a new value arrives, the learner checks for a majority-quorum
of acceptor votes. A majority is equal to f +1 where f is the
number of faulty acceptors that can be tolerated.

The learner provides the interface between the network
consensus and the replicated application. The behavior is split
between the network, which listens for a quorum of messages,
and a library, which is linked to the application. To com-
pute a quorum, the learner counts the number of PHASE2B
messages it receives from different acceptors in a round.
If there is no quorum of PHASE2B messages in an instance
(e.g., because the primary leader fails), the learner may need
to recount PHASE2B messages in a quorum (e.g., after the
backup leader re-executes the instance). Once a quorum is
received, it delivers the value to the client by sending the
message to the user-space library that exposes the application-
facing API. The API, shown in Figure 4, provides two
functions.

Algorithm 2 Acceptor Logic
1: Initialize State:
2: round[MAXINSTANCES] := {0, . . . , 0}
3: value[MAXINSTANCES] := {0, . . . , 0}
4: vround[MAXINSTANCES] := {0, . . . , 0}
5: upon receiving pkt(msgtype, inst, rnd, vrnd, swid, value)
6: if pkt.rnd ≥ round[pkt.inst] then
7: match pkt.msgtype:
8: case PHASE1A:
9: round[pkt.inst] := pkt.rnd

10: pkt.msgtype ← PHASE1B
11: pkt.vrnd ← vround[pkt.inst]
12: pkt.value ← value[pkt.inst]
13: pkt.swid ← swid
14: forward pkt to leader
15: case PHASE2A:
16: round[pkt.inst] := pkt.rnd
17: vround[pkt.inst] := pkt.rnd
18: value[pkt.inst] := pkt.value
19: pkt.msgtype ← PHASE2B
20: pkt.swid ← swid
21: forward pkt to learners
22: default:
23: drop pkt
24: else
25: drop pkt

Fig. 4. P4xos learner API.

To receive delivered values, the application registers a call-
back function with the type signature of deliver. To register
the function, the application sets a function pointer in the
paxos_ctx struct. When a learner learns a value, it calls
the application-specific deliver function. The deliver
function returns a buffer containing the learned value, the size
of the buffer, and the instance number for the learned value.

The recover function is used by the application to
discover a previously agreed upon value for a particular
instance of consensus. The recover function results in the
same exchange of messages as the submit function. The
difference in the API, though, is that the application must
pass the consensus instance number as a parameter, as well as
an application-specific no-op value. The resulting deliver
callback will either return the accepted value, or the no-
op value if no value had been previously accepted for the
particular instance number.

IV. FAILURE ASSUMPTIONS AND CORRECTNESS

P4xos assumes that the failure of a leader or acceptor
does not prevent connectivity between the consensus par-
ticipants. As a result, it requires that the network topology
allow for redundant routes between components, which is a
common practice in data centers. In other respects, the failure

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE/ACM TRANSACTIONS ON NETWORKING

Algorithm 3 Learner Logic
1: Initialize State:
2: history2B[MAXINSTANCES][NUMACCEPTOR]:=
3: {0, . . . , 0}
4: value[MAXINSTANCES] := {0, . . . , 0}
5: vround[MAXINSTANCES] := {−1, . . . ,−1}
6: count[MAXINSTANCES] := {0, . . . , 0}
7: upon receiving pkt(msgtype, inst, rnd, vrnd, swid, value)
8: match pkt.msgtype:
9: case PHASE2B:

10: if (pkt.rnd > vround[pkt.inst] or vround[pkt.inst]
11: = −1) then
12: history2B[pkt.inst][0] := 0
13:

...
14: history2B[pkt.inst][NUMACCEPTOR−1] := 0
15: history2B[pkt.inst][pkt.swid] := 1
16: vround[pkt.inst] := pkt.rnd
17: value[pkt.inst] := pkt.value
18: count[pkt.inst] := 1
19: else if (pkt.rnd = vround[pkt.inst]) then
20: if (history2B[pkt.inst][pkt.swid] = 0) then
21: count[pkt.inst] := count[pkt.inst] + 1
22: history2B[pkt.inst][pkt.swid] := 1
23: else
24: drop pkt
25: if (count[pkt.inst] = MAJORITY) then
26: forward pkt.value to replica
27: default:
28: drop pkt

assumptions of P4xos are the same as in Lamport’s Paxos.
Below, we discuss how P4xos copes with the failure of a leader
or acceptor.

Leader Failure: Paxos relies on a single operational leader
to order messages. Upon the failure of the leader, proposers
must submit proposals to a backup leader. The backup leader
can be, for example, implemented in software. If a proposer
does not receive the response for a request after a configurable
delay, it re-submits the request, to account for lost messages.
After a few unsuccessful retries, the proposer requests the
leader to be changed.

Routing to a leader or backup is handled in a similar fashion
as the way that load balancers, such as Maglev [15] or Silk
Road [36], route to an elastic set of endpoints. Partitioned
Paxos uses a reserved IP address to indicate a packet is
intended for a leader. Network switches maintain forwarding
rules that route the reserved IP address to the current leader.
Upon suspecting the failure of the hardware leader, a proposer
submits a request to the network controller to update the
forwarding rules to direct traffic to the backup. A component
that “thinks” it is the leader can periodically check network
controller that the reserved leader IP address maps to its own
address. This mechanism handles hardware leader failure and
recovery. To ensure progress, it relies on the fact that failures
and failure suspicions are rare events.

Acceptor Failure: Acceptor failures do not represent a threat
in Paxos, as long as a majority of acceptors are operational.
Moreover, upon recovering from a failure, an acceptor can
promptly execute the protocol without catching up with opera-
tional acceptors. Paxos, however, requires acceptors remember
the instances in which they participated before the failure.

There are two possible approaches to meeting this require-
ment. First, we could rely on always having a majority of
operational acceptors available. This is a slightly stronger
assumption than traditional Paxos deployments. Alternatively,
we could require that acceptors have access to non-volatile
memory [1], [22], [55] to record accepted instances. Our
prototype implementation uses the first approach, since the
network hardware we use only provides non-persistent SRAM.
We discuss persistent storage further in Section V.

Correctness: Given this alternative interpretation of the
Paxos algorithm, it is natural to question if this is a faithful
implementation of the original protocol [24]. In this respect,
we are aided by our P4 specification. In comparison to HDL or
general purpose programming languages, P4 is high-level and
declarative. By design, P4 is not a Turing-complete language,
as it excludes looping constructs, which are undesirable in
hardware pipelines. Consequently, it is particularly amenable
to verification by bounded model checking.

We have mapped the P4 specification to Promela, and
verified the correctness using the SPIN model checker. Specif-
ically, we verify the safety property of agreement: the learners
never decide on two separate values for a single instance of
consensus.

V. DEPLOYMENT CHALLENGES

Expected Deployment and Routing: We expect that P4xos
would be deployed in a single data center, where network
round-trip times are low and bandwidth demands are high.
Although P4xos could be deployed in a wide-area network (it
is a faithful implementation of the Paxos protocol), the per-
formance benefits would be less pronounced.

As discussed in Section II, one possible deployment is that
all replicas will share a rack, and that each network device
above the rack will fill a role in achieving a consensus: the
Top of Rack (ToR) switch as a learner, the aggregate switches
as acceptors, the spine as a leader. Again, other deployments
would not affect the correctness.

Obviously, this requires more routing rules, as network
operators would need to configure forwarding and multicast
rules between switches that act as leaders, acceptors, and
learners. The routing paths need to ensure that every path
includes the necessary consensus roles in the required quantity
(e.g., that there are f + 1 acceptors).

Our switch-based prototype is implemented on a Tofino
ASIC, which does not share memory between pipelines. As a
consequence, a P4xos instance can only run on a single switch
pipeline (without reverting to re-circulation). Because all of
the consensus roles (i.e., downlinks / uplinks) must be in the
pipeline, the consensus network is limited to the port-scale of
a pipeline. This constraint will not apply to all devices [58].

Multiple Applications: In Section III, we describe how one
replicated application can use P4xos. The design can be easily

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DANG et al.: P4xos: CONSENSUS AS A NETWORK SERVICE 7

extended to support multiple applications by running multiple
instances of P4xos, where each instance is a sequence of
values accepted by the acceptors and identified by a gap-
free monotonically increasing sequence number. Note that
the decided values for different applications could not be in
the same P4xos instance, as it would render log trimming
impractical. To identify separate instances, we need some type
of identifier. This identifier could be a new field in the P4xos
packet header, or IP address and UDP port pairs.

Persistent Storage: With Paxos, acceptor storage is usually
persistent. So, if an acceptor fails and restarts, it can recover
its state. However, our prototype uses non-persistent SRAM.
Therefore, there must always be a majority of processes that
never fail. That is, we require a majority of aggregate switches
not to fail.

Providing persistent storage for network deployments of
P4xos can be addressed in a number of ways. Prior work
on implementing consensus in FPGAs used on chip RAM,
and suggested that the memory could be made persistent
with a battery [19]. Alternatively, a switch could access
non-volatile memory (NVM), such as Phase-Change Memory
(PCM) [55], Resistive RAM (ReRAM) [1], or Spin-Torque
Magnetic RAM (STT-MRAM) [22]. However, at the time of
writing, the response times for this memory still lags behind
SRAM.

Memory Limitations: The Paxos algorithm does not specify
how to handle the ever-growing, replicated acceptor log.
On any system, including P4xos, this can cause problems,
as the log would require unbounded storage space, and recov-
ering replicas might need unbounded recovery time to replay
the log. We note that in a P4xos deployment, the number
of instance messages that can be stored is bounded by the
size of the inst field of the Paxos header. Users of P4xos
will have to set the value to an appropriate size for a
particular deployment. The amount of memory available on
a Tofino chip is confidential. Bosshart et al. [6] describe a
research prototype that was a precursor to Tofino with 370 Mb
SRAM and 40 Mb TCAM. A top-of-the-line FPGA has
64Gb RAM [52].

To cope with the ever-growing acceptor log and to avoid
instance number overflow, messages are stored in a circular
buffer, which is implemented with a register array. As the
buffer fills, P4xos requires that the application checkpoint [9],
which ensures that instances preceding the checkpoint will not
be needed again, and allows the instance number field to be re-
used. The checkpoint can happen at any time, but there must
be at least one checkpoint before re-use.

Conceptually, checkpointing works as follows. Learners
must periodically checkpoint their state and tell the acceptors.
Once an acceptor knows that f +1 learners have a checkpoint
that includes the application state up to Paxos instance num-
ber x, they can forget every accepted value up to instance x.

Historically, checkpointing was considered an expensive
operation, due to the overhead from I/O, and exacerbated
by the frequency at which the operation is performed.
However, this view is changing somewhat as new
checkpointing techniques have been developed and new
memory technologies emerge (e.g., as discussed above,

NVM/NVRAM [1], [22], [55]). A complete and efficient
solution though is out of the scope of the paper. Instead,
we refer readers to Bessani et al. [3] as an example of
efficient checkpointing.

Value Size: The prototype requires that the entire Paxos
header, including the value, be less than the maximum trans-
mission unit. This means that P4xos is most appropriate for
systems that replicate values that have a small size (e.g., locks
for distributed coordination). In this respect, P4xos is similar
to other in-network computing systems, such as NetCache [21]
and NetChain [20].

VI. DISCUSSION

The design outlined in the previous section begs several
questions, which we expand on below.

Isn’t this just Paxos? Yes! In fact, that is the central premise
of our work: you don’t need to change a fundamental building
block of distributed systems in order to gain performance.
This thesis is quite different from the prevailing wisdom.
There have been many optimizations proposed for consensus
protocols. These optimizations typically rely on changes in the
underlying assumptions about the network, e.g., the network
provides ordered [28], [30], [48] or reliable [49] delivery.
Consensus protocols, in general, are easy to get wrong. Strong
assumptions about network behavior may not hold in prac-
tice. Incorrect implementations of consensus yield unexpected
behavior in applications that is hard to debug.

In contrast, Paxos is widely considered to be the “gold
standard”. It has been proven safe under asynchronous
assumptions, live under weak synchronous assumptions, and
resilience-optimum [24].

Isn’t This Just Faster Hardware? The latency saving
across a data center are not hardware dependent: If you
change the switches used in your network, or the CPU
used in your servers, the relative latency improvement will
be maintained. In the experiments described in section VII
(Table II), the P4xos implementation on FPGA operates
at 250MHz, while libpaxos runs on a host operating at
1.6GHz, yet the performance of P4xos on FPGA is forty
times higher. It is therefore clear that fast hardware is not
the sole reason for throughput improvement, rather there are
more profound reasons such as the architecture of network
devices.

Isn’t Offload Useful Only When the Network Is Heavily
Loaded? P4xos fits the changing conditions in data centers,
where operators often increase the size of their network over
time. As software and hardware components are interchange-
able, P4xos allows starting with all components running on
hosts, and gradually shifting load to the network as the
data center grows and the consensus message rate increases.
As §VII-A shows, even a moderate packet rate is sufficient to
overload libpaxos.

VII. EVALUATION

Our evaluation of P4xos explores three questions: (i) What
is the absolute performance of individual P4xos components?
(ii) What is the end-to-end performance of P4xos as a system

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE/ACM TRANSACTIONS ON NETWORKING

for providing consensus? And, (iii) what is the performance
under failure?

As a baseline, we compare P4xos with a software-based
implementation, the open-source libpaxos library [31].
Overall, the evaluation shows that P4xos dramatically
increases throughput and reduces latency for end-to-end per-
formance, when compared to traditional software implemen-
tations.

Implementation: We have implemented a prototype of P4xos
in P4 [5]. We have also written C implementations of the
leader, acceptor, and learner using DPDK. The DPDK and
P4 versions of the code are interchangeable, allowing, for
example, a P4 based hardware deployment of a leader to use
a DPDK implementation as a backup. Because P4 is portable
across devices, we have used several compilers [40]–[42], [53],
[56] to run P4xos on a variety of hardware devices, including a
re-configurable ASIC, numerous FPGAs, an NPU, and a CPU
with and without kernel-bypass software. A total of 6 different
implementations were tested. In this paper, we report results
generated using the Barefoot Networks SDE compiler to target
the Tofino ASIC and the P4FPGA [53] compiler to target
NetFPGA SUME. All source code, other than the version that
targets Barefoot Network’s Tofino chip, is publicly available
with an open-source license.1

A. Absolute Performance

The first set of experiments evaluate the performance of
individual P4xos components deployed on a programmable
ASIC, an FPGA, DPDK and typical software processes on
x86 CPUs. We report absolute latency and throughput numbers
for the individual Paxos components.

Experimental Setup: For DPDK and FPGA targets, we used
a hardware packet generator and capturer to send 102-byte2

consensus messages to each component, then captured and
timestamped each message measuring maximum receiving
rate. For Tofino, we used one 64-port switch configured to
40G per port. We followed a standard practice in industry
for benchmarking switch performance, a snake test. With a
snake test, each port is looped-back to the next port, so a
packet passes through every port before being sent out the last
port. This is equivalent to receiving 64 replicas of the same
packet. To generate traffic, we used a 2×40Gb Ixia XGS12-H
as packet sender and receiver, connected to the switch with
40G QSFP+ direct-attached copper cables. The use of all ports
as part of the experiments was validated, e.g., using per-port
counters. We similarly checked equal load across ports and
potential packet loss (which did not occur).

Single-Packet Latency: To quantify the processing overhead
added by executing Paxos logic, we measured the pipeline
latency of forwarding with and without Paxos. In particular,
we computed the difference between two timestamps, one
when the first word of a consensus message entered the
pipeline and the other when the first word of the message left

1https://github.com/P4xos
2Ethernet header (14B), IP header (20B), UDP header (8B), Paxos header

(44B), and Paxos payload (16B)

TABLE I

P4XOS LATENCY. THE LATENCY ACCOUNTS ONLY FOR THE
PACKET PROCESSING WITHIN EACH IMPLEMENTATION

the pipeline. For DPDK, the CPU timestamp counter (TSC)
was used.

Table I shows the latency for DPDK, P4xos running on
NetFPGA SUME and on Tofino. The first row shows the
results for forwarding without Paxos logic. The latency was
measured from the beginning of the packet parser until the
end of the packet deparser. The remaining rows show the
pipeline latency for the various Paxos components. The higher
latency for acceptors reflects the complexity of operations of
that role. Note that the latency of the FPGA and ASIC based
targets is constant as their pipelines use a constant number of
stages. Overall, the experiments show that P4xos adds little
latency beyond simply forwarding packets, around 0.15 µs
(38 clock cycles) on FPGA and less than 0.1 µs on ASIC.
To be clear, this number does not include the SerDes, MAC,
or packet parsing components. Hence, the wire-to-wire latency
would be slightly higher. These experiments show that moving
Paxos into the forwarding plane can substantially improve
performance. Furthermore, using devices such as Tofino means
that moving stateful applications to the network requires
software updates, rather than hardware upgrades, therefore
diminishing the effect on network operators.

We wanted to compare a compiled P4 code to a native
implementation in Verilog or VHDL. The closest related work
in this area is by István et al. [19], which implemented
Zookeeper Atomic Broadcast on an FPGA. It is difficult
to make a direct comparison, because (i) they implement
a different protocol, and (ii) they timestamp the packet at
different places in their hardware. But, as best we can tell,
the latency numbers are similar.

Maximum Achievable Throughput: We measured the
throughput for all Paxos roles on different hardware targets.
The results in Table II show that on the FPGA, the acceptor,
leader, and learner can all process close to 10 million con-
sensus messages per second, an order of magnitude improve-
ment over libpaxos, and almost double the best DPDK
throughput. The ASIC deployment allows two additional order
of magnitude improvement which is 41 million 102 byte
consensus msgs/sec per port. In the Tofino architecture, imple-
menting pipelines of 16 ports each [18], a single instance of
P4xos reached 656 million consensus messages per second.
We deployed 4 instances in parallel on a 64 port x 40GE
switch, processing over 2.5 billion consensus msgs/sec. More-
over, our measurements indicate that P4xos should be able to
scale up to 6.5 Tb/second of consensus messages on a single
switch, using 100GE ports.

Resource Utilization: To evaluate the cost of implement-
ing Paxos logic on FPGAs and Tofino, we report resource
utilization on NetFPGA SUME using P4FPGA [53], and

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DANG et al.: P4xos: CONSENSUS AS A NETWORK SERVICE 9

TABLE II

THROUGHPUT IN MESSAGES/S. NETFPGA USES A SINGLE 10GB LINK.
TOFINO USES 40GB LINKS. ON TOFINO, WE RAN 4 DEPLOYMENTS

IN PARALLEL, EACH USING 16 PORTS

TABLE III

RESOURCE UTILIZATION ON NETFPGA SUME WITH

P4FPGA WITH 64K PAXOS INSTANCE NUMBERS

on Tofino using Barefoot Compiler. Note that we set the
maximum number of Paxos instances (i.e., MAXINSTANCES
from Algorithms 2 and 3) to be 64K. An FPGA contains a
large number of programmable logic blocks: look-up tables
(LUTs), registers and Block RAM (BRAM). In NetFPGA
SUME, we implemented P4 stateful memory with on-chip
BRAM to store the consensus history. As shown in Table III,
current implementation uses 54% of available BRAMs, out of
which 35% are used for stateful memory.3 We could scale up
the current implementation in NetFPGA SUME by using large,
off-chip DRAM at a cost of higher memory access latency.
Prior work suggests that increased DRAM latency should not
impact throughput [19]. The P4xos pipeline uses less than 45%
of the available SRAM on Tofino, and no TCAM. We therefore
expect that P4xos can co-exist with other switch functionality,
but it would require a reduction of some other state usage
(e.g., the number of fine-grain rules in tables).

Resource Sharing: The P4xos on Tofino experiment
described above demonstrates that consensus operation can
coexist with standard network switching operation, as the peak
throughput is measured while the device runs IPv4 traffic at
full line rate of 6.5Tbps. This is a clear indication that network
devices can be used more efficiently, implementing consensus
services parallel to network operations. Using network devices
for more than just network operations reduces the load on the
host while not affecting network performance or adding more
hardware.

B. End-to-End Performance

To explore P4xos beyond a single device and within a
distributed system, we ran a set of experiments demonstrating
a proof-of-concept of P4xos using different hardware.

Experimental Setup: We used two different network topolo-
gies for these experiments. The libpaxos, FPGA, and
DPDK experiments used the topology shown in Figure 5.
Servers and FPGAs are connected to a Pica8 P-3922 10GbE
switch. All links are configured at 10GbE. The Tofino exper-
iments used the topology shown in Figure 6.

3On newer FPGA [52] the resource utilization will be an order of magnitude
lower

Fig. 5. FPGA testbed for the evaluation.

Fig. 6. Topology used in Tofino experimental evaluation.

For the libpaxos experiments, the leader and acceptors
were software processes running on the x86 servers. The
servers (replicas) have dual-socket Intel Xeon E5-2603 CPUs,
with a total of 12 cores running at 1.6GHz, 16GB of 1600MHz
DDR4 memory and two Intel 82599 10 Gbps NICs. The O.S.
was Ubuntu 14.04 with Linux kernel version 3.19.0.

For the DPDK experiments, the leader and acceptors were
DPDK processes. For the DPDK learner, we dedicated two
NICs per instance, two CPU cores in the socket coupled with
the NICs, and 1024 2MB hugepages to the DPDK application.
All RAM banks on the server were moved to the slots managed
by the socket. Virtualization, frequency scaling, and power
management were disabled in the BIOS. The RAM frequency
was set to the maximum value.

For the FPGA experiments, the leader and acceptors were
NetFPGA SUME boards. NetFPGA SUME boards operated
at 250MHz. We installed one NetFPGA SUME board in each
server using a PCIe x8 slot, though NetFPGA cards behave
as stand-alone systems in our testbed. The learners were the
DPDK implementation.

For experiments with Tofino, we used two switches, with
different pipelines acting as different roles. One switch was
a leader and an acceptor. The second switch acted as two
different acceptors. The switches were connected to the same
servers in a topology as shown in Figure 6. Again, we used
the DPDK learners.

Baseline Experiment: Our first end-to-end evaluation uses a
simple echo server as the replicated application. Server 1 ran
a multi-threaded client process and a single proposer process.
Servers 2, 3, and 4 ran single-threaded learner processes and
the echo server.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE/ACM TRANSACTIONS ON NETWORKING

Fig. 7. The end-to-end performance of P4xos compared to libpaxos: (a) latency CDF, (b) throughput vs. latency, (c) latency CDF (LevelDB) and (d) throughput
vs. latency (LevelDB). P4xos has higher throughput and lower latency.

Each client thread submits a message with the current
timestamp written in the value. When the value is delivered by
the learner, a server program retrieves the message via a deliver
callback function, and then returns the message back to the
client. When the client gets a response, it immediately submits
another message. The latency is measured at the client as the
round-trip time for each message. Throughput is measured at
the learner as the number of deliver invocations over time.

To push the system towards a higher message throughput,
we increased the number of threads running in parallel at the
client. The number of threads, N , ranged from 1 to 24 by
increments of 1. We stopped measuring at 24 threads because
the CPU utilization on the application reached 100%. For each
value of N , the client sent a total of 2 million messages.
We repeat this for three runs, and report the 99th-ile latency
and mean throughput.

We measure the latency and predictability for P4xos as a
system, and show the latency distribution in Figure 7a. Since
applications typically do not run at maximum throughput,
we report the results for when the application is sending
traffic at a rate of 24K messages / second, which favors the
libpaxos implementation. This rate is far below what P4xos
can achieve. We see that P4xos shows lower latency and
exhibits better predictability than libpaxos: The median
latencies are 22, 42 and 67 µs for Tofino, SUME and
DPDK respectively, compared with 119 µs, and the difference
between 25% and 75% quantiles is less than 3 µs, compared
with 30 µs in libpaxos. Note that higher tail latencies are
attributed to the Proposers and Learners, running on the host.

Figure 7b shows that P4xos results in significant improve-
ments in latency and throughput. While libpaxos is only
able to achieve a maximum throughput of 64K messages
per second, P4xos reach 102K, 268K, and 448K messages
per second for DPDK, SUME and Tofino respectively, at those
points the server application becomes CPU-bound. This is a
7× improvement. Given that individual components of P4xos
Tofino offer four orders of magnitude more messages, and
that the application is CPU-bound, cross-traffic will have a
small effect on overall P4xos performance. The lowest 99th-
ile latency for libpaxos occurs at the lowest throughput
rate, and is 183µs. However, the latency increases significantly
as the throughput increases, reaching 478µs. In contrast,
the latency for P4xos starts at only 19µs, 52µs, 88µs and
is 125µs, 147µs and 263µs at the maximum throughput for
Tofino, SUME and DPDK correspondingly, mostly due to the
server (i.e., learner) processing delay.

Fig. 8. P4xos performance when (a) an acceptor fails, and (b) when FPGA
leader is replaced by DPDK backup.

Case Study: Replicated LevelDB: As an end-to-end perfor-
mance experiment, we measured the latency and throughput
for consensus messages for our replicated LevelDB example
application. The LevelDB instances were deployed on the
three servers running the learners. We followed the same
methodology as described above, but rather than sending
dummy values, we sent an equal mix of get and put requests.
The latency distribution is shown in Figure 7c. We report the
results for a light workload rate of 24K messages / second for
both systems. For P4xos, the round trip time (RTT) of 99%
of the requests for Tofino, SUME and DPDK is 33, 114, and
116µs, including the client’s latency. In contrast, it is 176µs
for libpaxos. This demonstrates that P4xos latency is lower,
even when used for replicating a relatively more complex
application.

The 99th-ile latency and throughput when replicating
LevelDB are shown in Figure 7. The limiting factor for
performance is the application itself, as the CPU of the servers
are fully utilized. P4xos removes consensus as a bottleneck.
The maximum throughput achieved here by P4xos for Tofino,
SUME and DPDK are respectively 112K, 80K and 73K mes-
sages per second. In contrast, for the libpaxos deployment,
we measured a maximum throughput of only 54K messages
per second.

Note that LevelDB was unmodified, i.e., there were no
changes to the application. We expect that given a high-
performance implementation of Paxos, applications could be
modified to take advantage of the increased message through-
put, for example, by using multi-core architectures to process
requests in parallel [33].

C. Performance Under Failure

The last set of experiments evaluate the performance of
P4xos after failures. We used the same setup as the replicated

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DANG et al.: P4xos: CONSENSUS AS A NETWORK SERVICE 11

Fig. 9. Design space for consensus/network interaction.

LevelDB experiment using Tofino switches illustrated
in Figure 6. We measured the end-to-end latency and through-
put under two different scenarios. In the first (a), one of the
three P4xos acceptors fails. In the second (b), the P4xos leader
fails, and the leader running on Tofino is temporarily replaced
with a DPDK leader. In both the graphs in Figure 8, the vertical
line indicates the failure point.

In these experiments, the LevelDB application is the perfor-
mance bottleneck. So, as shown in Figure 8a, the throughput
remains the same after the loss of one acceptor. To handle the
loss of a leader, we re-route traffic to the backup. Figure 8b
shows that P4xos is resilient to a leader failure, and that
after a very short recovery period, it continues to provide
high throughput. Note that P4xos could fail over to a backup
libpaxos leader, as they provide the same API.

VIII. RELATED WORK

Consensus is a well-studied problem [10], [24], [38],
[39]. Many have proposed consensus optimizations, including
exploiting application semantics (e.g., EPaxos [37], Gener-
alized Paxos [27], Generic Broadcast [43]), restricting the
protocol (e.g., Zookeeper atomic broadcast [49]), or careful
engineering (e.g., Gaios [4]).

Figure 9 compares related work along two axes. The y-axis
plots the strength of the assumptions that a protocol makes
about network behavior (e.g., reliable delivery, ordered deliv-
ery). The x-axis plots the level of support that network devices
need to provide (e.g., quality-of-service queues, support for
adding sequence numbers, maintaining persistent state).

Lamport’s basic Paxos protocol falls in the lower left
quadrant, as it only assumes packet delivery in point-to-
point fashion and election of a non-faulty leader. It also
requires no modification to network forwarding devices. Fast
Paxos [28] optimizes the protocol by optimistically assuming
a spontaneous message ordering [28], [44], [45]. However,
if that assumption is violated, Fast Paxos reverts to the basic
Paxos protocol.

NetPaxos [13] was an early version of P4xos that did
not require a specialized forwarding plane implementation.
It assumes ordered delivery, without enforcing the assump-
tion, which is likely unrealistic. Speculative Paxos [48] and
NOPaxos [30] uses programmable hardware to increase the
likelihood of in-order delivery, and leverage that assumption
to optimize consensus à la Fast Paxos [28]. In contrast, P4xos

makes few assumptions about the network behavior, and uses
the programmable data plane to provide high-performance.

Several recent projects have used network hardware to
accelerate consensus. Notably, Consensus in a Box [19] and
NetChain [20] accelerate Zookeeper atomic broadcast and
Chain Replication, respectively. P4xos differs from these
approaches in that it separates the execution and agreement
aspects of consensus, and focuses on accelerating only exe-
cution in the network. This separation of concerns allows
the protocol to be optimized without tying it to a particular
application. In other words, both Consensus in a Box and
NetChain require that the application (i.e., the replicated key
value store) also be implemented in the network hardware.

IX. CONCLUSION

P4xos uses programmable network hardware to significantly
improve the performance of consensus, without strengthening
assumptions about the network. This is a first step towards
a more holistic approach to designing distributed systems,
in which the network can accelerate services traditionally
running on the host.

REFERENCES

[1] H. Akinaga and H. Shima, “Resistive random access memory (ReRAM)
based on metal oxides,” Proc. IEEE, vol. 98, no. 12, pp. 2237–2251,
Dec. 2010.

[2] S. Benz, P. J. Marandi, F. Pedone, and B. Garbinato, “Building global
and scalable systems with atomic multicast,” in Proc. Posters Demos
Session Middleware Posters Demos, Dec. 2014, pp. 169–180.

[3] A. Bessani, M. Santos, J. A. Felix, N. Neves, and M. Correia, “On the
efficiency of durable state machine replication,” in Proc. USENIX ATC,
Jun. 2013, pp. 169–180.

[4] W. J. Bolosky, D. Bradshaw, R. B. Haagens, N. P. Kusters, and P. Li,
“Paxos replicated state machines as the basis of a high-performance data
store,” in Proc. USENIX NSDI, Mar. 2011, pp. 141–154.

[5] P. Bosshart et al., “P4: Programming protocol-independent packet
processors,” ACM SIGCOMM Comput. Commun. Rev., vol. 44, no. 3,
pp. 87–95, Jul. 2014.

[6] P. Bosshart et al., “Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN,” ACM SIGCOMM Com-
put. Commun. Rev., vol. 43, no. 4, pp. 99–110, Sep. 2013.

[7] M. Burrows, “The chubby lock service for loosely-coupled distributed
systems,” in Proc. USENIX OSDI, Nov. 2006, pp. 335–350.

[8] B. Calder et al., “Windows Azure storage: A highly available cloud
storage service with strong consistency,” in ACM SOSP, Oct. 2011,
pp. 143–157.

[9] T. D. Chandra, R. Griesemer, and J. Redstone, “Paxos made live: An
engineering perspective,” in Proc. 26th Annu. ACM Symp. Princ. Distrib.
Comput. PODC, 2007, pp. 398–407.

[10] T. D. Chandra and S. Toueg, “Unreliable failure detectors for reliable
distributed systems,” J. ACM, vol. 43, no. 2, pp. 225–267, Mar. 1996.

[11] B. Charron-Bost and A. Schiper, “Uniform consensus is harder than
consensus,” J. Algorithms, vol. 51, no. 1, pp. 15–37, Apr. 2004.

[12] H. T. Dang, M. Canini, F. Pedone, and R. Soulé, “Paxos made switch-
y,” ACM SIGCOMM Comput. Commun. Rev., vol. 46, no. 2, pp. 18–24,
Apr. 2016.

[13] H. T. Dang, D. Sciascia, M. Canini, F. Pedone, and R. Soulé, “NetPaxos:
Consensus at network speed,” in Proc. 1st ACM SIGCOMM Symp. Softw.
Defined Netw. Res. - SOSR, 2015, pp. 1–7.

[14] (2015). DPDK. [Online]. Available: http://dpdk.org/
[15] D. E. Eisenbud et al., “Maglev: A fast and reliable software network

load balancer,” in Proc. USENIX NSDI, Mar. 2016, pp. 523–535.
[16] R. Friedman and K. Birman, “Using group communication technology

to implement a reliable and scalable distributed in coprocessor,” in Proc.
TINA Conf., Sep. 1996, pp. 25–41.

[17] J. Gray and L. Lamport, “Consensus on transaction commit,” ACM
Trans. Database Syst., vol. 31, no. 1, pp. 133–160, Mar. 2006.

[18] V. Gurevich, “Barefoot networks, programmable data plane at terabit
speeds,” in Proc. DXDD, 2016. [Online]. Available: https://open-
nfp.org/static/pdfs/Sponsor-Lecture-Vladimir-Data-Plane-Acceleration-
at-Terabit-Speeds.pdf

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE/ACM TRANSACTIONS ON NETWORKING

[19] Z. István, D. Sidler, G. Alonso, and M. Vukolic, “Consensus in a
box: Inexpensive coordination in hardware,” in Proc. USENIX NSDI,
Mar. 2016, pp. 425–438.

[20] X. Jin et al., “Netchain: Scale-free sub-RTT coordination,” in Proc.
USENIX NSDI, Apr. 2018, pp. 35–49.

[21] X. Jin et al., “NetCache: Balancing key-value stores with fast in-
network caching,” in Proc. 26th Symp. Operating Syst. Princ., Oct. 2017,
pp. 121–136.

[22] J. A. Katine, F. J. Albert, R. A. Buhrman, E. B. Myers, and D. C.
Ralph, “Current-driven magnetization reversal and spin-wave excitations
in Co/Cu/Co pillars,” Phys. Rev. Lett., vol. 84, no. 14, pp. 3149–3152,
Apr. 2000.

[23] S. Kulkarni et al., “Twitter heron: Stream processing at scale,” in
Proc. ACM SIGMOD Int. Conf. Manage. Data SIGMOD, May 2015,
pp. 239–250.

[24] L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst.,
vol. 16, no. 2, pp. 133–169, May 1998.

[25] L. Lamport, “Paxos made simple,” ACM SIGACT News, vol. 32, no. 4,
18–25, Dec. 2001.

[26] L. Lamport, “Lower bounds for asynchronous consensus,” Distrib.
Comput., vol. 19, no. 2, pp. 104–125, Oct. 2006.

[27] L. Lamport, “Generalized consensus and Paxos,” Microsoft Res. Lab.–
Redmond, Redmond, WA, USA, Tech. Rep. MSR-TR-2005-33, 2004.

[28] L. Lamport, “Fast Paxos,” Distrib. Comput., vol. 19, no. 2, pp. 79–103,
Oct. 2006.

[29] J. Li, E. Michael, and D. R. K. Ports, “Eris: Coordination-free consistent
transactions using in-network concurrency control,” in Proc. 26th Symp.
Operating Syst. Princ., Oct. 2017, pp. 104–120.

[30] J. Li, E. Michael, N. K. Sharma, A. Szekeres, and D. R. K. Ports, “Just
say no to Paxos overhead: Replacing consensus with network ordering,”
in Proc. USENIX OSDI, Nov. 2016, pp. 467–483.

[31] (2013). Libpaxos. [Online]. Available: https://bitbucket.org/sciascid/
libpaxos

[32] P. J. Marandi, S. Benz, F. Pedonea, and K. P. Birman, “The performance
of Paxos in the cloud,” in Proc. IEEE 33rd Int. Symp. Reliable Distrib.
Syst., Oct. 2014, pp. 41–50.

[33] P. J. Marandi, C. E. Bezerra, and F. Pedone, “Rethinking state-machine
replication for parallelism,” in Proc. IEEE 34th Int. Conf. Distrib.
Comput. Syst., Jun. 2014, pp. 368–377.

[34] P. Jalili Marandi, M. Primi, N. Schiper, and F. Pedone, “Ring Paxos:
A high-throughput atomic broadcast protocol,” in Proc. IEEE/IFIP Int.
Conf. Dependable Syst. Netw. (DSN), Jun. 2010, pp. 527–536.

[35] D. Mazieres, “Paxos made practical unpublished manuscript,”
Tech. Rep., Jan. 2007.

[36] R. Miao, H. Zeng, C. Kim, J. Lee, and M. Yu, “SilkRoad: Making
stateful layer-4 load balancing fast and cheap using switching ASICs,”
in Proc. Conf. ACM Special Interest Group Data Commun., Aug. 2017,
pp. 15–28.

[37] I. Moraru, D. G. Andersen, and M. Kaminsky, “There is more consensus
in egalitarian parliaments,” in Proc. 24ACM Symp. Operating Syst. Princ.
SOSP, 2013, pp. 358–372.

[38] B. M. Oki and B. H. Liskov, “Viewstamped replication: A new primary
copy method to support highly-available distributed systems,” in Proc.
ACM PODC, Aug. 1988, pp. 8–17.

[39] D. Ongaro and J. Ousterhout, “In search of an understandable consensus
algorithm,” in Proc. USENIX ATC, Aug. 2014, pp. 305–320.

[40] (2015). Open-NFP. [Online]. Available: http://open-nfp.org/
[41] (2015). P4@ELTE. [Online]. Available: http://p4.elte.hu/
[42] (2015). P4.org. [Online]. Available: http://p4.org
[43] F. Pedone and A. Schiper, “Generic broadcast,” in Proc. DISC,

Sep. 1999, pp. 94–106.
[44] F. Pedone and A. Schiper, “Optimistic atomic broadcast: A pragmatic

viewpoint,” Theor. Comput. Sci., vol. 291, no. 1, pp. 79–101, Jan. 2003.
[45] F. Pedone, A. Schiper, P. Urbán, and D. Cavin, “Solving agreement

problems with weak ordering oracles,” in Proc. EDCC, Oct. 2002,
pp. 44–61.

[46] M. Poke and T. Hoefler, “DARE: High-performance state machine
replication on RDMA networks,” in Proc. 24th Int. Symp. High-Perform.
Parallel Distrib. Comput. HPDC, Jun. 2015, pp. 107–118.

[47] D. A. Popescu and A. W. Moore, “PTPmesh: Data center network
latency measurements using PTP,” in Proc. IEEE 25th Int. Symp. Model.,
Anal., Simulation Comput. Telecommun. Syst. (MASCOTS), Sep. 2017,
pp. 73–79.

[48] D. R. K. Ports, J. Li, V. Liu, N. K. Sharma, and A. Krish-
namurthy, “Designing distributed systems using approximate syn-
chrony in data center networks,” in Proc. USENIX NSDI, May 2015,
pp. 43–57.

[49] B. Reed and F. P. Junqueira, “A simple totally ordered broadcast
protocol,” in Proc. ACM/SIGOPS LADIS, Sep. 2008, pp. 1–6.

[50] D. Sciascia and F. Pedone, “Geo-replicated storage with scalable
deferred update replication,” in Proc. IEEE 33rd Int. Symp. Reliable
Distrib. Syst. Workshops, Oct. 2014, pp. 1–12.

[51] R. Van Renesse and D. Altinbuken, “Paxos made moderately complex,”
ACM Comput. Surv., vol. 47, no. 3, pp. 1–36, Apr. 2015.

[52] (2017). Virtex UltraScale+. [Online]. Available: https://www.
xilinx.com/products/silicon-devices/fpga/virtex-ultrascale-
plus.html#productTable

[53] H. Wang et al., “P4FPGA: A rapid prototyping framework for p4,” in
Proc. Symp. SDN Res., Apr. 2017, pp. 122–135.

[54] S. A. Weil, S. A. Brandt, E. L. Miller, D. D. E. Long, and C. Maltzahn,
“Ceph: A scalable, high-performance distributed file system,” in Proc.
USENIX OSDI, Nov. 2006, pp. 307–320.

[55] H.-S. P. Wong et al., “Phase change memory,” Proc. IEEE, vol. 98,
no. 12, pp. 2201–2227, Dec. 2010.

[56] (2014). Xilinx SDNet Development Environment. [Online]. Available:
www.xilinx.com/sdnet

[57] (2014). XPliant Ethernet Switch Product Family. [Online]. Available:
www.cavium.com/XPliant-Ethernet-Switch-Product-Family.html

[58] N. Zilberman, G. Bracha, and G. Schzukin, “Stardust: Divide and
conquer in the data center network,” in Proc. USENIX NSDI, Feb. 2019,
pp. 141–160.

[59] N. Zilberman et al., “Where has my time gone,” in Proc. 18th Int.
Conf. Passive Active Meas. (PAM) (Lecture Notes in Computer Science),
vol. 10176, M. A. Kâafar, S. Uhlig, and J. Amann, Eds. Sydney, NSW,
Australia: Springer, Mar. 2017, pp. 201–214, doi: 10.1007/978-3-319-
54328-4_15.

Huynh Tu Dang received the M.S. degree in com-
puter science from Polytech Nice Sophia Antipolis,
Nice, France, and the Ph.D. degree in computer
science from the Università della Svizzera Italiana
(USI), Lugano, Switzerland. He is currently a Prin-
cipal Engineer with Western Digital Technologies,
Inc., where he develops network-accelerated fault-
tolerant data management systems. He has pub-
lished many articles in both journals and conference
proceedings and has been granted a U.S. patent.
His research interests are in dependable distributed
systems and computer networking.

Pietro Bressana received the bachelor’s degree
in electronic engineering and the master’s degree
in computer engineering from the Politecnico di
Milano, Italy. He is currently pursuing the Ph.D.
degree in computer science with University of
Lugano, Switzerland. He joined the University of
Lugano as a Research Assistant. As a Ph.D. student,
he visited the Networks and Operating Systems
Group, University of Cambridge, U.K., and interned
at Western Digital Research, Silicon Valley, USA.

Han Wang (Member, IEEE) received the Ph.D.
degree from Cornell University, Ithaca, NY, USA,
in 2017. He is currently working at Intel on P4 com-
pilation for programmable network ASICs. His
current research interests include data center net-
works, reconfigurable systems, compiler and formal
method, and high-speed FPGA-based systems.

Ki Suh Lee received the B.S. degree in com-
puter science and engineering from Seoul National
University, the M.S. degree in computer science
from Columbia University, and the Ph.D. degree in
computer science from Cornell University. He is cur-
rently with The Mode Group. His research interests
include data centers, network measurements, time
synchronization, and network routing.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1007/978-3-319-54328-4_15
http://dx.doi.org/10.1007/978-3-319-54328-4_15

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

DANG et al.: P4xos: CONSENSUS AS A NETWORK SERVICE 13

Noa Zilberman (Senior Member, IEEE) received
the Ph.D. degree in electrical engineering from
Tel Aviv University. She is currently an Associate
Professor with the University of Oxford. Prior to
joining Oxford, she was a Fellow and an Affiliated
Lecturer with the University of Cambridge. Her
research interests include computing infrastructure,
programmable hardware, and networking.

Hakim Weatherspoon received the Ph.D. degree
from the University of California at Berkeley, Berke-
ley. He is currently an Associate Professor with the
Department of Computer Science, Cornell Univer-
sity, and an Associate Director for Cornell’s Initia-
tive for Digital Agriculture (CIDA). He has received
awards for his many contributions, including the
Alumni Achievement Award from the University
of Washington, Allen School of Computer Science
and Engineering, the Alfred P. Sloan Research Fel-
lowship, the National Science Foundation CAREER

Award, and the Kavli Fellowship from the National Academy of Sciences.
He serves as the Vice President of the USENIX Board of Directors and serves
on the Steering Committee for the ACM Symposium on Cloud Computing.

Marco Canini (Member, IEEE) received the Ph.D.
degree in computer science and engineering from
the University of Genoa. He is currently an Asso-
ciate Professor of computer science with the King
Abdullah University of Science and Technology
(KAUST). His research interests include software-
defined networking and large-scale and distributed
cloud computing. He is a member of the ACM and
USENIX.

Fernando Pedone received the Ph.D. degree from
EPFL in 1999. He is currently a Full Professor
with the Faculty of Informatics, Università della
Svizzera Italiana (USI), Switzerland. He has been
also affiliated with Cornell University, as a Visiting
Professor, EPFL, and Hewlett-Packard Laboratories
(HP Labs). He has authored more than 100 sci-
entific articles and six patents. He is a Co-Editor
of the book Replication: Theory and Practice. His
research interests include the theory and practice of
distributed systems and distributed data management
systems.

Robert Soulé received the B.A. degree from Brown
University and the Ph.D. degree from NYU. After
his Ph.D., he was a Post-Doctoral Researcher with
Cornell University. He is currently an Assistant
Professor with Yale University and a Research Sci-
entist with Barefoot Networks, an Intel Company.
Prior to joining Yale, he was an Associate Professor
with the Università della Svizzera Italiana, Lugano,
Switzerland.

Authorized licensed use limited to: University of Oxford Libraries. Downloaded on May 20,2020 at 12:40:35 UTC from IEEE Xplore. Restrictions apply.

