
The P416 Programming Language
Mihai Budiu
VMware Research

mbudiu@vmware.com

Chris Dodd
Barefoot Networks

cdodd@barefootnetworks.com

ABSTRACT
P4 is a language for expressing how packets are processed by
the data-plane of a programmable network element such as a
hardware or software switch, network interface card, router
or network function appliance. This document describes the
most recent version of the language, P416, and the reference
implementation of the P416 compiler.

ACM Reference format:
Mihai Budiu and Chris Dodd. 2017. The P416 Programming Lan-
guage. In Proceedings of Operating Systems Review, , 2017, 9 pages.
https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
One of the most active areas in computer networking is Soft-
ware Defined Networking (SDN) [10]. SDN separates the two
core functions of a network element (e.g., router): the control-
plane and the data-plane. Traditionally both these functions
were implemented on the same device; SDN decouples them,
and allows multiple control-plane implementations for man-
aging each data-plane. A standard SDN example is the Open
Flow protocol [14], which specifies the API between the
control-plane and the data-plane.
Despite the additional flexibility brought by separating

these functions, SDN still assumes that the behavior of the
network data-plane is fixed. This is a significant impediment
to innovation; for example, the deployment of the VXLAN
protocol [18] took 4 years between the initial proposal and
its commercial availability in high-speed devices.
As a reaction to this state of affairs there is a new impe-

tus to make computer networks even more programmable
by making the behavior of the data-plane expressible as
software. Industry and academia are converging on a new
domain-specific programming language called P4 (Program-
ming Protocol-Independent Packet Processors). The P4 speci-
fication is open and public [16]. The P4 language is developed
by the p4.org [2] consortium, which currently includes more
than 60 organizations in the area of netwrking, cloud systems,
network chip design, and academic institutions. Reference
implementations for compilers, simulation and debugging
tools are available with a permissive license at the GitHub

Operating Systems Review, 2017,
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

P4 repository [3]. While initially P4 was designed for pro-
gramming network switches, its scope has been broadened
to cover a large variety of packet-processing systems (e.g.,
network cards, FPGAs, etc.).

1.1 P4 evolution
The original paper [7] that proposed the P4 programming
language was written in July 2014. The first version of the
language (currently named P414), including a specification, a
reference implementation of a compiler, and various tools,
including a simulator, were released in the fall of 2015.
Following the initial release, the p4.org consortium grew

rapidly. The p4.org consortium organized a series of P4 work-
shops and P4 developer days. The P4 consortium assembled
a formal design committee for designing the next version
of the language, based on feedback from the P414 language
users. The committee released the final specification for the
newest version of the language P416 in May 2017; we de-
scribe the new language in Section 2. This new specification
is accompanied by a reference implementation of a compiler,
described in Section 3.

2 THE DESIGN OF P416
P4 is a relatively simple, statically-typed programming lan-
guage, with a syntax based on C, designed to express com-
putations on network packets. P4 programs are usually com-
prised of several distinct parts: parsers, that transform pack-
ets from byte arrays into structured representations of packet
headers, deparsers, that convert headers into packets, and
control blocks, that express the packet processing as se-
quences of operations that transform headers (by inserting,
deleting, or modifying the contents of headers). A table is a
core primitive of P4; it is similar to a Java Map [15]. P4 pro-
vides no support for pointers, dynamic memory allocation,
floating-point numbers, or recursive functions; looping con-
structs are only allowedwithin parsers. The core abstractions
provided by the P4 language are listed in Figure 1.

2.1 P416 design goals
The design of P416 was informed by the experience accumu-
lated from using P414.

Incremental change: Change the P414 language only
when absolutely needed. Preserve all of the desirable
features of P414, including all the core abstractions

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

Operating Systems Review, 2017, Mihai Budiu and Chris Dodd

Headers describe the format (the set of fields, their ordering and sizes) of each header within a network packet.
User-defined metadata are user-defined data structures associated with each packet.
Intrinsic metadata is information provided or consumed by the target, associated with each packet (e.g., the input port

where a packet has been received, or the output port where a packet has to be forwarded).
Parsers describe the permitted header sequences within received packets, how to identify those header sequences, and

the headers to extract from packets. Parsers are expressed as state-machines.
Actions are code fragments that describe how packet header fields and metadata are manipulated. Actions may include

parameters supplied by the control-plane at run time (actions are closures created by the control-plane and executed
by the data-plane).

Tables associate user-defined keys with actions. P4 tables generalize traditional switch tables; they can be used to
implement routing tables, flow lookup tables, access-control lists, and other user-defined table types, including complex
decisions depending on many fields. At runtime tables behave as match-action units [8], processing data in three steps:
• Construct lookup keys from packet fields or computed metadata,
• Perform lookup in a table populated by the control-plane, using the constructed key, and retrieving an action
(including the associated parameters),

• Finally, execute the obtained action, which can modify the headers or metadata.
Control blocks are imperative programs describing the data-dependent packet processing including the data-dependent

sequence of table invocations.
Deparsing is the construction of outgoing packets from the computed headers.
Extern objects are library constructs that can be manipulated by a P4 program through well-defined APIs, but whose

internal behavior is hardwired (e.g., checksum units) and hence not programmable using P4.
Architecture definition: a set of declarations that describes the programmable parts of a network processing device.

Figure 1: Core abstractions of the P416 programming language. The last two abstractions are new to P416, the others are inherited
essentially unchanged from P414.

(headers, metadata, tables, actions, parsers — see Fig-
ure 1), and also the limited expressivity (absence of
loops and pointers, etc.). Syntactic backward-compatibility
is not a goal.

Expressivity: the new language should be strictly richer,
and all P414 programs should be expressible in P416.
Ideally, the conversion from P414 to P416 should be per-
formed automatically. (Indeed, the reference compiler
implementation provides this functionality.)

Support for many targets: The P414 specification in-
cludes a fixed target architecture, representing a switch
with an ingress and an egress pipeline. A goal of P416
is to enable P4 to run on many other targets, which
may have different architectures and capabilities (e.g.,
FPGAs, network cards, software switches, etc.).

Simplicity: P414 has a large number of keywords and
many “primitive actions”. In P416 many of these actions
have been replaced by a simple and familiar expression
language (e.g., add_to_field(a, b) becomes a
= a + b). P416 is statically-typed and has a rich type
system.

Modularity: P414 had no support for modular programs;
all identifiers are global. P416 adds lexical scoping, local
variables, and other information hiding mechanisms.

Precise definition: the semantics ofmany P414 constructs
is not completely specified (e.g., arithmetic on values
with different widths, runtime exceptions, how depars-
ing is done, where intrinsic metadata is available, the
behavior of some built-in actions — such as drop,
what happens when invoking a table or control
multiple times, how parallel execution of statements
in an action is actually performed, etc.). P416 attempts
make the semantics as simple and explicit as possible
and to reduce the number of constructs with undefined
semantics to a minimum.

Extensibility: Many P414 language constructs were ac-
tually introduced to model features of a specific target
architecture, which may not be useful or present on
all targets (e.g., action selectors for tables). Such con-
structs have been converted into extern objects and
functions, which are part of target-specific libraries
rather than being part of the core language. In addition,
the language provides annotations as an extensibility
mechanism (similar to Java annotations [11]), which
shouldmake it easier for the language to adapt to a vari-
ety of unforeseen targets, hopefully without requiring
changes to the core language syntax and semantics.

The P416 Programming Language Operating Systems Review, 2017,

Robustness: Provide support for run-time error han-
dling, but do not enforce run-time error handling on
targets that do not want to pay the additional costs.

Compatibility: Attempt to minimize future disruptions
of the language. Ideally all future versions of P4 should
be be backwards-compatible with P416, in the sense
that programs written in P416 today would continue
to compile and execute in the same way using future
language versions; in practice the goal set for P416 was
to make the migration to future language versions as
painless as possible for language users.

One non-goal was innovating in the area of program-
ming languages; the design of P416 is based on very well-
understood, and hopefully familiar programming language
concepts (e.g., C-like syntax, sequential code, libraries, decla-
rations, simple object-oriented programming, simple generic
types).

2.2 P416 datatypes
The core datatype in P4 is a bistring of specified width; for
example bit<128> specifies a bistring of 128 bits. Other
base types include signed integers, booleans, and several
flavors of enumeration types (similar to C enums), including
an error type for indicating error codes. Users can con-
struct derived types such as tuples, structures (similar to
C struct types), headers, arrays of headers, and unions
of headers. Headers are a special case of structures which
contain a hidden “valid” bit, intended to indicate whether the
header was found in an input packet or should be emitted
as part of an output packet. Union types are similar to C
unions.

2.3 P416 Architectures
One major change in P416 compared to P414 is in allowing
programs to execute on arbitrary targets. Targets differ in
the kind of processing they perform, (e.g., a switch has to
forward packets, a network card has to receive or transmit
packets, and a firewall has to block or allow packets), and
also in their custom capabilities (e.g., ASICs may provide as-
sociative TCAMmemories or custom checksum computation
hardware units, while an FPGA switch may allow users to
implement custom queueing disciplines). P416 embraces this
diversity of targets and provides some language mechanisms
to express it.

Figure 2 is an abstract view of how a P416 interacts with the
data-plane of a packet-processing engine. The data-plane is
a fixed-function device that provides several programmable
“holes”. The user writes a P416 program to specify the behav-
ior of each hole. The target manufacturer describes the inter-
faces between the programmable blocks and the surrounding
fixed-function blocks. These interfaces are target-specific.

Data plane

P4 P4 P4

Programmable
blocks

Fixed function

15

Interfaces

Figure 2: Generic abstract packet-processing engine pro-
grammable in P4. The blocks labeled with P4 are pro-
grammable in P4; the surrounding block is fixed-function
logic.

Note that the fixed-function part can be software, hardware,
firmware, or a mixture.

A P416 architecture file is expected to contain declarations
of types, constants, and a description of the control and
parser blocks that the users need to implement. Here is a
possible contents of the an architecture file:

// File arch.p4

// core.p4 contains the packet_in and
// packet_out declarations
#include <core.p4>

/// Ports are specified using 4 bits
typedef bit<4> PortId;

/// Metadata accompanying an input packet
struct InControl {

PortId input_port;
}

/** Metadata that must be computed
for outgoing packets */

struct OutControl {
PortId output_port;

}
// special output port values
/// Data sent to this port is dropped
const PortId DROP_PORT = 0xF;
/// Data sent to this port goes to the
/// control-plane.
const PortId CPU_OUT_PORT = 0xE;

/* Prototypes for programmable blocks */
parser Parse<H>(packet_in b,

out H parsedHeaders);
control Pipe<H>(inout H headers,

in error parseError,
in InControl inCtrl,
out OutControl outCtrl);

Operating Systems Review, 2017, Mihai Budiu and Chris Dodd

control Deparse<H>(in H outputHeaders,
packet_out b);

/// top-level package to instantiate
package Switch<H>(Parse<H> p,

Pipe<H> map,
Deparse<H> d);

The architecture file indicates that the user has to provide
instantiations for three programmable blocks, called Parse
(a parser), Pipe (a control block) and Deparse (an-
other control block). The parser interface to the outside
world indicates that it will receive as input a packet and will
emit as output the parsed headers. The type of the parsed
headers is H, a type variable, which indicates that the user
can choose this type when writing the program.

2.4 A P416 Example
In this section we present a simple annotated P4 program as
a concrete example. This program performs simple switching
based on the IPv4 header. This is a simple program: it does not
modify the IPv4 time-to-live field, and it does not recompute
the IPv4 checksum.

P4 programs usually start by including the standard library
core.p4 and a library describing the target architecture.

#include <core.p4>
#include <arch.p4>

The user program continues with definitions of the types
of headers that are handled in the incoming and outgo-
ing packets; these are just type definitions, resembling C
structure definitions. Headers are structures that are tightly
packed, with no padding, and their fields are stored in net-
work order.

typedef bit<48> Ethernet_address;
typedef bit<32> IPv4_address;

header Ethernet_h {
Ethernet_address dstAddr;
Ethernet_address srcAddr;
bit<16> ether_type;

}

header IPv4_h {
bit<4> version;
bit<4> ihl;
bit<8> diffserv;
bit<16> totalLen;
bit<16> identification;
bit<3> flags;
bit<13> frag_offset;
bit<8> ttl;
bit<8> protocol;
bit<16> checksum;
IPv4_address srcAddr;
IPv4_address dstAddr;

}

// List of all recognized headers
struct Parsed_packet {

Ethernet_h ethernet;
IPv4_h ip;

}

When programming this target, users have to provide a
parsing program; this program recognizes and extracts legal
sequences of headers from incoming packets:

parser Parser(packet_in b,
out Parsed_packet p) {

state start {
b.extract(p.ethernet);
transition select(p.ethernet.ether_type) {
0x0800: parse_ipv4;
default: reject;

}
}
state parse_ipv4 {

b.extract(p.ip);
transition accept;

}
}

The parser language describes a state-machine. Each state
is usually responsible for extracting one or more headers
form the incoming byte stream (described by thepacket_in
data type), and transitioning to another state depending on
the extracted data. In this example, the parser produces a
structure p of type Parsed_packet as an output, parsing
first an Ethernet header followed by an IPv4 header (without
IPv4 options).

A P416 program typically contains one ormorecontrols,
which perform a sequence of match-action operations. A
control contains declarations for actions and tables; a table
is in fact a match-action unit, which maps a user-defined key
to an action. The contents of tables is populated dynamically
by the control-plane.

control Ctr(inout Parsed_packet headers,
in InControl iCtr, // input port
out OutControl oCtr) { // output port

IPv4_address nextHop; // local variable

action Drop_action()
{ oCtr.port = DROP_PORT; }

action Set_nhop(IPv4_address ipv4_dest,
PortId port) {

nextHop = ipv4_dest;
oCtr.output_port = port;

}

/* Computes address of next IPv4 hop
and output port based on the IPv4
destination of the current packet. */
table ipv4_match {

key = { headers.ip.dstAddr: lpm; }
// longest-prefix match

The P416 Programming Language Operating Systems Review, 2017,

actions = { Drop_action; Set_nhop; }
default_action = Drop_action;

}

action Set_dmac(Ethernet_address dmac)
{ headers.ethernet.dstAddr = dmac; }

/* Set the destination Ethernet
address of the packet based on
the next hop IP address. */
table dmac {

key = { nextHop: exact; }
actions = { Drop_action; Set_dmac; }
default_action = Drop_action;

}

action Set_smac(Ethernet_address smac)
{ headers.ethernet.srcAddr = smac; }

/* Set the source ethernet address
based on the output port. */
table smac {

key = { oCtr.output_port: exact; }
actions = { Drop_action; Set_smac; }
default_action = Drop_action;

}

apply { // body of the control
// Writes result in nextHop
ipv4_match.apply();
if (oCtr.output_port == DROP_PORT)
return;

dmac.apply(nextHop);
if (oCtr.output_port == DROP_PORT)
return;

smac.apply();
}

}

Besides action and table declaration, a control has
a body (indicated by apply) this is a loop-free imperative
program that indicates the order in which tables are “applied”
to packets. Our sample program uses 3 tables, as follows:

• The ipv4_match table uses the destination IPv4 ad-
dress in the packet to find the IP address of the next
network hop and the output port that connects to that
hop.

• The dmac table uses the output port to rewrite the
destination Ethernet address.

• The smac table uses the output port to rewrite the
source Ethernet address.

Devices which rewrite the packet may need a deparser
section; the deparser writes the headers of the outgoing
packet.

control Deparser(in Parsed_packet p,
packet_out b) {

apply {
b.emit(p.ethernet);

b.emit(p.ip);
}

}

Finally, the P4 program contains a main declaration; this
indicates how the various modules written by the user are
assembled together. In this example the Switch symbol is
declared in the included arch.p4 file, and it expects three
module arguments: a parser, a control and a deparser. The
main declaration binds the user-specified modules to the
expected parameters, instantiating the complete switch.

Switch(Parser(),Ctr(),Deparser()) main;

2.5 Limitations of P416
P4 is not designed for expressing arbitrary computations;
it is narrowly defined for performing data-path packet pro-
cessing. Surprisingly, there are even many packet-processing
tasks that cannot be expressed in P4. P416 supports extern
functions or methods; these are computational functions
that are implemented outside of P4 and can be invoked from
P4 programs. There is currently an effort to standardize a
set of such methods; however, each P4 target platform can
provide additional extern methods, e.g., to model hardware
accelerators. Invoking extern methods is one way that P4
programs can perform otherwise impossible tasks.

• There is no iteration construct in P4. Loops can only
be created by the parser state-machine. There is no
support for recursive functions. In consequence, the
work performed by a P4 program depends linearly
only on the header sizes.

• There is no dynamic memory allocation in P4. Re-
source consumption can be statically estimated (at
compile-time).

• There is are no pointers or references.
• Multicast or broadcast are achieved by means external
to P4. The typical way a P4 program performs mul-
ticast is by setting a special intrinsic metadata field
to a “broadcast group”, triggering a mechanism that
is outside of P4, which performs the required packet
replication.

• P4 cannot describe queueing, scheduling or multiplex-
ing.

• P4 is unsuitable for deep-packet inspection. In general,
due to the absence of loops P4 programs cannot do
any interesting processing of the packet payload.

• No support for processing packet trailers.
• All the state in a P4 program is created when a packet
is received and destroyed when the processing is com-
plete. To maintain state across different packets (e.g.,
per-flow counters) P4 programs must use extern

Operating Systems Review, 2017, Mihai Budiu and Chris Dodd

methods. We expect that the standard architecture li-
brary will contain support for such persistent arrays
(counters, registers, meters). Even given support for
registers or counters, P4 programs cannot iterate over
all counters to compute statistics.

• There is no standard way to communicate between
the data-plane and the control-plane; this is usually
achieved using custom extern methods (“learning”).

• There is no support for performing packet segmenta-
tion or reassembly; thus protocols such as TCP cannot
be described in P4.

• There is no support for generating new packets (e.g.,
an ICMP reply), only for processing existing packets.

3 P416 REFERENCE COMPILER
IMPLEMENTATION

A compiler providing a reference implementation [1] for
P416 was developed concurrently with the language specifi-
cation. The specification and implementation informed each
other; in particular, the implementation uncovered many
corner cases that the specification did not cover, and it also
prevented the specification from making unreasonable re-
quirements.

3.1 Compiler design goals
We set the following goals for the P416 reference implemen-
tation compiler:

• It should provide a solid basis to support the past,
present and future versions of P4.

• It should support multiple back-ends for application-
specific integrated circuits (ASICs), network-interface
cards (NICs), field-programmable gate arrays (FPGAs),
software switches and other targets.

• It should provide support for writing other software
developmenet tools (debuggers, integrated develop-
ment environments, P4 control-planes, testing, formal
verification tools, etc.)

• The compiler front-end should be open-source, en-
abling anyone to quickly boostrap a compiler for a
new architecture.

• The compiler should have an extensible architecture,
making it easy to add new passes and optimizations,
and to hook up new back-ends.

• The implementation should rely on modern compiler
techniques (immutable intermediate representation,
visitor patterns, strong type checking, etc.).

• Rely on powerful tools for testing the compiler.

3.2 Compiler architecture
P414 came with a wealth of available software tools: a com-
piler implemented in Python, a behavioral simulator, many

example programs and tutorials. We considered adapting the
old compiler to handle P416, but refactoring the old code base
proved daunting, so we decided to start a new implementa-
tion using a statically-typed language.

We have settled on writing the new compiler using C++11,
using garbage collectionwith the Boehm conservative garbage-
collection engine [6]. The compiler is available using an
Apache 2 open-source license. The compiler data-flow is
shown in Figure 3.

P416

parser

P414

parser
convertP414

P416

v1
IR

IR frontend IR

ebpf
back-end

your
own

backend

target-
specific
code

C code

BMv2
back-end

JSON

mid-
end

mid-
end

mid-
end

Figure 3: P416 reference compiler dataflow.

The compiler has two parsers, for the two existing P4
dialects. The P414 parser reads P414 programs and converts
them into P416 programs. This parser is paired with a P416
architecture called v1model, which is a description written
in P416 of the old fixed architecture implied by P414. When
compiling a P414 program it is automatically converted to
make use of the v1model architecture.
The reference compiler comes with three sample mid-

end/back-end combinations. p4test is used for testing the
compiler; it is used mostly as a source-to-source translator.
This back-end is not tailored to any particular architecture.
p4c-bm2-ss is a compiler intended to support P414 pro-
grams. It compiles programs written (either in P414 or P416)
for v1model and generates code in JSON for the existing
behavioral model toolkit BMv2 [5]. p4c-ebpf is a compiler
that generates stylized C code that is intended to be com-
piled to extended BPF [9, 13], which can be run in the Linux
kernel.

The compiler flow is divided into three parts:
Front-end The front-end does all the target-independent

processing. After parsing it performs a series of syntac-
tic and semantic checks, and it performs type-checking.
It also performs a series of simplification and optimiza-
tion steps. Besides traditional optimizations such as
dead/unreachable-code elimination and constant fold-
ing, it also makes explicit the order of side-effects by
converting statements with multiple side-effects into
sequences of statements. Currently the front-end con-
sists of roughly 25 distinct passes, some of which are
run multiple times.

Mid-end We provide a library of useful passes which
can be assembled by users into a desired mid-end (cur-
rently we have roughly 25 distinct passes in the library,

The P416 Programming Language Operating Systems Review, 2017,

but their number is growing). Mid-end passes are usu-
ally fairly generic, but they are driven by generally
simple target-specific policies. The mid-end passes use
the same intermediate representation as the front-end
passes.

Back-end Back-ends are supposed to contain all target-
specific code. They should do register allocation, sched-
uling, instruction selection, generate code in the spe-
cific language supported by the target (e.g., C, Verilog,
JSON, etc.). Also, back-ends are supposed to provide
support for all architectural-specific features, such as
extern function and objects.

The compiler has been designed such that newmid-end/back-
end combinations can be added easily. New back-ends can
reside in separate respositories; to add a new back-end one
merely needs to create a symbolic link in the extensions
folder and to provide a compatible Makefile.

3.3 Intermediate representation and
visitors

An important choice that had to be made upfront is whether
to reuse an existing compiler infrastructure with its associ-
ated intermediate representation (e.g, LLVM [12]). Since one
of the goals of P416 is to be executed on a very diverse vari-
ety of targets, including custom ASICS and FPGAs, we have
decided that reusing an existing representation designed for
traditional software targets (such as LLVM IR), would not
provide sufficient benefits.

The P416 compiler uses a custom intermediate representa-
tion (IR) to represent the P4 program internally. The core IR
representation is relatively high level, but the IR is designed
so that various back-ends can extend the representation in-
dependently (e.g., adding custom representations for various
target-specific resources, such as registers).
The IR data structures are immutable: once an IR repre-

sentation is created, it can never be modified. A program is
represented as a rooted directed acyclic graph (DAG). For
example, the root node of an IR representation is always the
whole program; the root node has as children a sequence of
declarations, representing all declarations in the P4 program.
An assignment statement IR node has two Expression IR
children: the left-hand side and the right-hand side of the
assignment.

The compiler architecture is based on a visitor pattern [4]:
in a visitor pattern the data structure (IR) is separated from
the transformations that are performed on the data struc-
ture (visitors, that modify the program). We provide a base
implementation of several visitor patterns, and users cre-
ate new visitors by subclassing these visitors and handling
only the kinds of IR nodes that they worry about in each
transformation.

The compilation is organized as a sequence of relatively
simple passes; each pass is a separate visitor that consumes
an immutable IR DAG and produces a new IR DAG. Using
immutable representations together with garbage-collection
makes it much easier to focus on the logic of the compiler
transformations, instead of memory management. It also
allows one to implement easily multi-threaded compilation
and back-tracking if desired (e.g., for exploring a large state
space of optimizations).

The compiler front-end and mid-end use the exact same IR
data structures; many passes can be seen as simplifying the
IR, replacing some IR nodes with other simpler equivalent
representations (e.g., convert enums to integers).
The IR data structures contain a lot of C++ boiler-plate

code (e.g., serialization, equality testing, validation), all of
which is automatically generated; the generated code imple-
ments the double-dispatch pattern needed for the visitors.
IR classes are described in a very simple language which
resembles a subset of C++.

The following code fragment shows a (slightly simplified)
fragment that describes the IR representation of declarations
(an interface implemented by several classes), the addition
operation, and of an assignment statement.

// IR definition file (fragment)

/// declarations are objects with names
interface IDeclaration {

/// @return an identifier
virtual ID getName() const = 0;

}

abstract Expression {}

abstract Operation_Binary : Expression {
Expression left;
Expression right;

}

class Add : Operation_Binary {
stringOp = "+";

}

abstract Statement {}

class AssignmentStatement : Statement {
Expression left;
Expression right;

}

The set of IR classes can be extended by each back-end; the
users just need to add new IR definition files to the Makefiles.

The IR representation is strongly-typed (e.g., the children
of an assignment statement must have type Expression);
this makes it harder to create incorrect IR representations.
The IR representation can be serialized to/from to a textual
JSON representation.

Operating Systems Review, 2017, Mihai Budiu and Chris Dodd

All or the passes that we supply for the front-end and
mid-end maintain the invariant that program IR is always
convertible back to a P416 program. This feature significantly
simplifies, debugging, testing and learning the IR:

• One does not need to understand the IR to discover
compiler bugs; one can dump the internal representa-
tion as a P4 program at any time during compilation.

• We use the P4 representation to validate the compiler,
by saving the representation at key points during com-
pilation, and by recompiling the P4 code that is output.

• Optionally, the dumped P4 program can contain as
comments the actual IR data structures annotating the
P4 code. This makes it much easier to learn the IR.

3.4 Testing
Program testing is hard; testing a compiler is doubly hard, be-
cause a compiler consumes and outputs programs. We have
built the following facilities to simplify testing the compiler:

• We maintain a large and growing collection of sample
P414 and P416 input programs that are recompiled on
every commit.

• For each of the sample programs we save the P416 rep-
resentation of the program at three steps during com-
pilation. The tests expect that these reference outputs
do not change. Occasionally adding new optimizations
will change the reference outputs; the changed outputs
have to be manually vetted by an expert before being
changed.

• The compiler re-compiles the programs that it outputs.
• For P4 programs written for the v1model (both P414
and P416 programs) we provide a simple language that
can specify the contents of the tables, input packets
and expected output packets. These programs are com-
piled by p4c-bm2-ss and executed using the BMv2
simulator. This provides end-to-end testing of the com-
piler.

In the future we hope to also build verification tools based
on translation validation [17], relying on the compiler’s abil-
ity to generate P4 sources from the IR.

4 CONCLUSIONS
While P4 is a relatively simple language, it needs to execute
into a very complex environment (as proven by the fast-paced
evolution of P414: at some point new features were added to
the P414 specification every couple of weeks).
The language designers realized that this situation is not

sustainable: a language has to be relatively stable to encour-
age adoption, investment and portability. So the P416 lan-
guage was designed to try to reconcile many conflicting
trade-offs: fast evolution, support for a very diverse set of
targets, while providing a stable base and portability. This

was done by separating P414 into a fixed language core, which
is supposed to be stable, and a set of target-specific libraries,
which can evolve quickly. P416 contains other extensibility
mechanisms, such as the ability to specify architectures, and
target-specific annotations.
Whether the P416 design is successful it is too early to

tell; this will be validated by the number of available im-
plementations and especially by the number of data-plane
applications that people will develop. To some degree the
goals of flexibility and extensibility seem to be justified by
the fact that at least 5 different (open-source and propri-
etary) back-ends have been already created for the reference
compiler, supporting a large variety of very different targets
(FPGAs, ASICs, software devices, simulators). Our goal is for
P416 to enable the same kind of programmability for network
data-planes as the CUDA language did for graphics cards.

5 ACKNOWLEDGEMENTS
This document represents the work of a large (and grow-
ing) community of contributors over the span of 2 1/2 years,
both for the language design process and for the reference
compiler implementation. The following is an incomplete
list of contributors that have made significant contributions,
listed in alphabetical order: Leo Alterman, Michael Attig,
Antonin Bas, Gordon Brebner, Călin Caşcaval, Andy Fin-
gerhut, Nate Foster, Seth Fowler, Vladimir Gurevich, Robert
Halstead, Andy Keep, Changhoon Kim, Chaitanya Kodeboy-
ina, Nick McKeown, Peter Newman, Edwin Peer, Ben Pfaff,
Cole Schlesinger, Anirudh Sivaraman, Steffen Smolka, Dan
Talayco, Johann Tönsing, Han Wang.

REFERENCES
[1] P4-16 compiler reference implementation. https://github.com/p4lang/

p4c. Retrieved May 2017.
[2] P4 Consortium. http://p4.org.
[3] P4 github repository. https://github.com/p4lang. Retrieved May 2017.
[4] Visitor pattern. https://en.wikipedia.org/wiki/Visitor_pattern, Re-

trieved May 2017.
[5] Antonin Bas. The P4 behavioral model version 2. https://github.com/

p4lang/behavioral-model, Retrieved May 2017.
[6] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an unco-

operative environment. Software Practice and Experience, 18(9):807–820,
1988.

[7] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. Programming protocol-independent
packet processors. In ACM SIGCOMM Computer Communications
Review (CCR), volume 44, July 2014.

[8] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKe-
own, Martin Izzard, Fernando Mujica, and Mark Horowitz. Forwarding
metamorphosis: Fast programmable match-action processing in hard-
ware for SDN. pages 99–110. ACM, 2013.

[9] Jonathan Corbet. Attaching eBPF programs to sockets. https://en.
wikipedia.org/wiki/LWN.net, December 2014.

[10] Evangelos Haleplidis, Kostas Pentikousis, Spyros Denazis, Jamal Hadi
Salim, David Meyer, and Odysseas Koufopavlou. Software-defined

https://github.com/p4lang/p4c
https://github.com/p4lang/p4c
http://p4.org
https://github.com/p4lang
https://en.wikipedia.org/wiki/Visitor_pattern
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://en.wikipedia.org/wiki/LWN.net
https://en.wikipedia.org/wiki/LWN.net

The P416 Programming Language Operating Systems Review, 2017,

networking (SDN): Layers and architecture terminology. https://tools.
ietf.org/html/rfc7426, January 2015. RFC 7426.

[11] M. M. Islam. Java annotations: An introduction. http://www.developer.
com/java/other/article.php/3556176, October 2005.

[12] Chris Lattner and Vikram Adve. The LLVM Compiler Framework and
Infrastructure Tutorial. In LCPC Mini Workshop on Compiler Research
Infrastructures, West Lafayette, Indiana, September 2004.

[13] Steven McCanne and Van Jacobson. The BSD packet filter: A new
architecture for user-level packet capture. In USENIX Conference,
January 1993.

[14] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar,
Larry Peterson, Jennifer Rexford, Scott Shenker, and Jonathan Turner.
OpenFlow: Enabling innovation in campus networks. SIGCOMM Com-
put. Commun. Rev., 38(2):69–74, March 2008.

[15] Sun Microsystems. Interface Map<K, V>. https://docs.oracle.com/
javase/7/docs/api/java/util/Map.html, 1993.

[16] P4.org. P4-16 language specification. https://github.com/p4lang/
p4-spec/tree/master/p4-16/spec, May 2017.

[17] Amir Pnueli, M. Siegel, , and Eli Singerman. Translation validation. In
International Conference on Tools and Algorithms for Construction and
Analysis of Systems (TACAS), pages 151–166, 1998.

[18] M. Mahalingam Storvisor, D. Dutt, K. Duda, P. Agarwal, L. Kreeger,
T. Sridhar, M. Bursell, and C. Wright. Virtual eXtensible Local Area
Network (VXLAN): A framework for overlaying virtualized layer 2
networks over layer 3 networks. https://tools.ietf.org/html/rfc7348,
August 2014.

https://tools.ietf.org/html/rfc7426
https://tools.ietf.org/html/rfc7426
http://www.developer.com/java/other/article.php/3556176
http://www.developer.com/java/other/article.php/3556176
https://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://docs.oracle.com/javase/7/docs/api/java/util/Map.html
https://github.com/p4lang/p4-spec/tree/master/p4-16/spec
https://github.com/p4lang/p4-spec/tree/master/p4-16/spec
https://tools.ietf.org/html/rfc7348

	Abstract
	1 Introduction
	1.1 P4 evolution

	2 The design of P416
	2.1 P416 design goals
	2.2 P416 datatypes
	2.3 P416 Architectures
	2.4 A P416 Example
	2.5 Limitations of P416

	3 P416 reference compiler implementation
	3.1 Compiler design goals
	3.2 Compiler architecture
	3.3 Intermediate representation and visitors
	3.4 Testing

	4 Conclusions
	5 Acknowledgements
	References

