
Optimizing Bulk Transfers with
Software-Defined Optical WAN

Xin Jin†, Yiran Li?, Da Wei?, Siming Li∧, Jie Gao∧,
Lei Xu◦, Guangzhi Li×, Wei Xu?, Jennifer Rexford†

†Princeton, ?Tsinghua, ∧Stony Brook, ◦Sodero Networks, ×AT&T Labs

Abstract
Bulk transfer on the wide-area network (WAN) is a funda-
mental service to many globally-distributed applications. It
is challenging to efficiently utilize expensive WAN band-
width to achieve short transfer completion time and meet
mission-critical deadlines. Advancements in software-defined
networking (SDN) and optical hardware make it feasible and
beneficial to quickly reconfigure optical devices in the opti-
cal layer, which brings a new opportunity for traffic manage-
ment on the WAN.

We present Owan, a novel traffic management system that
optimizes wide-area bulk transfers with centralized joint con-
trol of the optical and network layers. Owan can dynamically
change the network-layer topology by reconfiguring the op-
tical devices. We develop efficient algorithms to jointly op-
timize optical circuit setup, routing and rate allocation, and
dynamically adapt them to traffic demand changes. We have
built a prototype of Owan with commodity optical and elec-
trical hardware. Testbed experiments and large-scale simula-
tions on two ISP topologies and one inter-DC topology show
that Owan completes transfers up to 4.45× faster on average,
and up to 1.36×more transfers meet their deadlines, as com-
pared to prior methods that only control the network layer.

CCS Concepts
•Networks → Layering; Network resources allocation;
Network control algorithms; Traffic engineering algorithms;
Network management;

Keywords
Software-defined networking; wide area networks; optical
networks; bulk transfers; cross-layer network management

1. INTRODUCTION
Many globally-distributed applications have bulk data to

transfer over the wide-area network (WAN). For example,

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’16, August 22-26, 2016, Florianopolis, Brazil
c© 2016 ACM. ISBN 978-1-4503-4193-6/16/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2934872.2934904

search engines need to synchronize search indexes between
data centers; financial institutions need to backup everyday
transactions over remote sites; media companies need to de-
liver high-definition video content to multiple distribution
areas. Bulk transfers have large size (terabytes to petabytes)
and account for a big proportion of traffic, e.g., 85–95% for
some inter-datacenter (inter-DC) WANs [1, 2, 3, 4].

Optimizing bulk transfers is important to network opera-
tors. Although bulk transfers are not as delay-sensitive as
interactive traffic like web queries, it is beneficial and some-
times necessary to finish them quickly, as it is essential for
service quality. For instance, the time to finish search index
synchronization directly impacts the search quality [3]. Fur-
thermore, some bulk transfers are associated with deadlines,
e.g., timely delivery of high-definition video content to some
cities by a certain time is the key for business success [3,
4]. It requires network operators to carefully schedule these
transfers in order to meet their deadlines.

Existing practice performs traffic engineering (TE) in the
network layer. Traditional WAN designs over-provision the
network with 30–40% average network utilization, in or-
der to handle traffic demand changes and failures [1]. Re-
cent designs like Google B4 and Microsoft SWAN leverage
software-defined networking (SDN) to directly control the
network with a global view [1, 2, 3, 4]. They use a global
TE to dynamically change routing and rate allocation, so that
they can accommodate more traffic and meet more dead-
lines. They all assume a fixed network-layer topology.

In a modern WAN, the network-layer topology is con-
structed over an intelligent optical layer.1 By reconfigur-
ing the optical devices, the operator can dynamically change
the network-layer topology. Figure 1 shows an example of
a modern WAN infrastructure—the Internet2 network [5].
The network-layer link between SEA and LA in Figure 1(b)
is implemented by an optical circuit that traverses multiple
optical switches in the optical layer in Figure 1(a). In prac-
tice, a WAN router is connected to an optical switch called
Reconfigurable Optical Add-Drop Multiplexer (ROADM) via
short-reach wavelength. To connect two WAN router ports,
the operator needs to properly configure the ROADMs along
the path to establish an optical circuit. By changing the cir-
cuits in the optical layer, operators can change which two
router ports are connected.

1A WAN network is a packet-switched network, which is
usually built on top of an optical network. In this paper,
the WAN network is referred as the network layer, and the
optical network is referred as the optical layer.

(a) Internet2 physical infrastructure. (b) Internet2 IP layer topology.

SEA

LA

Figure 1: WAN infrastructure example (Internet2 [5]).

Traditionally, the optical layer is reconfigured on a long
time scale, e.g., weeks to months, or even years. The major
reason is the labor and risk involved in the reconfiguration:
operators need to deal with sophisticated configurations, in-
cluding IP, BGP and access control list (ACL), and they have
to perform operations on many routers without consistent
configuration interfaces, which is tedious and error-prone.
Also, after a optical layer reconfiguration, traditional dis-
tributed routing protocols may be slow to converge.

In this paper, we present Owan, a new traffic manage-
ment system that optimizes wide-area bulk transfers with
centralized joint control of the optical and network layers.
We leverage two technology trends. The first is SDN that
allows direct control of network devices and simplifies net-
work management; the second is modern ROADM devices
that allow fast remote reconfigurations (e.g., provisioning a
circuit in tens to hundreds of milliseconds [6]). Owan or-
chestrates bulk transfers in a centralized manner. It com-
putes and implements the optical circuit configuration (the
optical circuits that implement the network-layer topology)
and the routing configuration (the paths and rate allocation
for each transfer) to optimize the transfer completion time or
the number of transfers that meet their deadlines.

A major technical challenge for Owan is that the opti-
mization problem includes a large number of constraints,
some of which are integral. Most TE algorithms assume a
given topology and only compute the network-layer config-
uration [1, 2, 3, 4]. While there is research on reconfigurable
optics, these projects focus on data center networks under
the assumption of specific optical devices (e.g., MEMS switches)
and certain topologies [7, 8, 9, 10, 11]. However, there are
three unique constraints on WANs that do not present in data
centers: ROADMs, regenerators and arbitrary topology. We
accommodate ROADMs in our formulation which are typ-
ically used as building blocks for WANs. We take into ac-
count regenerators, which regenerates optical signals after
certain distance. Also, we do not make any assumptions of
the optical-layer topology, allowing it to be irregular.

The key idea to solve the optimization problem is to do
a probabilistic search in the search space with simulated an-
nealing. At each time slot, we use the current topology as the
starting point, and use simulated annealing to find a topol-
ogy with the highest total throughput. There are two major
benefits. First, searching for a topology, instead of the en-
tire optical and routing configurations, substantially reduces
the search space. Second, using the current topology as the
starting point in simulated annealing allows us to find a tar-
get topology that is close to the current topology but has

higher throughput. This significantly reduces the number
of changes we need to make in the optical layer, in order to
update the topology.

We build a Owan prototype using commodity optical and
electronic hardware. The prototype has nine sites and em-
ulates the Internet2 topology in Figure 1. We conduct ex-
tensive evaluations through both testbed experiments with
our prototype that emulates the Internet2 network and large-
scale simulations with data from an ISP network and an inter-
DC network. Our results show that Owan improves the trans-
fer completion time by up to 4.45× on average and 3.84×
at the 95th percentile, as compared to prior methods that
only control the network layer. Furthermore, Owan allows
up to 1.36× more transfers to meet their deadlines and up to
2.03× more bytes to finish before their deadlines.

2. BACKGROUND AND MOTIVATION
We focus on bulk transfers on the WAN. Our design ap-

plies to both private WANs (e.g., inter-DC WANs) and pub-
lic WANs (e.g., provided by ISPs). Large ISPs usually own
both the public WAN and the underlying optical network.
They can directly use Owan to manage their networks. Small
ISPs and private WANs usually lease optical circuits from
optical-network providers. In such case, they would need an
interface with the optical-network operator to change the op-
tical configurations together with Owan. Furthermore, Owan
requires to know the traffic demand and to control the rate of
each transfer, which can be assumed for inter-DC networks
but not for ISP networks. To use Owan in ISP networks, ISPs
can provide a bulk transfer service to their clients. This ser-
vice has an interface for clients to submit transfer requests
that contain traffic demand information and inform clients
data rates they can use for their transfers. Before we intro-
duce Owan, we give some background on WAN infrastruc-
ture and a motivating example to show the benefits of joint
optimization of the optical and network layers.

2.1 Background on WAN Infrastructure
A typical WAN infrastructure consists of network routers,

optical devices, and fibers. A bulk transfer enters a WAN on
a router from an access network (e.g., a data-center network
or a metro network) or other autonomous systems, passes
through intermediate routers to the destination router, and
leaves the network. Since a WAN link is a circuit in the
optical layer, packets over any WAN link actually traverse
multiple optical switches in the form of optical signals.

Optical layer: An optical network consists of ROADMs
connected by fiber pairs. Today’s commercial ROADM tech-
nology is able to support 80 or more wavelengths per fiber
pair and 40 Gbps (100 Gbps, and higher with high-order
modulations and digital coherent receivers) per wavelength,
which leads to 3.2 Tbps (8 Tbps, and even higher capacity)
per fiber pair. A router port can connect to a ROADM port
with a tunable optical transponder via standard short-reach
wavelength. The tunable optical transponder is able to tune
the standard wavelength to another specific wavelength. The
ROADM can switch the wavelength to an output port or an

R0 O0 R0

R2 R2 R3 R3

R1 R1 O1

O3 O2

10

10 10

10

R0 O0 R0

R2 R2 R3 R3

R1 R1 O1

O3 O2

10

10

(a) Optical-layer configuration A. (b) Network-layer topology A.

(c) Optical-layer configuration B. (d) Network-layer topology B.

10

10

Figure 2: Example of topology reconfiguration. Dif-
ferent line types/colors in (a) and (c) denote different
wavelengths. A router port or a wavelength carries 10
bandwidth units. By reconfiguring how wavelengths are
switched in ROADMs (rectangle nodes), we can change
how routers (circle nodes) are connected. (b) and (d)
show the resulting network-layer topologies.

add/drop port connected to another router port. Commercial
ROADMs can be reconfigured in hundreds of milliseconds
and future ROADMs can reduce the time to tens of millisec-
onds and even lower [6, 12, 13].

Due to optical signal loss and some non-linear impacts on
optical signals, a wavelength normally has limited transmis-
sion range, which is called optical reach. When an optical
signal transmits beyond the optical reach, a regenerator de-
vice is required to regenerate the signal. In order to dynami-
cally establish optical circuits on demand, operators usually
pre-deploy some regenerators at certain concentration sites
such that between any two ROADMs, there is at least one
path using those limited regenerator concentration sites to
satisfy the optical reach constraint [14, 15].

Network layer: A router is usually co-located with a ROADM.
Customer-facing router ports are connected to customer equip-
ment, such as data-center routers or metro-network routers;
network-facing router ports are connected to ROADM ports
via standard short-reach wavelength. A network-layer link
is implemented by an optical circuit. By reconfiguring the
optical layer, we can change the connectivity of router ports
in the network layer, i.e., the network-layer topology.

Topology reconfiguration example: We use the example
in Figure 2 to illustrate how the network-layer topology can
be reconfigured with optical devices. In the network, we
have four routers R0-R3 and four ROADMs O0-O3. Each
router has two WAN-facing ports. In configuration A, each
ROADM converts electrical packets from two router ports to
different wavelengths and sends them to different ROADMs.
For example, O0 sends the solid/blue wavelength to O1 and
the dashed/red wavelength to O2 (Figure 2(a)). In the result-
ing network-layer topology, each router is connected to two
other routers (Figure 2(b)). In configuration B, a ROADM
multiplexes two wavelengths on to the same fiber and is con-
nected to only one other ROADM. For example, both wave-

lengths atO0 are multiplexed to the fiber toO1, with the fiber
between O0 and O2 carrying no wavelengths (Figure 2(c)).
In the network-layer topology, a router has both ports con-
nected to another router (Figure 2(d)), doubling the capacity
between R0 and R1 from configuration A (Figure 2(b)).

2.2 Motivating Example
Topology reconfiguration opens a new opportunity for op-

timizing bulk transfers. Existing approaches assume a given
and fixed network-layer topology, and optimizes bulk trans-
fers by controlling the routing and/or the rate of each trans-
fer [1, 2, 3, 4]. We provide a motivating example to show
that by reconfiguring the topology we can significantly re-
duce average transfer completion time (Figure 3).

In the example, we have four routers R0-R3 similar to
Figure 2. We only show the network-layer topology and omit
the ROADMs for brevity. We have two transfers, F0 and
F1. Each transfer has 10 units of traffic to send. Plan A
only controls routing (Figure 3(a)). It uses the shortest paths
and the two transfers are transmitted simultaneously. The
average transfer completion time is 1 time unit.

We can do better if we can control the sending rates too.
Plan B (Figure 3(b-c)) schedules F0 first with two paths,R0-
R1 and R0-R2-R3-R1, and let F0 wait. It takes 0.5 time
unit for F0 to finish. Then F1 starts and takes another 0.5
time unit to finish. The average transfer completion time is
0.5+1

2 = 0.75 time unit, or 1.33× faster than Plan A.
Note that both Plan A and B waste available network ca-

pacity, in different ways. Plan A leaves bandwidth unused
while Plan B has two-hop routing paths. We can do better if
we control the network-layer topology. Plan C reconfigures
the topology (Figure 3(d)). Two router ports on R0 are all
connected to R1. Now both F0 and F1 can enjoy a band-
width of 20 units and finish within 0.5 time unit. Plan C is
2× faster than Plan A, and 1.5× faster than Plan B.

3. OWAN DESIGN
In this section, we first provide an overview of Owan.

Then, we present the algorithms to compute the optical and
routing configurations to optimize bulk transfers. Finally, we
describe how to deal with updates and some practical issues.

3.1 Owan Overview
Owan is a centralized system that orchestrates bulk trans-

fers on the WAN. Figure 4 shows the system architecture.
Abstractly, Owan works as follows.
1. Clients submit bulk transfer requests to the controller. A

request is a tuple (srci, dsti, sizei, deadlinei) that de-
notes the source, destination, size, and deadline (optional)
of transfer request i.

2. The controller has a global view of the physical topology
and transfer requests. It computes the optical circuits that
build the network-layer topology, the paths and the send-
ing rates for transfers.

3. The controller sends the rate allocation to each client and
clients enforce rates on their applications. The controller
directly programs routers and ROADMs to set up rout-

R0

R2 R3

R1 10

10 10

10

(a) Plan A.

F0(Demand=10)

F1(Demand=10)

(b) Plan B-1.

R0

R2 R3

R1 10

10 10

10

F0(Demand=10)

(c) Plan B-2.

R0

R2 R3

R1 10

10 10

10

F1(Demand=10)

(e) Time series.

F0
F1

Time 0.5 1 0

A

F0
F1

Time 0.5 1 0

B

F0
F1

Time 0.5 1 0

C

(d) Plan C.

F0(Demand=10)

F1(Demand=10)

R0

R2 R3

R1

10

10

10

10

Figure 3: Example of optimizing bulk transfers. (a) Plan A transmits F0 and F1 simultaneously. (b-c) Plan B first
transmits F0 and then F1. (d) Plan C reconfigures the topology and has the lowest average transfer completion time. (e)
Time series to show the transfer completions of these three plans.

O0

O1

O2

Controller
Request Submission/
Rate Allocation

Routing
Configuration

Optical
Configuration

R0

R2

R1

C0

C1

C2

Access Network Wide Area Network

Client DC

Router
ROADM

Figure 4: System architecture.

ing paths and optical circuits. On public WANs, the con-
troller also needs to enforce rates with rate limiters on
routers in case clients do not properly enforce these rate
limits on their applications.

The above process is an online process. We divide time into
time slots. A time slot is much longer than the time to re-
configure the network and adjust sending rates, i.e., a few
minutes vs. hundreds or thousands of milliseconds. The ma-
jor job for the controller is to compute the configurations at
each time slot to optimize bulk transfers.

3.2 Computing Network State
All the configurations are denoted as network state. We

precisely define the network state and formulate the problem
as follows. Table 1 summarizes the key notations.

Network state: A WAN is represented as a graph G =
(V,E) where V is the set of all sites and E is the set of
links in the network-layer topology. A site v consists of one
ROADM, a set of pre-deployed regenerators (could be zero),
and zero or one router.

A network stateNS is a configuration of the devices in the
WAN. It includes the optical configuration OC and the rout-
ing configuration RC. OC is the set of optical circuits to be
configured on the optical devices, which builds the network-
layer topology. A network-layer link between u and v is im-
plemented by a circuit ocuv in the optical layer. RC is the set
of routing configurations to be installed on routers (and end
hosts if rates are enforced by clients). Specifically, the rout-
ing configuration of a transfer f , denoted by rcf , includes
its routing paths and rate limits for each path.

Symbol Description
V The set of sites.
E The set of network-layer links.
G The network-layer topology.
F The set of transfers.
NS The network state NS = (OC,RC).
OC The set of optical circuits.
RC The routing configuration RC = {rcf |f ∈ F}.
p A routing path.
rf,p The rate of transfer f on routing path p.
rcf The routing configuration of f : {rf,p|p ∈ Pf}.
θ The capacity of a wavelength.

Table 1: Key notations in problem formulation.

Problem formulation: The problem of finding the optimal
network state is an online optimization problem. There are
a stream of new transfers arriving at the system. At each
time slot, we need to compute a network state NS that op-
timizes the average transfer completion time or the number
of transfers that meet their deadlines. The problem has the
following constraints.
1. The number of router ports connected to ROADM ports

at each site v is limited, denoted by fpv . This constrains
the total ingress and egress capacity of the router in the
network-layer topology.

2. A wavelength can traverse at most distance η before it
needs to be regenerated. If an optical circuit is longer
than η, it has to use regenerators on its path to regenerate
the signal.

3. The number of regenerators at each site v is limited, de-
noted by rgv . A regenerator can regenerate one optical
circuit and transform the circuit to a different wavelength
if needed.

4. The optical circuits in the same fiber have to use different
wavelengths. A fiber can carry at most φ different wave-
lengths and each wavelength can support a capacity of θ.

5. The total rate of transfers on a network-layer link cannot
exceed its capacity θ.
As an additional consideration, we want to keep the changes

to the network incremental, i.e., only updating a small num-
ber of optical links when we perform an update. This mini-
mizes the disturbance during the network update process.
Algorithm overview: The problem has a large number of
constraints and variables. Some constraints, like the num-

Algorithm 1 Compute Next Network State (Main Routine)
1: function ComputeNetworkState(G)
2: scurrent ← G
3: ecurrent ← ComputeEnergy(s)
4: T ← ecurrent
5: s∗ ← scurrent
6: e∗ ← ecurrent
7: while T > ε do
8: sneighbor ← ComputeNeighbor(scurrent)
9: eneighbor ← ComputeEnergy(sneighbor)

10: if eneighbor > e∗ then
11: s∗ ← sneighbor
12: e∗ ← eneighbor
13: if P (ecurrent, eneighbor, T) > Rand(0, 1) then
14: scurrent ← sneighbor
15: ecurrent ← eneighbor
16: T ← T × α
17: return s∗

ber of router ports at each site, the number of regenerators at
each site, and the number of wavelengths on each fiber, are
integral. Even if the network-layer topology is given, opti-
mizing for average transfer completion time is NP-hard [16].

A naive approach is to separately optimize the optical layer
and the network layer. However, as the routing decisions
are highly coupled with the underlying optical configura-
tion, this greedy approach does not yield good performance
results, as we will show in §5.4.

Instead, we use simulated annealing [17] to search for an
approximate solution. The motivation for using simulated
annealing is that we have a huge search space with integral
variables. Simulated annealing is effective in finding accept-
able local optimums in a reasonable amount of time while
finding the global optimum is computationally expensive.
Furthermore, the potential loss of using local optimums is
compensated by the fact that the traffic demand changes over
time and we frequently reconfigures the network to adapt to
the traffic demand changes.

At a high level, we use the network-layer topology G as
the state in simulated annealing. We use the current topol-
ogy as the initial state and probabilistically jump to a neigh-
bor state in each iteration, aiming to find a topology with the
highest total throughput. To minimize changes to the net-
work, we construct neighbor states by randomly changing
four links of the current state, which is the minimal number
of links to change to satisfy the port number constraints.

Our approach has two benefits. First, using the network-
layer topology G as the state in simulated annealing, in-
stead of the entire network state NS, significantly reduces
the search space. If we search for NS, we have to decide
both the optical circuits, the routing paths, and the rate as-
signments for the network. Instead, if we search for G, we
only need to decide the links in the network-layer topology.
Second, by using the current topology as the initial state, we
are likely to end up with a topology that is not very different
from the current one. This reduces the number of changes
we need to make for network updates. Now we describe the
algorithms in more details.

Algorithm 2 Generate A Random Neighbor State
1: function ComputeNeighbor(s)
2: luv, lpq ← RandomlySelectTwoEdges(El)
3: luv.capacity ← luv.capacity − θ
4: lpq.capacity ← lpq.capacity − θ
5: lup.capacity ← lup.capacity + θ
6: lvq.cacacity ← lvq.capacity + θ
7: return s

Simulated Annealing (Algorithm 1): The algorithm uses
the current topologyG as the initial state, the current through-
put as the initial temperature (line 2-3). s∗ is used to store
the topology with the highest throughput and e∗ is the energy
(throughput) of s∗. The algorithm searches in the search
space (line 7-16) until temperature T is less than an ep-
silon value. T is decreased by a factor of α in every iter-
ation. At each iteration, it uses ComputeNeighbor sub-
routine to find a neighbor state of the current state and uses
ComputeEnergy to compute the energy of the neighbor
state. If the neighbor state has a higher energy than s∗, it
updates s∗ (line 10-12). The algorithm uses a probabilistic
function P to decide whether to transition from the current
state to the neighbor state. The probabilistic function P is
defined as follows: if the neighbor state has a higher energy
than the current state, the probability is 1; otherwise, the
probability is e(ecurrent−eneighbor)/T .

ComputeNeighbor (Algorithm 2): This subroutine finds a
neighbor state of the current state. It first randomly selects
two links from E, say euv, epq . Then it decreases the capac-
ity of the selected two links by θ while increasing the capac-
ity of eup, evq by θ. In other words, it moves the capacity
from epq and euv to eup and evq by reconfiguring the optical
links. This procedure ensures the total number of ports used
on each router remains unchanged.

ComputeEnergy (Algorithm 3): This function computes
the total throughput that can be achieved on the given state
s, where s is a network-layer topology. The computation is
divided into two steps. The first step is to establish multiple
optical circuits for each link (line 2-14) based on its desired
capacity, and the second step is to assign routing paths and
rates to the flows based on the topology (line 15-25).

In the first step, we have constraints 2-4 in the problem
formulation to affect whether an optical circuit can be estab-
lished for a link. We use a regenerator graph to help us com-
pute an optical circuit under these constraints. The nodes
in a regenerator graph contain the source site, the destina-
tion site, and the sites that have remaining regenerators. We
create an edge in the regenerator graph if the shortest paths
between two sites is no longer than η. Figure 5(a) shows a
regenerator graph. If the source and the destination are di-
rectly connected in the graph, we can directly establish an
optical circuit; otherwise, they have to use regenerators in
the intermediate sites. We want to balance the consumption
of regenerators in different sites to improve the possibility
that a later optical circuits can find an available one to use.
To do this, we assign a weight to each node with the inverse
of their remaining regenerators; the source and the destina-

Algorithm 3 Compute Energy
1: function ComputeEnergy(s)

// build optical circuits for each link
2: for network link l ∈ s.links do
3: Build regenerator graph RG
4: Build transformed graph TG
5: P ← TG.sortedPathsByLength(l.src, l.dst)
6: c← l.capacity
7: for path p in P do
8: if p.canBeBuilt() then
9: Build circuit p for l

10: c← c− θ
11: if c <= 0 then
12: break
13: if c > 0 then
14: Decrease the cacacity of l by c

// assign routing paths and rates
15: throughput← 0
16: Sort transfers F by policy // e.g., SJF, EDF
17: l← 1
18: while (there exists unsatisfied demand
19: and there exists free network capacity) do
20: for transfer f ∈ F do
21: for path p ∈ paths of f with length l do
22: min_c← mine∈p e.remain_capacity
23: rf,p ← min(f.demand,min_c)
24: throughput+ = rf,p
25: l← l + 1
26: return throughput

tion nodes are assigned with weight zero. Then the problem
is to find a path with smallest total node weight in the regen-
erator graph. This problem can be transformed to the short-
est path problem in a directed graph. The transformation
first builds a transformed graph from the regenerator graph.
The transformed graph has the same nodes as the regener-
ator graph. An undirected edge in the regenerator graph is
replaced by two directed edges; the weight of an edge is set
to be the weight of the node the edge points to. It is easy
to prove that the shortest path (the path with the smallest
total edge weight) in the transformed graph corresponds to
the path with smallest total node weight in the regenerator
graph. Figure 5(b) illustrates the transformed graph of Fig-
ure 5(a). After we have the transformed graph, we iterate the
paths based on path length to find enough number of paths
we need that can be built as optical circuits (line 7-12). Line
8-12 check whether there are available wavelengths on the
path to use, and build the circuit if so. If there are not enough
possible optical circuits to satisfy all the desired capacity, we
have to decrease the link capacity (line 13-14).

For the second step, we assign paths and rates to each
transfer based on the topology to optimize their comple-
tion times or deadlines met. The problem is known to be
hard. Even if the topology is non-blocking and only the
ingress and egress ports are bottlenecks, it is NP-hard to
compute rate allocations to achieve the minimum average
transfer completion time [16]. It is also NP-hard to maxi-
mize the number of transfers that can be finished before the
deadlines, when the network is fixed and three or more dis-
tinct deadlines are present [18]. A good approximation algo-

O0

O1 O2

O3

O4 O0

O1 O2

O3

O4

(a) Regenerator graph. (b) Transformed graph.

0.2 0.25

1

0.2

0.25

1

0.2 0.25

1
0

0

0

0 0 0

Figure 5: Example of regenerator graph.

rithm is to route transfers based on the order of the remain-
ing transfer size or the deadline. However, in our scenario,
the network is not ideal and we need multi-path routing to
route some transfers. We approximate the optimal result by
using the same ordering of transfers and prioritizing trans-
fers to use shorter paths first. We order transfers with classic
scheduling policies like shortest job first (SJF) and earliest
deadline first (EDF) (line 16). At each iteration, we only
schedule transfers to use paths with length l (line 18-25).
At each iteration, we assign rates to each transfer based on
its demand and network capacity (line 22-23). Line 24 up-
dates the total throughput. To avoid starvation, we schedule
a transfer if it is not scheduled for t̂ (configurable) time slots,
which we omit in the algorithm for brevity.

3.3 Updating Network State
After we compute the network state, we need to update the

device configurations to the new state. Without careful up-
date scheduling, there can be loops and routing blackholes
during the update process. For example, if some packets
were sent over a link with the underlying circuit being up-
dated, these packets would be dropped. We need to be espe-
cially careful when updating the optical links as it can take
several seconds. Dionysus is a recent solution on consistent
network updates [19]. Dionysus builds a dependency graph
to capture the dependencies between individual update op-
erations and carefully schedules them to make the update
fast and consistent. But Dionysus only handles network-
layer updates and is not sufficient to handle cross-layer up-
dates. To solve this problem, we extend Dionysus by in-
troducing circuit nodes into its dependency graph. Circuit
nodes have dependencies on fibers as creating a circuit con-
sumes a wavelength and removing a circuit frees a wave-
length; circuit nodes also have dependencies on routing paths
as a routing path cannot be used until circuits for all links
on the path are established. After we build the dependency
graph, we use the same scheduling algorithm as Dionysus to
schedule the update operations.

3.4 Handling Practical Issues
Network failures: Link and switch failures are detected and
sent to the controller. The controller removes these links and
switches from the physical network, and recomputes the net-
work state with the updated physical network. As our algo-
rithm minimizes the amount of updates needed, it is likely to
converge to a new feasible schedule with only incremental
updates to avoid the failed links.
Controller Failures: Since the scheduling algorithm is state-
less, we only need to store the physical network and the set

(a) Testbed. (b) ROADM.

Splitter
…

λ1 λ2 λ15

… DEMUX
…

MUX

…

…
WSS

EDFA

To/From Arista Switch

To/From Other ROADMs

ROADM

Arista
Switch

Servers

One
Site

Figure 6: Owan testbed implementation.

of all transfers with a reliable distributed storage. When the
controller fails, we spawn a new instance, which starts to
compute and reconfigure the network state at the next time
slot. During the controller failover, the network still carries
traffic for the current time slot and is not affected.
Group of transfers: Some applications may need to send
traffic to multiple locations and the important metric is the
last completion time of all transfers in the group. This is
similar to the coflow concept in big data applications in data
centers [20, 21]. We can either treat them as single transfers
or use better heuristics (like Smallest-Effective-Bottleneck-
First [20]) to optimize for groups. A full exploration is our
future work.

4. OWAN IMPLEMENTATION
We have built a prototype of Owan. We describe the testbed

hardware implementation in §4.1 and the controller software
implementation in §4.2.

4.1 Owan Hardware Implementation
Our testbed has nine routers and ROADMs, and emulates

the Internet2 topology in Figure 1. We use Arista 7050S-64
as the routers. Since commercial ROADMs are expensive,
we use commodity optical components to emulate ROADMs
that have the features needed to evaluate the system.

Figure 6 shows the prototype and the optical hardware de-
sign to emulate a ROADM. The optical elements for each
ROADM is arranged in a 1U box. We have a Freescale
i.MX53 micro controller in the box to control the optical
elements. At the bottom of a ROADM, it has n(=15) ports
that interface with the router. Each interface is an optical
transceiver that can convert between electrical packets and
optical signals at different wavelengths. The fifteen transceivers
are at wavelengths from 1553.33nm to 1542.14nm, which
are defined at standard ITU 100GHZ channel spacing.

In order to emulate any possible network-layer topology,
we structure the nine ROADMs as a full mesh, i.e., each
ROADM has a fiber to connect to every other ROADM. In
this way, a ROADM can allocate the n wavelengths among
the nine fibers arbitrarily as long as the total number of wave-

lengths in the nine fibers sum up to n. This means that in the
network-layer topology, each router can have any number
of links to any other router as long as the total number of
links adjacent to a router satisfy the router port constraint.
Therefore, our testbed can faithfully emulate the Internet2
network since the testbed is able to construct any network-
layer topology that the Internet2 network is able to construct.

Figure 6 depicts the internal structure of our ROADM. For
the outward direction of a ROADM, the n wavelengths from
n transceivers are multiplexed by a multiplexer (MUX) on
to a single fiber. Then the splitter replicates them and sends
them to eight other ROADMs. For the inward direction, a
Wavelength Selective Switch (WSS) receives n wavelengths
from each neighbor and selects up to n different wavelengths
from the input wavelengths. Then an Erbium-Doped Fiber
Amplifier (EDFA) is used to amplify the wavelengths se-
lected by the WSS, in order to compensate signal loss. Fi-
nally, a demultiplexer (DEMUX) demultiplexes the selected
wavelengths and send them to corresponding ports. The
MUXes and DEMUXes are the same type of device (Oplink
AAWG) with different configurations.

To transmit packets from one router to another, the optical
signal passes through multiple optical elements, including
MUX, splitter, fiber, WSS and DEMUX. These five elements
introduce typical optical power loss of 5 dB, 10.5 dB, 0.5 dB,
7 dB, and 5 dB, respectively. The total optical power loss is
∼28 dB, which is higher than the optical power budget (∼16
dB) of the transceivers. That is the reason to put an EDFA
between WSS and DEMUX. The EDFA is set to operate at
fixed gain mode, and has a default setting of gain parameter
of 18 dB to compensate the optical power loss.

4.2 Owan Software Implementation
The Owan controller is implemented with 5000+ lines of

Java code and uses several third-party software and libraries.
It has the following four modules.

Core module: The core module implements the algorithms
in §3. We have implemented the blossom algorithm [22]
for maximum matching in general graphs and used JGraphT
library [23] for other graph algorithms.

Router module: We configure the Arista switches to work
in OpenFlow 1.0 mode. We use the Floodlight controller [24]
to handle the details of the OpenFlow protocol and interface
with the switches. The router module uses the RESTful API
exposed by the Floodlight controller to install routing rules.

ROADM module: The Freescale i.MX53 micro controller
in each ROADM handles the low level configurations, mon-
itors the optical elements, and exposes a simple API for re-
mote configuration. The ROADM module uses this API to
configure each ROADM.

Client module: The client module sends the rate allocation
of each transfer to the end hosts. Since a transfer may use
multiple paths, we break a transfer into multiple flows and
use prefix splitting to implement multi-path routing. The
client module configures Linux Traffic Control on each end
host to enforce rates.

5. EVALUATION
In this section, we present the evaluation results. Besides

a testbed that emulates the Internet2 topology, we have also
built a flow-based simulator to evaluate Owan in a large scale
with topologies and traffic from an ISP network as well as an
inter-DC network from an Internet service company.

5.1 Methodology
Topologies: The testbed topology has nine sites as described
in §4. We use Figure 1(b) as the network-layer topology to
evaluate TE methods with only network-layer control. The
simulations use a topology from an ISP backbone that con-
tains about 40 sites. These sites are connected into an irreg-
ular mesh. The inter-DC network has about 25 sites. There
are several sites called “super cores” that are connected to
many smaller sites, and the super cores are connected in a
ring topology.
Workloads: We obtain traces from both the ISP network
and the inter-DC network. The traces are traffic counters
collected from routers. From the traces, we can get site-to-
site traffic demand, but not transfer-level details like trans-
fer sizes and deadlines. Similar to previous work [3, 4], we
use synthetic models to generate transfer-level information
as follows. First, we sum up all the incoming and outgo-
ing traffic demand for each site. Then we generate trans-
fers for two hours. The transfers for the ISP network follow
an exponential distribution with a mean of 500GB/5TB for
testbed/simulation experiments. For each transfer, we ran-
domly select a pair of sites whose total traffic demand has
not exceeded the sum obtained from the traces. We multiply
the sum of traffic demand at each site by a traffic load factor
λ to evaluate the system under different loads. For deadline-
constrained traffic, we choose deadlines from a uniform dis-
tribution between [T, σT] where T is the time slot length
and σ is deadline factor that is used to change the tightness
of deadlines. The inter-DC traffic follows roughly a similar
distribution (with different λ values), except for that it has
some “hotspots” in the network that generate lots of trans-
fers for a period of time, and these hotspots can move from
site to site.
Traffic engineering approaches: We compare the follow-
ing approaches. Only Owan has optical-layer control. Tem-
pus [3] and Amoeba [4] only work with transfers with dead-
lines, so we only compare them on deadline-constrained traf-
fic in §5.3.
• Owan: The approach described in this paper. It jointly

controls the optical layer and the network layer.
• MaxFlow: This approach uses linear programming to max-

imize the total throughput for each time slot.
• MaxMinFract: This approach uses linear programming to

maximize the minimal fraction that a transfer can be served
at each time slot.
• SWAN [2]: It uses linear programming to maximize the

throughput while achieving approximate max-min fairness
for each time slot.
• Tempus [3]: It deals with deadline-constrained traffic. It

first maximizes the minimal fraction a transfer can be served

across all time slots and then maximizes the total number
of bytes that can be satisfied.
• Amoeba [4]: This is another approach that deals with deadline-

constrained traffic. It uses graph algorithms to compute
routing and rate allocation for multiple time slots and ad-
just previous allocation when new transfers arrive.

Performance metrics: For deadline-unconstrained traffic,
the primary metric is transfer completion time. We use fac-
tor of improvement to show the improvements of Owan over
other approaches, which is the transfer completion time of
the alternative approach divided by that of Owan. We also
show makespan, which is the total time to complete a series
of transfers.

For deadline-constrained traffic, we use the percentage of
transfers that meet deadlines and the amount of bytes that
finish before deadlines.

Performance validation: We have validated the results of
our flow-based simulator with our testbed results on the In-
ternet2 topology. The difference on the performance metrics
is within 10%, which is mainly from the imperfect rate limit-
ing and prefix splitting for multi-path routing on the testbed.

Testbed configurations: We run the controller on a com-
modity 2U server with two six-core Intel Xeon E5-2620v2
processors running at 2GHz. As we will show later, even
this modest configuration is sufficient to run the Owan core
module. All the test clients run on servers with the same con-
figuration, and they connect to the network with 10GE. We
use both iperf and a custom multi-threaded traffic generator
to send emulated traffic, and we have verified that each client
is able to saturate a 10Gbps link. Both generators have TCP
enabled. We perform reconfigurations every five minutes.

5.2 Deadline-Unconstrained Traffic
In this experiment, the transfer requests submitted to the

system do not have deadlines. The key metric is to optimize
the transfer completion time. Figure 7(a-c) shows the results
of the testbed experiments on the Internet2 topology. Fig-
ure 7(a) shows the factor of improvement on the average and
the 95th percentile transfer completion time under different
traffic loads. Compared to MaxFlow, Owan improves the
average (95th percentile) transfer completion time by up to
4.45× (3.84×); compared to MaxMinFract, Owan improves
the average (95th percentile) transfer completion time by up
to 18.66× (6.09×); compared to SWAN, Owan improves
the average (95th percentile) transfer completion time by
5.01× (4.27×). The results show that by dynamically recon-
figuring the optical layer, Owan can significantly improve
the transfer completion time for bulk transfers on the WAN.
Moreover, we observe that Owan has bigger improvements
over MaxMinFract than MaxFlow and SWAN. This is because
MaxMinFract optimizes for the minimal fraction served by
each transfer for each time slot, which causes most transfers
to take several time slots to finish.

To further zoom in on the results, we divide the transfers
into three bins (small, middle, large) based on transfer size,
i.e., the smallest 1/3 transfers are in the small bin, the mid-
dle 1/3 in the middle bin, and the largest 1/3 in the large

 0

 5

 10

 15

 20

0.5 1.0 1.5 2.0Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Traffic Load Factor

w.r.t MaxFlow, avg
w.r.t MaxFlow, 95-pct

w.r.t MaxMinFract, avg
w.r.t MaxMinFract, 95-pct

w.r.t SWAN, avg
w.r.t SWAN, 95-pct

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 10000 20000 30000

C
D

F

Transfer Completion Time (s)

Owan
MaxFlow

MaxMinFract
SWAN

 0

 5

 10

 15

 20

0.5 1.0 1.5 2.0

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Traffic Load Factor

(a) Improvements on completion time.

 0

 10

 20

 30

 40

Small Middle Large All

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Bins

(b) Improvements on completion time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000

C
D

F

Transfer Completion Time (s)

(c) CDF of completion time.

 0

 5

 10

 15

 20

0.5 1.0 1.5 2.0

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Traffic Load Factor

(d) Improvements on completion time.

 0

 10

 20

 30

 40

Small Middle Large All

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Bins

(e) Improvements on completion time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000

C
D

F

Transfer Completion Time (s)

(f) CDF of completion time.

 0

 5

 10

 15

 20

0.5 1.0 1.5 2.0

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Traffic Load Factor

(g) Improvements on completion time.

 0

 20

 40

 60

 80

Small Middle Large All

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Bins

(h) Improvements on completion time.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10000 20000 30000

C
D

F

Transfer Completion Time (s)

(i) CDF of completion time.
Figure 7: Results for deadline-unconstrained traffic. (a-c), (d-f), and (g-i) are results of the Internet2 network, ISP
network, and inter-DC network, respectively.

bin. Figure 7(b) shows the factor of improvement in differ-
ent bins when the traffic load factor is 1. Owan consistently
improves the average and 95th percentile transfer comple-
tion time over MaxFlow, MaxMinFract and SWAN in differ-
ent bins. We observe the most improvement is in the small
bin. This is because Owan adjusts the network-layer topol-
ogy based on traffic demand and small transfers are priori-
tized to take the most benefits of the topology.

To show the performance of Owan from another angle,
we also plot the CDF of the transfer completion time. Fig-
ure 7(c) shows the CDF of the transfer completion time when
the traffic load is 1. In the figure, the line of Owan stays at the
leftmost, which means Owan achieves the smallest transfer
completion time across all percentiles. MaxFlow, MaxMin-
Fract and SWAN have longer tails than Owan. This means
some transfers can have longer completion time than other
transfers if MaxFlow, MaxMinFract or SWAN is used. The
reason is also due to the fixed network-layer topology used
by these approaches. The fixed topology causes many trans-
fers to use multiple hops to reach their destinations and the
total throughput of the network is lower than that in Owan.
Overtime, some transfers are accumulated in the scheduling
queue because of the limited total throughput and need to
take a long time to complete.

To evaluate Owan on a topology larger than our 9-site

testbed, we also perform simulations using the ISP topol-
ogy and inter-DC topology. Figure 7(d-f) and (g-i) show
the respective results. Similar to the Internet2 results, Owan
significantly improves the transfer completion time. Specif-
ically, Figure 7(d) shows that Owan improves the average
(95th percentile) transfer completion by up to 3.52× (3.00×)
as compared to MaxFlow, 19.42× (7.86×) as compared to
MaxMinFract, and 4.03× (3.00×) as compared to SWAN.
Also, Owan is better than the other three approaches across
different bins (Figure 7(e)) and different percentiles (Fig-
ure 7(f)). Figure 7(g-i) shows similar improvement factors
on the inter-DC topology.

Finally, we show the improvement on makespan. Makespan
is the total time to finish a given number of requests. We in-
ject traffic requests for two hours and measure the makespan
of different approaches under different traffic loads. Figure 8
shows the improvement of Owan on makespan over the other
three approaches. From the figure, we can see that Owan
improves the makespan by up to 2.56×, 1.80× and 1.60×
in the three topologies respectively. The improvement in-
creases with the traffic load. This is because by reconfigur-
ing the topology Owan can achieve higher total throughput
and thus finish more requests in a certain time. When the
load is higher, MaxFlow, MaxMinFract and SWAN have more
transfers accumulated over time than Owan.

 0

 1

 2

 3

0.5 1.0 1.5 2.0

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Traffic Load Factor

w.r.t MaxFlow
w.r.t MaxMinFract

w.r.t SWAN

(a) Internet2 result.

 0

 1

 2

 3

0.5 1.0 1.5 2.0

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Traffic Load Factor

w.r.t MaxFlow
w.r.t MaxMinFract

w.r.t SWAN

(b) ISP result.

 0

 1

 2

 3

0.5 1.0 1.5 2.0

Fa
ct

or
 o

f I
m

pr
ov

em
en

t

Traffic Load Factor

w.r.t MaxFlow
w.r.t MaxMinFract

w.r.t SWAN

(c) Inter-DC result.
Figure 8: Improvements on makespan.

5.3 Deadline-Constrained Traffic
This experiment evaluates the performance of Owan for

deadline-constrained traffic. In addition to MaxFlow, MaxMin-
Fract and SWAN, we also compare Owan with another two
approaches, Tempus and Amoeba, which are specifically de-
signed for deadline-constrained traffic on the WAN. Figure 9(a-
c) shows the results of testbed experiments on the Internet2
topology. Figure 9(a) shows the percentage of transfers that
meet deadlines under different deadline factors. Owan en-
ables the most number of transfers to meet deadlines. Amoeba
is particularly designed for transfers to meet deadlines and
performs the second best. The objective of Tempus is to
maximize the minimal fraction served for each transfer across
all time slots and then maximize the total bytes that finish be-
fore their deadlines. Thus it has relative poor performance
to enable transfers to meet their deadlines. Overall, Owan
increases the number of transfers that meet their deadlines
by up to 1.36×, as compared to Amoeba, which performs
the second best. The improvement is relatively small when
the deadline factor is too small or too large. This is because
when the deadline factor is too small, all the transfers have
tight deadlines and there is little room for Owan to further
increase the number of transfers that can meet their dead-
lines. When the deadline factor is too large, many transfers
can easily meet their deadlines, and the absolute value of the
percentage is already high. The benefit of reconfiguring the
optical layer is most significant when the deadline factor is
not at extreme values.

Besides the percentage of transfers that meet their dead-
lines, we also show the percentage of bytes that finish be-
fore the deadlines in Figure 9(b). Owan outperforms other
approaches more significantly on this metric. It improves
the bytes that finish before the deadlines by up to 2.03×
than the second best one (Amoeba). Also we can see that
MaxMinFract and Tempus perform better on this metric than
the percentage of transfers that meet their deadlines. This
means they finish many bytes of a transfer though the entire
transfer does not meet the deadline. This metric is important
to applications that can use the available bytes as they arrive
before the deadlines.

Similar to deadline-unconstrained traffic, we also show
the breakdown of the percentage of transfers that meet dead-
lines in different bins with regard to transfer size. Figure 9(c)
shows the result when the deadline factor is 20. Owan per-
forms better than the other approaches across different bins.

Figure 9(d-f) and (g-i) shows the results of the simulation
results on the ISP and inter-DC topology, respectively. Sim-

ilarly, Owan consistently outperforms other approaches. It
improves the number of transfers that meet their deadlines
by up to 1.13× and 1.08× respectively, and the number of
bytes that finish before their deadlines by up to 1.46× and
1.33× respectively, as compared to the second best alterna-
tive. Owan also performs well across different transfer sizes.

5.4 Microbenchmarks
We now show some microbenchmarks. All the experi-

ments are performed on the inter-DC topology with deadline-
unconstrained traffic and the load factor being 1 if not other-
wise specified.
Joint optimization of the optical and network layers: We
show the benefit of jointly optimizing the optical and net-
work layers. For comparison, we develop a greedy algo-
rithm, which first builds a network-layer topology based on
traffic demand between every two sites, and then it tries to
find a routing configuration that maximizes total throughput
using a similar routine as described in Algorithm 3. In other
words, the greedy algorithm optimizes the optical layer and
the network layer separately. The greediness simplifies the
computation by limiting the search space. Unfortunately as
Figure 10(a) shows, the total throughput is 21% less than the
joint optimization, even if the joint optimization is only an
approximation using simulated annealing. This performance
difference is not incidental: as we have multiple paths for
each flow, the routing configuration is tightly coupled with
the optical configuration. Also, the greedy algorithm does
not try to minimize the number of optical links to change
while the simulated annealing algorithm does.
Consistent network updates: It takes about three to five
seconds on our testbed to reconfigure an optical circuit. Dur-
ing the update of an optical circuit, the circuit goes dark
and cannot carry any traffic. To avoid traffic disruptions,
we use a consistent update scheme in §3.3. To demonstrate
its effectiveness, Figure 10(b) shows the comparison of with
and without the consistent update scheme. Without consis-
tent update, all links are updated simultaneously in one shot
to minimize update completion time. The total throughput
drops 10% during the update, as packets get lost on these
links, affecting the overall TCP performance. With consis-
tent update, we observe no throughput drop during the up-
date process, and we do not observe changes in end-to-end
packet drop rate either.
Breakdown of gains: Owan jointly optimizes network-layer
topology, routing and rate allocation. We use an experiment
to show a breakdown of gains from controlling the three

 0
 20
 40
 60
 80

 100

 0 10 20 30 40 50

%
 o

f T
ra

ns
fe

rs

Deadline Factor

Owan
MaxFlow

 MaxMinFract
SWAN

 Tempus
Amoeba

 0
 20
 40
 60
 80

 100

Small Middle Large All

%
 o

f T
ra

ns
fe

rs

Bins

Owan
MaxFlow

MaxMinFract
SWAN

Tempus
Amoeba

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
 o

f T
ra

ns
fe

rs

Deadline Factor

(a) % of transfers that meet deadlines.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
 o

f B
yt

es

Deadline Factor

(b) % of bytes that meet deadlines.

 0

 20

 40

 60

 80

 100

Small Middle Large All

%
 o

f T
ra

ns
fe

rs

Bins

(c) % of transfers that meet deadlines.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
 o

f T
ra

ns
fe

rs

Deadline Factor

(d) % of transfers that meet deadlines.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
 o

f B
yt

es

Deadline Factor

(e) % of bytes that meet deadlines.

 0

 20

 40

 60

 80

 100

Small Middle Large All

%
 o

f T
ra

ns
fe

rs

Bins

(f) % of transfers that meet deadlines.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
 o

f T
ra

ns
fe

rs

Deadline Factor

(g) % of transfers that meet deadlines.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

%
 o

f B
yt

es

Deadline Factor

(h) % of bytes that meet deadlines.

 0

 20

 40

 60

 80

 100

Small Middle Large All

%
 o

f T
ra

ns
fe

rs

Bins

(i) % of transfers that meet deadlines.
Figure 9: Results for deadline-constrained traffic. (a-c), (d-f), and (g-i) are results of the Internet2 network, ISP net-
work, and inter-DC network, respectively.

parts. Figure 10(c) shows the result of the experiment. In
the experiment, we compare the average transfer comple-
tion time when the system has different levels of control of
the network. All times are normalized by the average trans-
fer completion time when the traffic load factor is 0.5 and
the system has controls of all three parts. In the most basic
scheme, the “rate” line in the figure, the system only controls
rate allocation. The system cannot reconfigure the network-
layer topology, nor can it change routing. It can only adjusts
the sending rates of the transfers. In the second scheme, the
“+rout.” line in the figure, the system has controls of both
routing and rate allocation. It assigns routing paths and rates
to transfers similar to line 15-25 in Algorithm 3. The third
scheme, the “+topo.” line in the figure, has controls of all
three parts. As we can see from the figure, we have lower
average transfer completion time when we have more con-
trol of the network.

Running time and convergence: We use simulated anneal-
ing to find a good topology. Since simulated annealing is an
approximation algorithm that performs probabilistic search
for the optimum, the quality of the result is related to its run-
ning time. The longer the algorithm runs, the more states it
can search in the search space and the better the result can
be. In our solution, since we use the current topology as the
initial state of the algorithm, instead of a random topology,

the algorithm starts its search with a reasonable good state.
Since our system runs the algorithm and reconfigures the
network every a few minutes, the traffic on the network is un-
likely to change dramatically. Therefore, the algorithm can
quickly find a good new topology by starting from the cur-
rent topology and only changing a few links, as compared to
starting from a random topology and spending a lot of time
on finding a reasonably good topology. Figure 10(d) shows
the performance of our algorithm when we run simulated
annealing for different amounts of time. The performance
is measured by the average transfer completion time. From
the figure, we can see that the algorithm performs very bad
when the simulated annealing only runs for 20 ms. However,
the algorithm converges quickly, and it only requires about
320 ms to find a good topology to significantly reduce the
average transfer completion time.

6. RELATED WORK
WAN Traffic Engineering: Traffic engineering is a classic
topic in networking research. Early work focuses on avoid-
ing congestions. Many algorithms are developed to mini-
mize the maximum link utilization under different condi-
tions, such as changing traffic demands and network fail-
ures [25, 26, 27]. There are also efforts on achieving dif-
ferent fairness metrics theoretically and practically [28, 29].

 0

 100

 200

 300

 400

 0 2500 5000 7500 10000

Th
ro

ug
hp

ut
 (G

bp
s)

Time (s)

Simulated Annealing
Greedy

(a) Simulated annealing vs.
the greedy algorithm.

 0
 5

 10
 15
 20
 25

0 2 4 6 8 10

Th
ro

ug
hp

ut
 (G

bp
s)

Time (second)

Consistent Update
One Shot Update

(b) With and without consis-
tent update scheme.

 0

 2

 4

 6

 8

 0.5 1 1.5 2

N
or

m
al

iz
ed

 T
im

e

Traffic Load Factor

rate
+rout.
+topo.

(c) Breakdown of gains.

 1000

 1200

 1400

 1600

 1800

0.02 0.08 0.32 1.28 5.12A
vg

. C
om

p.
 T

im
e

(s
)

Running Time (s)

(d) Impact of running time of
simulated annealing.

Figure 10: Microbenchmark results.
With the emergence of SDN and the ability to direct pro-
gram switches, researchers develop new centralized control
systems, like Google B4 and Microsoft SWAN, to improve
network utilization and its robustness in face of control plane
and data plane failures [1, 2, 30, 31, 32]. Recent work goes
beyond network-wide objectives like network utilization, to
more fine-grained transfer-level objectives, like minimizing
transfer completion time and meeting deadlines [3, 4, 33, 34,
35], and controls not only switches, but also proxies, load
balancers, and DNS servers [36]. Owan follows the trend of
centralized control for WANs. The key feature that differen-
tiates Owan from previous solutions is the joint management
of the optical and network layers, and we show that dynam-
ically reconfiguring the optical layer can significantly.

The routing problem in overlay networks also concerns
two layers [37, 38, 39]. The routing in the underlay net-
work (the network layer in this paper) builds the topology
for the overlay network. However, the overlay and under-
lay networks are usually managed by different parties, and
an overlay network usually traverses multiple ASes and has
unstable end-to-end network performance.

Data-Center Traffic Engineering: Data-center networks
have massive scale in terms of number of switches and hosts.
Most traffic engineering work in data-center networks fo-
cuses on routing elephant flows as it is impractical to deal
with all flows in a centralized manner [40, 41, 42, 43, 44,
45]. To cope with the scalability problem, CONGA designs
a distributed load balancing mechanism and implement it in
switch hardware [46]. Most of these solutions tackle the
routing problem, i.e., choosing a path for a flow or flowlet.
To solve the rate allocation problem, i.e., deciding the rate
for each flow to optimize the flow completion time or the
number of flows that meet deadlines, researchers have de-
veloped a wide range of new flow scheduling and congestion
control algorithms [16, 47, 48, 49, 50, 51, 52, 53]. Some of
them are entirely host-based; others leverage both host and
switch features. There are also works that optimize for a
group of flows, which are important for many big data appli-
cations [20, 21]. Owan has similar objectives as these works,

but the target of Owan is WANs. WANs do not have a struc-
tured topology as FatTree or CLOS in data center networks
(which many algorithms for data-center networks rely on),
and the topology can be changed by reconfiguring the un-
derlying optical layer.

Besides these works, some solutions propose to provide
bandwidth guarantee to cloud applications and tenants, in
order to provide predictable performance and enforce isola-
tion [54, 55, 56, 57]. In these solutions, requests are formu-
lated as bandwidth reservations between ingress and egress
points. For bulk data transfers, it is more appropriate to for-
mulate requests as volumes of data as in Owan. On the other
hand, bandwidth reservations are also a useful abstraction
for some use cases on the WAN. It is an interesting area of
future work to explore how the reconfigurability in the opti-
cal layer can improve bandwidth reservations.

Optical Networks: With the advancements in optical tech-
nology and centralized control, researchers have started to
build centralized production systems to manage the optical
layer on the WAN [14, 15]. Xu et al. [14] present an on-line
system to reconfigure the optical circuits given a set of cir-
cuit demands with constraints. Bathula et al. [15] develop
algorithms to compute the minimal set of regenerator con-
centration sites such that any two optical ROADMs have at
least one path available by using the selected sites. In terms
of cross-layer control, early studies present algorithms and
analysis for the joint optimization of the optical and network
layers [58, 59, 60]. They mainly focus on admissible traffic
demand and attempt to optimize for objectives like network
cost and routing hops. Recent work begins to explore build-
ing systems to jointly control the optical and network layers,
such as the DARPA CORONET program [6]. Our work is
built up these efforts and presents the design and implemen-
tation of Owan to jointly control the optical and network lay-
ers and optimize bulk transfers for transfer completion time
and deadlines met.

In terms of data centers, many researchers have proposed
to use optics to boost the network performance. For exam-
ple, Helios, cThrough and OSA use MEMS switches [7, 8,
9]; FireFly uses free-space optics [10]; WaveCube uses WSS
switches [11]. The major objective in these works is to im-
prove the network throughput. By reconfiguring the topol-
ogy, they can make the network be comparable to a non-
blocking network, while saving on power, cost, and wiring
complexity. Other works use optics to reduce latency [61];
use optics to support multicast [62, 63, 64, 65]; and de-
sign new optical hardware [66, 67, 68]. Differently, Owan
reconfigures topologies in the WAN scenario, which uses
ROADMs, regenerators and has the optical reach constraint,
and Owan combines topology reconfiguration with routing
and rate allocation to optimize transfer-level objectives.

7. CONCLUSION
We present Owan, a new traffic management system that

optimizes bulk transfers on the WAN. Besides controlling
routing and rate allocation, Owan goes one important step
further than prior solutions into the optical layer. It reconfig-

ures the optical layer in the same time scale as routing and
rate allocation in a centralized manner. We develop efficient
algorithms to compute the optical and routing configurations
to optimize bulk transfers. Testbed experiments and large-
scale simulations show that Owan completes data transfers
up to 4.45× faster in average and up to 1.36× more flows
meet their deadlines than methods with only network-layer
control. Owan is the first step towards software-defined op-
tical WANs. We believe centralized control of the optical
and network layers would have a far-reaching impact on the
theory and practice of network management for WANs.

Acknowledgments We thank our shepherd Hitesh Ballani
and the anonymous reviewers for their feedback. This work
was supported in part by NSF grants CNS-1162112, DMS-
1418255 and CCF-1535900, AFOSR grant FA9550-14-1-
0193, National Natural Science Foundation of China grants
61361136003 and 61532001, 1000 Talent Plan grant, Ts-
inghua Initiative Research Program grant 20151080475, and
a Google Faculty Research Award.

8. REFERENCES
[1] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,

A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla,
U. Hölzle, S. Stuart, and A. Vahdat, “B4: Experience with a
globally-deployed software defined WAN,” in ACM
SIGCOMM, August 2013.

[2] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill,
M. Nanduri, and R. Wattenhofer, “Achieving high utilization
with software-driven WAN,” in ACM SIGCOMM, August
2013.

[3] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula,
“Calendaring for wide area networks,” in ACM SIGCOMM,
August 2014.

[4] H. Zhang, K. Chen, W. Bai, D. Han, C. Tian, H. Wang,
H. Guan, and M. Zhang, “Guaranteeing deadlines for
inter-datacenter transfers,” in EuroSys, April 2015.

[5] “Internet2.” http://www.internet2.edu.
[6] A. L. Chiu, G. Choudhury, G. Clapp, R. Doverspike,

M. Feuer, J. W. Gannett, J. Jackel, G. T. Kim, J. G.
Klincewicz, T. J. Kwon, et al., “Architectures and protocols
for capacity efficient, highly dynamic and highly resilient
core networks,” IEEE/OSA Journal of Optical
Communications and Networking, vol. 4, pp. 1–14, January
2012.

[7] N. Farrington, G. Porter, S. Radhakrishnan, H. H. Bazzaz,
V. Subramanya, Y. Fainman, G. Papen, and A. Vahdat,
“Helios: A hybrid electrical/optical switch architecture for
modular data centers,” in ACM SIGCOMM, August 2010.

[8] G. Wang, D. G. Andersen, M. Kaminsky, K. Papagiannaki,
T. Ng, M. Kozuch, and M. Ryan, “c-Through: Part-time
optics in data centers,” in ACM SIGCOMM, August 2010.

[9] K. Chen, A. Singla, A. Singh, K. Ramachandran, L. Xu,
Y. Zhang, X. Wen, and Y. Chen, “OSA: An optical switching
architecture for data center networks with unprecedented
flexibility,” in USENIX NSDI, April 2012.

[10] N. Hamedazimi, Z. Qazi, H. Gupta, V. Sekar, S. R. Das, J. P.
Longtin, H. Shah, and A. Tanwer, “FireFly: A reconfigurable
wireless data center fabric using free-space optics,” in ACM
SIGCOMM, August 2014.

[11] K. Chen, X. Wen, X. Ma, Y. Chen, Y. Xia, C. Hu, Q. Dong,
and Y. Liu, “WaveCube: A scalable, fault-tolerant,
high-performance optical data center architecture,” in IEEE

INFOCOM, April 2015.
[12] “Infinera ROADM Specification.” http://tinyurl.com/jjog6no.
[13] “Oclaro WSS.” http://tinyurl.com/hotq4s3.
[14] D. Xu, G. Li, B. Ramamurthy, A. Chiu, D. Wang, and

R. Doverspike, “On provisioning diverse circuits in
heterogeneous multi-layer optical networks,” Computer
Communications, vol. 36, no. 6, pp. 689–697, 2013.

[15] B. G. Bathula, R. K. Sinha, A. L. Chiu, M. D. Feuer, G. Li,
S. L. Woodward, W. Zhang, R. Doverspike, P. Magill, and
K. Bergman, “Constraint routing and regenerator site
concentration in roadm networks,” IEEE/OSA Journal of
Optical Communications and Networking, vol. 5,
pp. 1202–1214, November 2013.

[16] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown,
B. Prabhakar, and S. Shenker, “pFabric: Minimal
near-optimal datacenter transport,” in ACM SIGCOMM,
August 2013.

[17] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi, “Optimization
by simulated annealing,” Science, vol. 220, pp. 671–680,
May 1983.

[18] M. A. Bonuccelli and M. C. Clò, “Scheduling of real-time
messages in optical broadcast-and-select networks,”
IEEE/ACM Transactions on Networking, vol. 9,
pp. 541–552, October 2001.

[19] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer, “Dynamic
scheduling of network updates,” in ACM SIGCOMM, August
2014.

[20] M. Chowdhury, Y. Zhong, and I. Stoica, “Efficient coflow
scheduling with Varys,” in ACM SIGCOMM, August 2014.

[21] M. Chowdhury and I. Stoica, “Efficient coflow scheduling
without prior knowledge,” in ACM SIGCOMM, August 2015.

[22] Z. Galil, “Efficient algorithms for finding maximum
matching in graphs,” ACM Computing Surveys, vol. 18,
pp. 23–38, March 1986.

[23] “JGraphT Graph Library.” http://jgrapht.org.
[24] “Floodlight OpenFlow Controller.”

http://floodlight.openflowhub.org/.
[25] D. Applegate and E. Cohen, “Making intra-domain routing

robust to changing and uncertain traffic demands:
Understanding fundamental tradeoffs,” in ACM SIGCOMM,
August 2003.

[26] B. Fortz and M. Thorup, “Internet traffic engineering by
optimizing OSPF weights,” in IEEE INFOCOM, March
2000.

[27] S. Kandula, D. Katabi, B. Davie, and A. Charny, “Walking
the tightrope: Responsive yet stable traffic engineering,” in
ACM SIGCOMM, August 2005.

[28] E. Danna, A. Hassidim, H. Kaplan, A. Kumar, Y. Mansour,
D. Raz, and M. Segalov, “Upward max min fairness,” in
IEEE INFOCOM, March 2012.

[29] E. Danna, S. Mandal, and A. Singh, “A practical algorithm
for balancing the max-min fairness and throughput objectives
in traffic engineering,” in IEEE INFOCOM, March 2012.

[30] H. H. Liu, S. Kandula, R. Mahajan, M. Zhang, and
D. Gelernter, “Traffic engineering with forward fault
correction,” in ACM SIGCOMM, 2014.

[31] A. Kumar, S. Jain, U. Naik, A. Raghuraman, B. Carlin,
M. Amarandei-Stavila, M. Robin, A. Siganporia, S. Stuart,
and A. Vahdat, “BwE: Flexible, hierarchical bandwidth
allocation for WAN distributed computing,” in ACM
SIGCOMM, August 2015.

[32] R. Hartert, S. Vissicchio, P. Schaus, O. Bonaventure,
C. Filsfils, T. Telkamp, and P. Francois, “A declarative and

expressive approach to control forwarding paths in
carrier-grade networks,” in ACM SIGCOMM, August 2015.

[33] B. B. Chen and P. V.-B. Primet, “Scheduling
deadline-constrained bulk data transfers to minimize network
congestion,” in IEEE CCGRID, May 2007.

[34] K. Rajah, S. Ranka, and Y. Xia, “Advance reservations and
scheduling for bulk transfers in research networks,” IEEE
Transactions on Parallel and Distributed Systems, vol. 20,
pp. 1682–1697, November 2009.

[35] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez,
“Inter-datacenter bulk transfers with NetStitcher,” in ACM
SIGCOMM, August 2011.

[36] H. H. Liu, R. Viswanathan, M. Calder, A. Akella,
R. Mahajan, J. Padhye, and M. Zhang, “Efficiently delivering
online services over integrated infrastructure,” in USENIX
NSDI, March 2016.

[37] D. G. Andersen, A. C. Snoeren, and H. Balakrishnan,
“Best-path vs. multi-path overlay routing,” in ACM
SIGCOMM Conference on Internet Measurement
Conference, October 2003.

[38] Z. Li and P. Mohapatra, “QRON: QoS-aware routing in
overlay networks,” vol. 22, no. 1, pp. 29–40, 2004.

[39] Y. Liu, H. Zhang, W. Gong, and D. Towsley, “On the
interaction between overlay routing and underlay routing,” in
IEEE INFOCOM, March 2005.

[40] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat, “Hedera: Dynamic flow scheduling for data
center networks.,” in USENIX NSDI, April 2010.

[41] T. Benson, A. Anand, A. Akella, and M. Zhang, “MicroTE:
Fine grained traffic engineering for data centers,” in ACM
CoNEXT, December 2011.

[42] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula,
P. Sharma, and S. Banerjee, “DevoFlow: Scaling flow
management for high-performance networks,” in ACM
SIGCOMM, August 2011.

[43] Z. Shao, X. Jin, W. Jiang, M. Chen, and M. Chiang,
“Intra-data-center traffic engineering with ensemble routing,”
in IEEE INFOCOM, April 2013.

[44] X. Wu and X. Yang, “Dard: Distributed adaptive routing for
datacenter networks,” in IEEE ICDCS, June 2012.

[45] S. Radhakrishnan, M. Tewari, R. Kapoor, G. Porter, and
A. Vahdat, “Dahu: Commodity switches for direct connect
data center networks,” in ACM/IEEE Symposium on
Architectures for Networking and Communications Systems,
October 2013.

[46] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan,
K. Chu, A. Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav,
and G. Varghese, “CONGA: Distributed congestion-aware
load balancing for datacenters,” in ACM SIGCOMM, August
2014.

[47] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan, “Data center
TCP (DCTCP),” in ACM SIGCOMM, August 2011.

[48] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron,
“Better never than late: Meeting deadlines in datacenter
networks,” in ACM SIGCOMM, August 2011.

[49] B. Vamanan, J. Hasan, and T. Vijaykumar, “Deadline-aware
datacenter TCP (D2TCP),” in ACM SIGCOMM, August
2012.

[50] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz,
“DeTail: Reducing the flow completion time tail in
datacenter networks,” in ACM SIGCOMM, August 2012.

[51] C.-Y. Hong, M. Caesar, and P. Godfrey, “Finishing flows
quickly with preemptive scheduling,” in ACM SIGCOMM,

August 2012.
[52] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and

H. Fugal, “Fastpass: A centralized zero-queue datacenter
network,” in ACM SIGCOMM, August 2014.

[53] W. Bai, L. Chen, K. Chen, D. Han, C. Tian, and H. Wang,
“Information-agnostic flow scheduling for commodity data
centers,” in USENIX NSDI, May 2015.

[54] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron,
“Towards predictable datacenter networks,” in ACM
SIGCOMM, August 2011.

[55] V. Jeyakumar, M. Alizadeh, D. Mazières, B. Prabhakar,
C. Kim, and A. Greenberg, “EyeQ: Practical network
performance isolation at the edge,” in USENIX NSDI, April
2013.

[56] L. Popa, P. Yalagandula, S. Banerjee, J. C. Mogul, Y. Turner,
and J. R. Santos, “ElasticSwitch: Practical work-conserving
bandwidth guarantees for cloud computing,” in ACM
SIGCOMM, August 2013.

[57] J. Lee, Y. Turner, M. Lee, L. Popa, S. Banerjee, J.-M. Kang,
and P. Sharma, “Application-driven bandwidth guarantees in
datacenters,” in ACM SIGCOMM, August 2014.

[58] K. C. Guan, Cost-effective optical network architecture: A
joint optimization of topology, switching, routing and
wavelength assignment. PhD thesis, Massachusetts Institute
of Technology, February 2007.

[59] A. Brzezinski and E. Modiano, “Dynamic reconfiguration
and routing algorithms for IP-over-WDM networks with
stochastic traffic,” Journal of Lightwave Technology, vol. 23,
pp. 3188–3205, October 2005.

[60] B. Ramamurthy and A. Ramakrishnan, “Virtual topology
reconfiguration of wavelength-routed optical WDM
networks,” in IEEE GLOBECOM, November 2000.

[61] Y. J. Liu, P. X. Gao, B. Wong, and S. Keshav, “Quartz: A
new design element for low-latency dcns,” in ACM
SIGCOMM, August 2014.

[62] H. Wang, Y. Xia, K. Bergman, T. Ng, S. Sahu, and
K. Sripanidkulchai, “Rethinking the physical layer of data
center networks of the next decade: Using optics to enable
efficient*-cast connectivity,” ACM SIGCOMM Computer
Communication Review, vol. 43, pp. 52–58, July 2013.

[63] P. Samadi, D. Calhoun, H. Wang, and K. Bergman,
“Accelerating cast traffic delivery in data centers leveraging
physical layer optics and SDN,” in International Conference
on Optical Network Design and Modeling, May 2014.

[64] P. Samadi, H. Wang, D. Calhoun, Y. Xia, K. Sripanidkulchai,
T. Ng, and K. Bergman, “An optical programmable network
architecture supporting iterative multicast for data-intensive
applications,” in IEEE Optical Interconnects Conference,
May 2014.

[65] Y. Xia and T. Ng, “A cross-layer sdn control plane for optical
multicast-featured datacenters,” in ACM SIGCOMM HotSDN
Workshop, August 2014.

[66] G. Porter, R. Strong, N. Farrington, A. Forencich,
P. Chen-Sun, T. Rosing, Y. Fainman, G. Papen, and
A. Vahdat, “Integrating microsecond circuit switching into
the data center,” in ACM SIGCOMM, August 2013.

[67] H. Liu, F. Lu, A. Forencich, R. Kapoor, M. Tewari, G. M.
Voelker, G. Papen, A. C. Snoeren, and G. Porter, “Circuit
switching under the radar with REACToR,” in USENIX
NSDI, April 2014.

[68] S. Liu, Q. Cheng, A. Wonfor, R. V. Penty, I. White, and P. M.
Watts, “A low latency optical top of rack switch for data
centre networks with minimized processor energy load,” in
Optical Fiber Communication Conference, March 2014.

