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Abstract
Recent years have seen growing interest in high-level languages for
programming networks. But the design of these languages has been
largely ad hoc, driven more by the needs of applications and the
capabilities of network hardware than by foundational principles.
The lack of a semantic foundation has left language designers with
little guidance in determining how to incorporate new features, and
programmers without a means to reason precisely about their code.

This paper presents NetKAT, a new network programming lan-
guage that is based on a solid mathematical foundation and comes
equipped with a sound and complete equational theory. We describe
the design of NetKAT, including primitives for filtering, modifying,
and transmitting packets; union and sequential composition oper-
ators; and a Kleene star operator that iterates programs. We show
that NetKAT is an instance of a canonical and well-studied mathe-
matical structure called a Kleene algebra with tests (KAT) and prove
that its equational theory is sound and complete with respect to its
denotational semantics. Finally, we present practical applications of
the equational theory including syntactic techniques for checking
reachability, proving non-interference properties that ensure isola-
tion between programs, and establishing the correctness of compi-
lation algorithms.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Specialized application lan-
guages

Keywords Software-defined networking, Frenetic, Network pro-
gramming languages, Domain-specific languages, Kleene algebra
with tests, NetKAT.

1. Introduction
Traditional network devices have been called “the last bastion of
mainframe computing” [9]. Unlike modern computers, which are
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implemented with commodity hardware and programmed using
standard interfaces, networks have been built the same way since
the 1970s: out of special-purpose devices such as routers, switches,
firewalls, load balancers, and middle-boxes, each implemented
with custom hardware and programmed using proprietary inter-
faces. This design makes it difficult to extend networks with new
functionality and effectively impossible to reason precisely about
their behavior.

However, a revolution has taken place with the recent rise of
software-defined networking (SDN). In SDN, a general-purpose con-
troller machine manages a collection of programmable switches.
The controller responds to network events such as new connec-
tions from hosts, topology changes, and shifts in traffic load by
re-programming the switches accordingly. Because the controller
has a global view of the network, it is easy to use SDN to imple-
ment a wide variety of standard applications such as shortest-path
routing, traffic monitoring, and access control, as well as more so-
phisticated applications such as load balancing, intrusion detection,
and fault-tolerance.

A major appeal of SDN is that it defines open standards that
any vendor can implement. For example, the OpenFlow API [21]
clearly specifies the capabilities and behavior of switch hardware
and defines a low-level language for manipulating their configura-
tions. However, programs written directly for SDN platforms such
as OpenFlow are akin to assembly: easy for hardware to implement,
but difficult for humans to write.

Network programming languages. In recent years, several dif-
ferent research groups have proposed domain-specific languages
for SDN [5–7, 23–25, 31, 32]. The goal of these network pro-
gramming languages is to raise the level of abstraction of net-
work programs above hardware-oriented APIs such as OpenFlow,
thereby making it easier to build sophisticated and reliable SDN
applications. For example, the languages developed in the Frenetic
project [30] support a two-phase programming model: (i) a general-
purpose program responds to network events by generating a static
forwarding policy; and (ii) the static policy is compiled and passed
to a run-time system that configures the switches using OpenFlow
messages. This model balances expressiveness—dynamic policies
can be expressed by having the general-purpose program generate
a sequence of static policies—and simplicity—forwarding policies
are written in a simple domain-specific language with a clear se-
mantics, so programs can be analyzed and even verified using au-
tomated tools [7, 26].

Still, it has never been clear what features a static policy lan-
guage should support. The initial version of Frenetic [6] used sim-
ple lists of predicate-action rules as policies, where the actions in-



cluded constructs for filtering, forwarding, duplicating, and modi-
fying packets. Subsequent versions of the language added (and later
removed) the ability to embed arbitrary packet-processing func-
tions in policies [23], as well as constructs for composing policies
in parallel and sequence [24]. As Frenetic evolved, its designers
added, removed, and modified the meaning of primitives as dictated
by the needs of applications. Without principles or metatheory to
guide its development, its evolution has lacked clear direction and
foresight. The ad hoc semantics has not made clear which primi-
tives are essential and which ones can be derived, and when new
constructs have been added to the language, it has not been clear
how they should interact with existing constructs and what behav-
ioral laws they should obey.

An even more pressing issue is that these static policy lan-
guages only specify the forwarding behavior of the switches in the
network. However, when a network program is actually executed,
end-to-end functionality is determined both by the behavior of the
switches and by the structure of the network topology. To answer
almost any interesting question about the network such as “Can X
connect to Y?”, “Is traffic from A to B routed through Z?”, or “Is
there a loop involving S?”, the programmer must step outside the
confines of the linguistic model and the abstractions it provides.

To summarize, we believe that a foundational model for network
programming languages is essential. Such a model should (i) iden-
tify the essential constructs for programming networks, (ii) provide
guidelines for incorporating new features, and (iii) unify reasoning
about switches, topology and end-to-end behavior.

Semantic foundations. This paper presents the first network pro-
gramming language that meets these criteria. To begin, we focus
on the global behavior of the network, unlike previous network
programming languages, which have focused on the local behav-
ior of individual switches. Abstractly, a network can be seen as an
automaton that moves packets from node to node along the links
in its topology. Hence, from a linguistic perspective, it is natural
to use regular expressions, the language of finite automata. Regu-
lar expressions are a standard way to specify the packet-processing
behavior of a network: a path is encoded as a concatenation of pro-
cessing steps (p·q ·· · · ), a set of paths is encoded as a union of paths
(p+ q+ · · · ), and iterated processing is encoded using Kleene star.
Moreover, by modeling the network in this way, we get a ready-
made theory for reasoning about formal properties: Kleene algebra
(KA), a decades-old sound and complete equational theory of regu-
lar expressions.

With Kleene algebra as the choice for representing global
network structure, we can turn our attention to specifying local
switch-processing functionality. Fundamentally, a switch imple-
ments predicates to match packets and actions that transform and
forward matching packets. Existing languages build various ab-
stractions atop the predicates and actions supplied by the hardware,
but predicates and actions are essential. As a consequence, a foun-
dational model for SDN must incorporate both Kleene algebra for
reasoning about network structure and Boolean algebra for reason-
ing about the predicates that define switch behavior. Fortunately,
these classic mathematical structures have already been unified in
previous work on Kleene algebra with tests (KAT) [14].

By now KAT has a well-developed metatheory, including an
extensive model theory and results on expressiveness, deductive
completeness, and complexity. The axioms of KAT are sound and
complete over a variety of popular semantic models, including lan-
guage, relational, and trace models, and KAT has been applied suc-
cessfully in a number of application areas, including compiler, de-
vice driver, and communication protocol verification [3, 15, 16, 22].
Moreover, equivalence in KAT has a PSPACE decision procedure.
This paper applies this theory to a new domain: networks.

Host 1

Switch A Switch B Host 2

1 2 1 2

Figure 1. Example network.

NetKAT. NetKAT is a new framework for specifying, program-
ming, and reasoning about networks based on Kleene algebra with
tests. As a programming language, NetKAT has a simple denota-
tional semantics inspired by NetCore [23], but modified and ex-
tended in key ways to make it sound for KAT (which NetCore is
not). In this respect, the semantic foundation provided by KAT has
delivered true guidance: the axioms of KAT dictate the interactions
between primitive program actions, predicates, and other operators.
Moreover, any future proposed primitive that violates a KAT axiom
can be summarily rejected for breaking the equations that allow
us to reason effectively about the network. NetKAT thus provides
a foundational structure and consistent reasoning principles that
other network programming languages lack.

For specification and reasoning, NetKAT also provides a finite
set of equations that capture equivalences between NetKAT pro-
grams. The equational theory includes the axioms of KAT, as well
as domain-specific axioms that capture transformations on packets.
This set of axioms enables reasoning about local switch processing
functionality (needed in compilation and optimization) as well as
global network behavior (needed to check reachability and traffic
isolation properties). We prove that the equational theory is sound
and complete with respect to the denotational semantics. While the
soundness proof is straightforward, our proof of completeness is
novel: we construct an alternate language model for NetKAT and
leverage the completeness of KA.

To evaluate the practical utility of our theory and the expres-
sive power of NetKAT, we demonstrate how it can be used to rea-
son about a diverse collection of applications. First, we show that
NetKAT can answer a variety of interesting reachability queries
useful to network operators. Next, we state and prove a non-
interference property for networks that provides a strong form of
isolation between NetKAT programs. Finally, we prove that NetKAT
can be correctly compiled to a low-level form analogous to switch
flow tables.

In summary, the contributions of this paper are as follows:

• We develop a new semantic foundation for network program-
ming languages based on Kleene algebra with tests (KAT).
• We formalize the NetKAT language in terms of a denotational

semantics and an axiomatic semantics based on KAT; we prove
the equational axioms sound and complete with respect to the
denotational semantics.
• We apply the equational theory in several diverse domains in-

cluding reasoning about reachability, traffic isolation, and com-
piler correctness.

The next section presents a simple example to motivate NetKAT
and introduces the key elements of its design. The subsequent
sections define the language formally, develop its main theoretical
properties, and present applications.

2. Overview
This section introduces the syntax and semantics of NetKAT using
a simple example. Consider the network shown in Figure 1. It
consists of switches A and B, each with ports labeled 1 and 2,
and two hosts. The switches and hosts are connected together in



series. Suppose we want to configure the network to implement the
following policies:

• Forwarding: transfer packets between hosts, but
• Access control: block SSH packets.

The forwarding component is straightforward—configure both
switches to forward packets destined for host 1 out port 1, and
likewise for host 2—but there are several ways to implement the
access control component. We will develop two implementations
and prove them equivalent using NetKAT’s equational theory.

Forwarding. To warm up, let us define a simple NetKAT policy
that implements the forwarding component. To a first approxima-
tion, a NetKAT policy can be thought of as a function from packets
to sets of packets. (In the next section we will generalize this type
to functions from lists of packets to sets of lists of packets, where
the lists encode packet-processing histories, to support reasoning
about network-wide properties.) We represent a packet as a record
with fields for standard headers such as source address (src), desti-
nation address (dst), and protocol type (typ), as well as two fields,
switch (sw) and port (pt), that identify the current location of the
packet in the network.

Atomic NetKAT policies filter and modify packets. A filter (f =
n) takes any input packet pk and yields the singleton set {pk} if
field f of pk equals n, and {} otherwise. A modification (f ← n)
takes any input packet pk and yields the singleton set {pk ′}, where
pk ′ is the packet obtained from pk by setting f to n.

To allow programmers to express more sophisticated policies,
NetKAT also has policy combinators that build bigger policies out
of smaller ones. The union combinator (p+ q) generates the union
of the sets produced by applying each of p and q to the input packet,
while the sequential composition combinator (p·q) first applies p to
the input packet, then applies q to each packet in the resulting set,
and finally takes the union of all of the resulting sets. With these
operators, we can implement the forwarding policy as follows:

p , (dst = H1 · pt← 1) + (dst = H2 · pt← 2)

At the top level, this policy is the union of two sub-policies. The
first updates the pt field of all packets destined for H1 to 1 and
drops all other packets, while the second updates the pt field of
all packets destined for H2 to 2. The union of the two generates
the union of their behaviors—in other words, the policy forwards
packets across switches A and B in both directions.

Access control. Next, we extend the policy with access control.
The simplest way to do this is to compose a filter that blocks SSH
traffic with the forwarding policy in sequence:

pAC , ¬(typ = SSH) · p

This policy drops the input packet if its typ field is SSH and oth-
erwise forwards it using p. Of course, a quick inspection of the
network topology shows that it is not necessary to test all packets
at all locations in the network to block SSH traffic—packets travel-
ing between host 1 and host 2 must traverse both switches, so it is
sufficient to filter only at switch A,

pA , (sw = A · ¬(typ = SSH) · p) + (sw = B · p)

or at switch B:

pB , (sw = A · p) + (sw = B · ¬(typ = SSH) · p)

Both of these policies are more complicated than the original pol-
icy, but more efficient because they avoid having to store and en-
force the access control policy at both switches. Naturally, we
would prefer one of the optimized policies. In addition, we would
like to be able to answer the following questions:

• “Are non-SSH packets forwarded?”
• “Are SSH packets dropped?”
• “Are pAC, pA, and pB equivalent?”

Network administrators ask these sorts of questions whenever they
write a network policy. However, note that we cannot answer them
by inspecting the policies alone—the answers depend fundamen-
tally on the network topology. We will see how to incorporate topol-
ogy information into a NetKAT program next.

Topology. A network topology is a directed graph with hosts and
switches as nodes and links as edges. We can model the topology
as the union of smaller policies that encode the behavior of each
link. To model an internal link, we use the sequential composition
of a filter that retains packets located at one end of the link and
a modification that updates the sw and pt fields to the location at
the other end of the link, thereby capturing the effect of sending
a packet across the link. To model a link at the perimeter of the
network, we simply use a filter that retains packets located at
the ingress port. We assume that links are uni-directional, and
encode bi-directional links using pairs of uni-directional links. For
example, the following policy models the internal links between
switches A and B, and the links at the perimeter to hosts 1 and 2:

t = (sw = A · pt = 2 · sw← B · pt← 1) +
(sw = B · pt = 1 · sw← A · pt← 2) +
(sw = A · pt = 1) +
(sw = B · pt = 2)

Note that although we represent the links as policies, unlike
switch policies, these link policies cannot actually be controlled
programmatically—they must be consistent with the structure of
the underlying physical topology.

Switches meet topology. A packet traverses the network in inter-
leaved steps of processing by the switches and topology. In our
example, if host 1 sends a non-SSH packet to host 2, it is first pro-
cessed by switch A, then the link between A and B, and finally by
switchB. This can be encoded by the NetKAT term pAC·t·pAC. More
generally, a packet may require an arbitrary number of steps—in
particular, if the topology has a cycle. Using the Kleene star oper-
ator, which iterates a policy zero or more times, we can encode the
overall behavior of the network:

(pAC · t)*

Note however that this policy processes packets that enter and exit
the network at arbitrary locations, including at internal locations
such as on the link between switches A and B. It is often useful
to restrict attention to packets that enter and exit the network at
specified external locations e:

e , (sw = A · pt = 1) + (sw = B · pt = 2)

Using this predicate, we can restrict the policy to packets sent or
received by one of the hosts:

pnet , e · (pAC · t)* · e
More generally, the input and output predicates may be distinct:

in · (p · t)* · out
This encoding is inspired by the model used in Header Space
Analysis [10]. We call a network modeled in this way a logical
crossbar [20], since it encodes end-to-end processing behavior (and
elides internal processing steps). Section 3 discusses a more refined
model that encodes hop-by-hop processing.

Formal reasoning. We now turn to formal reasoning and inves-
tigate whether the logical crossbar correctly implements the spec-
ified forwarding and access control policies. It turns out that these



Syntax
Fields f ::= f1 | · · · | fk

Packets pk ::= {f1 = v1, · · · , fk = vk}
Histories h ::= pk ::〈〉 | pk ::h

Predicates a, b ::= 1 Identity
| 0 Drop
| f = n Test
| a+ b Disjunction
| a · b Conjunction
| ¬a Negation

Policies p, q ::= a Filter
| f ← n Modification
| p+ q Union
| p · q Sequential composition
| p* Kleene star
| dup Duplication

Semantics
JpK ∈ H→ P(H)

J1K h , {h}
J0K h , {}

Jf = nK (pk ::h) ,

{
{pk ::h} if pk .f = n
{} otherwise

J¬aK h , {h} \ (JaK h)

Jf ← nK (pk ::h) , {pk [f := n]::h}
Jp+ qK h , JpK h ∪ JqK h

Jp · qK h , (JpK JqK) h
Jp*K h ,

⋃
i∈N F

i h

where F 0 h , {h} and F i+1 h , (JpK F i) h

JdupK (pk ::h) , {pk ::(pk ::h)}

Kleene Algebra Axioms
p+ (q + r) ≡ (p+ q) + r KA-PLUS-ASSOC

p+ q ≡ q + p KA-PLUS-COMM

p+ 0 ≡ p KA-PLUS-ZERO

p+ p ≡ p KA-PLUS-IDEM

p · (q · r) ≡ (p · q) · r KA-SEQ-ASSOC

1 · p ≡ p KA-ONE-SEQ

p · 1 ≡ p KA-SEQ-ONE

p · (q + r) ≡ p · q + p · r KA-SEQ-DIST-L
(p+ q) · r ≡ p · r + q · r KA-SEQ-DIST-R

0 · p ≡ 0 KA-ZERO-SEQ

p · 0 ≡ 0 KA-SEQ-ZERO

1 + p · p* ≡ p* KA-UNROLL-L
q + p · r ≤ r⇒ p* · q ≤ r KA-LFP-L

1 + p* · p ≡ p* KA-UNROLL-R
p+ q · r ≤ q⇒ p · r* ≤ q KA-LFP-R

Additional Boolean Algebra Axioms
a+ (b · c) ≡ (a+ b) · (a+ c) BA-PLUS-DIST

a+ 1 ≡ 1 BA-PLUS-ONE

a+ ¬a ≡ 1 BA-EXCL-MID

a · b ≡ b · a BA-SEQ-COMM

a · ¬a ≡ 0 BA-CONTRA

a · a ≡ a BA-SEQ-IDEM

Packet Algebra Axioms
f ← n · f ′ ← n′ ≡ f ′ ← n′ · f ← n, if f 6= f ′ PA-MOD-MOD-COMM

f ← n · f ′ = n′ ≡ f ′ = n′ · f ← n, if f 6= f ′ PA-MOD-FILTER-COMM

dup · f = n ≡ f = n · dup PA-DUP-FILTER-COMM

f ← n · f = n ≡ f ← n PA-MOD-FILTER

f = n · f ← n ≡ f = n PA-FILTER-MOD

f ← n · f ← n′ ≡ f ← n′ PA-MOD-MOD

f = n · f = n′ ≡ 0, if n 6= n′ PA-CONTRA∑
i

f = i ≡ 1 PA-MATCH-ALL

Figure 2. NetKAT: syntax, semantics, and equational axioms.

questions, and many others, can be reduced to policy equivalence.
We write p ≡ q when p and q return the same set of packets on all
inputs, and p ≤ q when p returns a subset of the packets returned
by q on all inputs. (Note that p ≤ q can be treated as an abbrevia-
tion for p + q ≡ q.) To establish that pnet correctly filters all SSH
packets going from port 1 on switch A to port 2 on switch B, we
check the following equivalence, where 0 is the filtering policy that
drops all packets: typ = SSH · sw = A · pt = 1 ·

(pAC · t)* ·
sw = B · pt = 2

 ≡ 0

To establish that the optimized policies pA and pB correctly filter
SSH packets going from port 1 on switch A to port 2 on switch B,
we check the following equivalences, typ = SSH · sw = A · pt = 1 ·

(pA · t)* ·
sw = B · pt = 2

 ≡ 0

and:  typ = SSH · sw = A · pt = 1 ·
(pB · t)* ·
sw = B · pt = 2

 ≡ 0

Finally, to establish that pAC correctly forwards non-SSH packets
from H1 to H2, we check the following inclusion:

(¬(typ = SSH) · sw = A · pt = 1 · sw← B · pt← 2)
≤ (pAC · t)*

and similarly for non-SSH packets H2 to H1.
Of course, to actually check these equivalences formally, we

need a proof system. NetKAT is designed to not only be an expres-
sive programming language, but also one that satisfies the axioms
of a Kleene algebra with tests (KAT). Moreover, by extending KAT
with additional axioms that capture the domain-specific features of
networks, the equational theory is complete—i.e., it can answer all
the questions posed in this section, and many more. The follow-
ing sections present the syntax, semantics, and equational theory
of NetKAT formally (Section 3); prove that the equational theory
is sound and complete with respect to the semantics (Section 4);
and illustrate its effectiveness on a broad range of questions includ-
ing additional reachability properties (Section 5), program isolation
(Section 6) and compiler correctness (Section 7).

3. NetKAT
This section defines the syntax and semantics of NetKAT formally.

Preliminaries. A packet pk is a record with fields f1, . . . , fk map-
ping to fixed-width integers n. We assume a finite set of packet



headers, including Ethernet source and destination addresses,
VLAN tag, IP source and destination addresses, TCP and UDP source
and destination ports, along with special fields for the switch (sw),
port (pt), and payload. For simplicity, we assume that every packet
contains the same fields. We write pk .f for the value in field f of
pk , and pk [f := n] for the packet obtained from pk by updating
field f to n.

To facilitate reasoning about the paths a packet takes through the
network, we maintain a packet history that records the state of each
packet as it travels from switch to switch. Formally, a packet history
h is a non-empty sequence of packets. We write pk ::〈〉 to denote a
history with one element, pk ::h to denote the history constructed
by prepending pk on to h , and 〈pk1, . . . , pkn〉 for the history with
elements pk1 to pkn. By convention, the first element of a history is
the current packet; other elements represent previously-processed
packets. We write H for the set of all histories, and P(H) for the
powerset of H.

Syntax. Syntactically, NetKAT expressions are divided into two
categories: predicates (a, b) and policies (p, q). Predicates include
constants true (1) and false (0), tests (f = n), and negation (¬a),
disjunction (a+b), and conjunction (a·b) operators. Policies include
predicates, modifications (f ← n), union (p + q) and sequential
composition (p · q), iteration (p*), and a special policy that records
the current packet in the history (dup). The complete syntax of
NetKAT is given in Figure 2. By convention, (*) binds tighter than
(·), which binds tighter than (+). Hence, a · b+ c · d* is the same
as (a · b) + (c · (d*)).

Semantics. Semantically, every NetKAT predicate and policy de-
notes a function that takes a history h and produces a (possibly
empty) set of histories {h1, . . . , hn}. Producing the empty set mod-
els dropping the packet (and its history); producing a singleton set
models modifying or forwarding the packet to a single location;
and producing a set with multiple histories models modifying the
packet in several ways or forwarding the packet to multiple loca-
tions. Note that policies only ever inspect or modify the first (cur-
rent) packet in the history. This means that an implementation need
not actually record histories—they are only needed for reasoning.

Figure 2 defines the denotational semantics of NetKAT. Note
that there is no separate definition for predicates—every predicate
is a policy, and the semantics of (·) and (+) are the same whether
they are composing policies or predicates. The syntactic distinction
between policies and predicates arises solely to ensure that negation
is only applied to a predicate, and not, for example, to a policy such
as p*. Formally, a predicate denotes a function that returns either
the singleton {h} or the empty set {} when applied to a history
h. Hence, predicates behave like filters. A modification (f ← n)
denotes a function that returns a singleton history in which the field
f of the current packet has been updated to n. The union operator
(p + q) denotes a function that produces the union of the sets
generated by p and q, and sequential composition (p·q) denotes the
Kleisli composition ( ) of the functions p and q, where the Kleisli
composition of functions of type H→ P(H) is defined as:

(f g) x ,
⋃
{g y | y ∈ f x} .

Policy iteration p* is interpreted as a union of semantic functionsFi
of h , where each Fi is the Kleisli composition of function denoted
by p i times. Finally, dup denotes a function that duplicates the
current packet and adds it to the history. Since modification updates
the packet at the head of the history, dup “freezes” the current state
of the packet and makes it observable.

Readers familiar with Frenetic and NetCore may notice some
differences between the syntax used in previous network program-
ming languages. This paper focuses on theoretical foundations, so
we use the traditional “algebraic” syntax for KAT, which conflates

a, b ::= 1
| 0
| f = n
| a+ b
| a · b
| ¬a

p, q ::= a
| f ← n
| p+ q
| p · q
| p*
| dup

a,b ::= true
| false
| f = n
| a or b
| a and b
| not a

p,q ::= filter a
| f := n
| p | q
| p ; q
| p*
| dup

Figure 3. NetKAT algebraic and surface syntax.

the (·) and (+) operators for predicates and programs and has con-
stants 0 and 1. Figure 3 shows the relationship between this alge-
braic syntax and the surface syntax we use in programs.

Equational theory. As its name suggests, NetKAT is a Kleene
algebra with tests. Formally, a Kleene algebra (KA) is an algebraic
structure,

(K, +, ·, *, 0, 1)

where K is an idempotent semiring under (+, ·, 0, 1), and p* · q
(respectively q·p*) is the least solution of the affine linear inequality
p · r + q ≤ r (respectively r · p + q ≤ r), where p ≤ q
is an abbreviation for p + q = q. The axioms of KA are listed
in Figure 2. A Kleene algebra with tests (KAT) is a two-sorted
algebraic structure,

(K, B, +, ·, *, 0, 1, ¬)

where ¬ is a unary operator defined only on B, such that

• (K, +, ·, *, 0, 1) is a Kleene algebra,
• (B, +, ·, ¬ , 0, 1) is a Boolean algebra, and
• (B, +, ·, 0, 1) is a subalgebra of (K, +, ·, 0, 1).

The axioms of Boolean algebra consist of the axioms of idempotent
semirings (already listed as KA axioms) and the additional axioms
listed in Figure 2. In previous work on KAT, the elements of B and
K have usually been called tests and actions respectively; in this
paper we will refer to them as predicates and policies.

It is easy to see that NetKAT has the required syntactic structure
to be a KAT. However, the KAT axioms are not complete for the
underlying NetKAT packet model. To establish completeness, we
also need the packet algebra axioms listed in Figure 2. The first
three axioms specify commutativity conditions. For example, the
axiom PA-MOD-MOD-COMM states that assignments src ← X and
dst← Y can be applied in either order, as src and dst are different:

src← X · dst← Y ≡ dst← Y · src← X

Similarly, axiom PA-MOD-FILTER-COMM states that the assignment
src← X and predicate sw = A can be applied in either order. The
axiom PA-DUP-FILTER-COMM states that every predicate commutes
with dup. Interestingly, only this single axiom is needed to char-
acterize dup in the equational theory. The next few axioms charac-
terize modifications. The PA-MOD-FILTER axiom states that modi-
fying a field f to n and then filtering on packets with f equal to
n is equivalent to the modification alone. Similarly, the axiom PA-
FILTER-MOD states that filtering on packets with field f equal to n
and then modifying that field to n is equivalent to just the filter.
PA-MOD-MOD states that only the last assignment in a sequence
of assignments to the same f has any effect. The final two axioms
characterize filters. The axiom PA-CONTRA states that a field cannot
be equal to two different values at the same time, while the axiom



KAT-INVARIANT If a · p ≡ p · a then a · p* ≡ a · (p · a)* Lemma 2.3.2 in [14]
KAT-SLIDING p · (q · p)* ≡ (p · q)* · p Identity 19 in [14]
KAT-DENESTING p* · (q · p*)* ≡ (p+ q)* Identity 20 in [14]
KAT-COMMUTE If for all atomic x in q, x · p ≡ p · x then q · p ≡ p · q Corollary of Lemma 4.4 in [2]

Figure 4. KAT theorems.

PA-MATCH-ALL states that the sum of filters on every possible value
is equivalent to the identity. This implies packet values are drawn
from a finite domain, such as fixed-width integers.

Example: access control. To illustrate the NetKAT equational
theory, we prove a simple equivalence in Figure 5 using the policies
from Section 2. Recall that the policy pA filters SSH packets on
switch A while pB filters SSH packets on switch B. We prove
that these programs are equivalent on SSH traffic going from left
to right across the network topology shown in Figure 1. This can
be seen as a simple form of code motion—relocating the filter from
switch A to switch B. We use the logical crossbar encoding with
the following input and output predicates:

in , (sw = A · pt = 1)

out , (sw = B · pt = 2)

As a warm up, we first prove two simpler lemmas that will be useful
for the main code motion proof. The proofs of these lemmas are
straightforward calculations using the NetKAT axioms and some
standard KAT theorems (given in Figure 4). We shade the term(s)
on each line that will be changed on the next step of the proof. To
lighten the notation, we elide uses of axioms related to associativity,
and use the following abbreviations:

aA , (sw = A) a1 , (pt = 1)

aB , (sw = B) a2 , (pt = 2)

mA , (sw← A) m1 , (pt← 1)

mB , (sw← B) m2 , (pt← 2)

SSH , (typ = SSH)

Lemma 1 states that the sequential composition of the input
predicate, the predicate aB , and an arbitrary policy q is equivalent
to the policy that drops all packets. Intuitively this holds because
the input predicate matches packets on switch A and aB matches
packets on switch B. Lemma 2 states that the sequential composi-
tion of an arbitrary policy q, the predicate aA, the topology t from
Section 2, and the output predicate is equivalent to the policy that
drops all packets. Intuitively this holds because the topology does
not forward packets located on any port of switch A to port 2 of
switch B. The proof is essentially a case analysis on the links in
the topology. Using these lemmas, we then prove Lemma 3, which
states that pA and pB both drop SSH traffic going from host 1 to
host 2. Formal statements of these lemmas and proofs using the
NetKAT equational axioms can be found in Figure 5.

4. Soundness, Completeness, and Decidability
This section proves the soundness and completeness of the NetKAT
axioms with respect to the denotational semantics defined in Sec-
tion 3. More formally, these results state that every equivalence
provable using the NetKAT axioms also holds in the denotational
model (Theorem 1), and that every equivalence which holds in the
denotational model is provable using the axioms (Theorem 2). We
also prove the decidability of NetKAT equivalence, and show that
the problem is PSPACE-complete.

To obtain these results, we prove theorems that are stronger and
more enlightening from a theoretical point of view. For soundness,
we prove that the packet-history model used in the denotational

semantics is isomorphic to a model based on binary relations, and
appeal to the soundness of KAT over binary relation models. For
completeness, we develop a language model for NetKAT that plays
the same role as regular sets of strings and guarded strings do for
KA and KAT respectively. We then relate the packet-history and
language models, which allows us to leverage the completeness of
KA to prove the completeness of the NetKAT axioms.

4.1 Soundness
To prove soundness, we begin by reformulating the standard
packet-history semantics introduced in Section 3 in terms of bi-
nary relations. In the standard semantics, policies and predicates
are modeled as functions JpK ∈ H → P(H). This semantics is
isomorphic to a relational semantics [·] in which each policy and
predicate is interpreted as a binary relation [p] ⊆ H× H:

(h1, h2) ∈ [p] ⇔ h2 ∈ JpK (h1).

Intuitively, [p] is the set of input-output pairs of the policy p.
Formally, the maps JpK ∈ H → P(H) are morphisms of type

H → H in KlP , the Kleisli category of the powerset monad. It
is well known that the Kleisli category KlP is isomorphic to the
category Rel of sets and binary relations, as witnessed by currying:

X → P(Y ) ∼= X → Y → 2 ∼= X × Y → 2 ∼= P(X × Y ).

In the relational model [·], product is interpreted as ordinary re-
lational composition, and the remaining KAT operations translate
under the isomorphism to the usual KAT operations on binary re-
lations. Since the relational model with these distinguished opera-
tions satisfies the axioms of KAT (see e.g. [14, 17]), so do NetKAT
models with the packet-history semantics of Section 3.

Let ` denote provability in NetKAT. The following Theorem
states the soundness of the NetKAT axioms.

Theorem 1 (Soundness). The KAT axioms and packet algebra
axioms listed in Figure 2 are sound with respect to the semantics of
Section 3. That is, if ` p ≡ q, then JpK = JqK.

Proof sketch. We have already argued that the packet-history se-
mantics is isomorphic to a relational KAT, and therefore satisfies
the KAT axioms listed in Figure 2. It remains to show that the addi-
tional packet algebra axioms on the right-hand side of Figure 2 are
also satisfied. These can all be verified by elementary arguments
in relational algebra (see e.g. [28]). Some are special cases of [2,
Equations (6)–(11)], whose soundness is proved in [2, Theorem
4.3]. See the long version of this paper for the full proof.

4.2 Completeness
The proof of completeness proceeds in four steps:

1. We first define reduced NetKAT, a subset of NetKAT where poli-
cies are regular expressions over complete tests (a normal form
for sequences of tests), complete assignments (a normal form
for sequences of modifications), and dup. We show that every
NetKAT policy is provably equivalent to a reduced NetKAT pol-
icy and that reduced terms have a simplified set of axioms per-
taining to assignments and tests.

2. Inspired by past proofs of completeness for KA and KAT, we
then develop a language model for reduced NetKAT. This lan-
guage model gives semantics to policies via sets of guarded



Lemma 1. in · aB · q ≡ 0

Proof.
in · aB · q

≡ { definition in }
aA · a1 · aB · q

≡ { KAT-COMMUTE }
aA · aB · a1 · q

≡ { PA-CONTRA }
0 · a1 · q

≡ { KA-ZERO-SEQ }
0

Lemma 2. q · aA · t · out ≡ 0

Proof.

q · aA · t · out
≡ { definition t }
q · aA · (aA · a2 ·mB ·m1 +

aB · a1 ·mA ·m2 +
aA · a1 +

aB · a2) · out
≡ { KA-SEQ-DIST-L, KA-SEQ-DIST-R }
q · aA · aA · a2 ·mB ·m1 · out +
q · aA · aB · a1 ·mA ·m2 · out +
q · aA · aA · a1 · out +
q · aA · aB · a2 · out

≡ { definition out }
q · aA · aA · a2 ·mB ·m1 · aB · a2 +
q · aA · aB · a1 ·mA ·m2 · aB · a2 +
q · aA · aA · a1 · aB · a2 +
q · aA · aB · a2 · aB · a2

≡ { PA-MOD-FILTER }
q · aA · aA · a2 ·mB ·m1 · a1 · aB · a2 +
q · aA · aB · a1 ·mA · aA ·m2 · aB · a2 +
q · aA · aA · a1 · aB · a2 +
q · aA · aB · a2 · aB · a2

≡ { KAT-COMMUTE }
q · aA · aA · a2 ·mB ·m1 · aB · a1 · a2 +
q · aA · aB · a1 ·mA ·m2 · aA · aB · a2 +
q · aA · aA · aB · a1 · a2 +
q · aA · aB · a2 · aB · a2

≡ { PA-CONTRA }
q · aA · aA · a2 ·mB ·m1 · aB · 0 +
q · aA · aB · a1 ·mA ·m2 · 0 · a2 +
q · aA · aA · aB · 0 +
q · 0 · a2 · aB · a2

≡ { KA-SEQ-ZERO, KA-ZERO-SEQ }
0 + 0 + 0 + 0

≡ { KA-PLUS-IDEM }
0

Lemma 3. in · SSH · (pA · t)* · out ≡ in · SSH · (pB · t)* · out
Proof.

in · SSH · (pA · t)* · out
≡ { KAT-INVARIANT, definition pA }

in · SSH · ((aA · ¬SSH · p+ aB · p) · t · SSH)* · out
≡ { KA-SEQ-DIST-R }

in · SSH · (aA · ¬SSH · p · t · SSH + aB · p · t · SSH)* · out
≡ { KAT-COMMUTE }

in · SSH · (aA · ¬SSH · SSH · p · t+ aB · p · t · SSH)* · out
≡ { BA-CONTRA }

in · SSH · (aA · 0 · p · t+ aB · p · t · SSH)* · out
≡ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-COMM, KA-PLUS-ZERO }

in · SSH · (aB · p · t · SSH)* · out
≡ { KA-UNROLL-L }

in · SSH · (1 + (aB · p · t · SSH) · (aB · p · t · SSH)*) · out
≡ { KA-SEQ-DIST-L, KA-SEQ-DIST-R, definition out }

in · SSH · aB · a2 +
in · SSH · aB · p · t · SSH · (aB · p · t · SSH)* · aB · a2

≡ { KAT-COMMUTE }
in · aB · SSH · a2 +

in · aB · SSH · p · t · SSH · (aB · p · t · SSH)* · aB · a2
≡ { Lemma 1 }

0 + 0
≡ { KA-PLUS-IDEM }

0
≡ { KA-PLUS-IDEM }

0 + 0
≡ { Lemma 1, Lemma 2 }

in · aB · SSH · a2 +
in · SSH · (aA · p · t · SSH)* · p · SSH · aA · t · out

≡ { KAT-COMMUTE, definition out }
in · SSH · out +

in · SSH · (aA · p · t · SSH)* · aA · p · t · SSH · out
≡ { KA-SEQ-DIST-L, KA-SEQ-DIST-R }

in · SSH · (1 + (aA · p · t · SSH)* · (aA · p · t · SSH)) · out
≡ { KA-UNROLL-R }

in · SSH · (aA · p · t · SSH)* · out
≡ { KA-SEQ-ZERO/ZERO-SEQ, KA-PLUS-ZERO }

in · SSH · (aA · p · t · SSH + aB · 0 · p · t)* · out
≡ { BA-CONTRA }

in · SSH · (aA · p · t · SSH + aB · ¬SSH · SSH · p · t)* · out
≡ { KAT-COMMUTE }

in · SSH · (aA · p · t · SSH + aB · ¬SSH · p · t · SSH)* · out
≡ { KA-SEQ-DIST-R }

in · SSH · ((aA · p+ aB · ¬SSH · p) · t · SSH)* · out
≡ { KAT-INVARIANT, definition pB }

in · SSH · (pB · t)* · out

Figure 5. Code motion proofs.

strings. We prove the language model and the standard model
of NetKAT given by the denotational semantics are isomorphic.

3. We then define a normal form for NetKAT policies, and show
that every policy is provably equivalent to its normal form.

4. Finally, we relate NetKAT normal forms to regular sets of
guarded strings, and obtain the completeness of NetKAT from
the completeness of KA.

The rest of this section outlines the key steps of this proof. The
long version of this paper gives further details.

Step 1: Reduced NetKAT. Let f1, . . . , fk be a list of all fields of
a packet in some (fixed) order. For each tuple n̄ = n1, . . . , nk of
values, let f̄ = n̄ and f̄ ← n̄ denote the expressions

f1 = n1 · · · fk = nk f1 ← n1 · · · fk ← nk,



Reduced NetKAT syntax

Complete assignments π , f1 ← n1 · · · fk ← nk

Complete tests α, β , f1 = n1 · · · fk = nk

Reduced terms p, q ::= α Complete test
| π Complete assignment
| p+ q Union
| p · q Sequence
| p* Kleene star
| dup Duplication

Simplified axioms for A and P
π ≡ π · απ α · dup ≡ dup · α

∑
α

α ≡ 1,

α ≡ α · πα π · π′ ≡ π′ α · β ≡ 0, α 6= β

Regular interpretation: R(p) ⊆ (Π +A+ dup)*

R(π) = {π}
R(p+ q) = R(p) ∪R(q)

R(α) = {α}
R(p · q) = {xy | x ∈ R(p), y ∈ R(q)}
R(dup) = {dup}

R(p*) =
⋃
n≥0

R(pn)

Figure 6. Reduced NetKAT.

Language model: G(p) ⊆ I = A · (Π · dup)* ·Π
G(π) = {α · π | α ∈ A}

G(p+ q) = G(p) ∪G(q)

G(α) = {α · πα}
G(p · q) = G(p) � G(q)

G(dup) = {α · πα · dup · πα | α ∈ A}

G(p*) =
⋃
n≥0

G(pn)

Guarded concatenation

α · p · π � β · q · π′ =

{
α · p · q · π′ if β = απ
undefined if β 6= απ

A � B = {p � q | p ∈ A, q ∈ B} ⊆ I

Figure 7. NetKAT language model.

respectively. We call these expressions complete tests and complete
assignments respectively. We often call complete tests atoms be-
cause they are atoms (minimal nonzero elements) of the Boolean
algebra generated by the tests. Note that complete tests and com-
plete assignments are in one-to-one correspondence according to
the values n̄. Hence, if α is an atom, we denote the corresponding
complete assignment by πα , and if π is a complete assignment, we
denote the corresponding atom by απ . We let A denote the set of
atoms and Π the set of complete assignments.

Now that we have defined atoms and complete assignments, we
investigate their properties. Figure 6 gives a collection of simple
axioms for reduced policies that are easily provable using the full

NetKAT axioms. One useful consequence of these axioms is∑
α∈A α · πα ≡ 1.

Any policy is provably equivalent to a policy in which all atomic
assignments f ← n appear in the context of a complete assignment.
The proof of this fact is straightforward.

f ← n ≡ 1 · f ← n
≡ (

∑
α∈A α · πα) · (f ← n)

≡
∑
α∈A α · π

′
α

where π′α is πα with the assignment to f replaced by f ← n.
Similarly, every test is equivalent to a sum of complete tests:

b ≡
∑
α≤b α

Since all modifications can be replaced by complete assignments
and all tests by atoms, any NetKAT policy p can be viewed as a
regular expression over the alphabet Π∪A∪{dup}. The bottom of
Figure 6 shows this by defining a mappingR from reduced NetKAT
to regular sets over this alphabet. We assume for the remainder of
this section that all NetKAT policies are in reduced form.

Step 2: Language model. Both KA and KAT have language mod-
els in which expressions are interpreted as regular sets of minimal
nonzero terms (often called join-irreducible terms). For KA, the lan-
guage model is the regular sets of strings, and for KAT, it is the
regular sets of guarded strings [17]. NetKAT also has a language
model. It consists of regular subsets of a restricted class of guarded
strings I = A · (Π · dup)* ·Π. Each string in this set has the form

α · π0 · dup · π1 · dup · · · dup · πn
for some n ≥ 0. These strings represent the minimal nonzero
elements of the standard model of NetKAT.

Figure 7 defines the language model as a mapping G from
reduced NetKAT expressions to regular subsets of I . The case for
sequential composition makes use of the concatenation operator
(�) over strings from I , which we lift to concatenation of sets of
guarded strings from I . Both definitions appear at the bottom of
Figure 7. Note that � is a partial function on strings but a total
function on sets of strings. Using the simplified axioms of Figure 6,
it is easy to show that � is associative on strings and sets, distributes
over union, and has two-sided identity {α · πα | α ∈ A}. Also
note that if

α · p · π � β · q · π′

exists, then

` α · p · π · β · q · π′ ≡ α · p · π � β · q · π′ ∈ I
and otherwise:

` α · p · π · β · q · π′ ≡ 0

Having defined the language model, we now show that it is iso-
morphic to the standard packet model presented in Section 3. We
first show that the standard semantics of every NetKAT expression
is equal to the union of its minimal nonzero terms.1 The proof is
straightforward by induction on p.

Lemma 4. For all policies p, we have JpK =
⋃
x∈G(p) JxK.

Next we prove that every x in I is completely determined by JxK.

Lemma 5. If x, y ∈ I , then JxK = JyK if and only if x = y.

Finally, using Lemmas 4 and 5, we conclude that the language
model is isomorphic to the denotational model presented earlier.

Lemma 6. For all policies p and q, we have JpK = JqK if and only
if G(p) = G(q).

1 We abuse notation slightly here by applying the union operator
⋃

to func-
tions H→ P(H). This is interpreted pointwise:

⋃
JpK = λs.

⋃
JpK (s).



Step 3: Normal forms. Next we define a normal form for NetKAT
policies and prove that every policy is provably equivalent to one
in normal form.

Definition 1. A NetKAT policy p is in normal form if R(p) ⊆ I .
A policy is normalizable if it is provably equivalent to a policy in
normal form.

Lemma 7. Every policy p is normalizable.

Proof. The inductive proof requires a slightly strengthened induc-
tive hypothesis. Let us say that a policy is in strong normal form if
it is in normal form and is a sum of zero or more guarded policies,
where a policy is guarded if it is of the form either α · π · x · π′ or
α · π. We show by induction on p that every policy is equivalent to
a policy in strong normal form.

The cases for atomic policies are straightforward:

h← n ≡
∑
α∈A α · π

′
α

dup ≡
∑
α∈A α · πα · dup · πα

b ≡
∑
α≤b α · πα

The case for union is trivial, and the case for sequential composition
follows by a simple argument:(∑

i

si

)
·

(∑
j

tj

)
≡
∑
i

∑
j

si · tj ≡
∑
i

∑
j

si � tj .

The most interesting case is for Kleene star. Consider an expression
p*, where p is in strong normal form. We first prove the uniform
case: when all guarded terms in p have the same initial atom α,
that is, p = α · t where t is a union of terms each with a leading
and trailing π, and R(t) ⊆ Π · (dup ·Π)*. Let u be t with all terms
whose trailing π is not πα deleted and with the trailing πα deleted
from all remaining terms. By the simplified axioms of Figure 6, we
have t · α · t ≡ u · t, therefore t · α · t · α ≡ u · t · α. Using
KAT-COMMUTE [2, Lemma 4.4],

(t · α)* · t ≡ t+ t · α · (t · α)* · t
≡ t+ u* · t · α · t
≡ t+ u* · u · t
≡ u* · t,

and hence
p* ≡ 1 + p* · p

≡ 1 + (α · t)* · α · t
≡ 1 + α · (t · α)* · t
≡ 1 + α · u* · t
≡ 1 + α · t+ α · u · u* · t,

which after normalizing the 1 is in strong normal form. For the case
p* where the initial tests in p are not uniform, the argument is by
induction on the number of terms in the union. If p = α ·x+q, then
by the inductive hypothesis, q* has an equivalent strong normal
form q̂*. Using KAT-DENESTING (Figure 4), we obtain

p* ≡ (α · x+ q)* ≡ q* · (α · x · q*)* ≡ q̂* · (α · x · q̂*)*,

then proceed as in the previous case.

Step 4: Completeness. We need just one more lemma before
delivering the completeness result, which says that the regular
interpretation and language model coincide for NetKAT policies in
normal form.

Lemma 8. If R(p) ⊆ I , then R(p) = G(p).

Proof. Suppose R(p) ⊆ I . It is straightforward to show that G(p)
is equal to the union of the elements of R(p), by induction on p:

G(p) =
⋃

x∈R(p)

G(x).

Then, since G(x) = {x} for x ∈ I , we have

G(p) =
⋃

x∈R(p)

{x} = R(p).

The proof of completeness for NetKAT now follows from the
completeness of KA [12].

Theorem 2 (Completeness). Every semantically equivalent pair
of NetKAT expressions is provably equivalent using the NetKAT
axioms. That is, if JpK = JqK, then ` p ≡ q.

Proof. Let p̂ and q̂ be the normal forms of p and q. By Lemma 7,
we can prove that each is equivalent to its normal form: ` p ≡ p̂
and ` q ≡ q̂. By soundness we have JpK = Jp̂K and JqK = Jq̂K,
hence Jp̂K = Jq̂K. By Lemma 6, we have G(p̂) = G(q̂). Moreover,
by Lemma 8, we have G(p̂) = R(p̂) and G(q̂) = R(q̂), thus
R(p̂) = R(q̂). Since R(p̂) and R(q̂) are regular sets, we have
` p̂ ≡ q̂ by the completeness of KA. Finally, as ` p ≡ p̂ and
` q ≡ q̂ and ` p̂ ≡ q̂, we conclude that ` p ≡ q.

4.3 Decidability
The final theorem presented in this section shows that deciding the
equational theory of NetKAT is no more nor less difficult than for
KA or KAT.

Theorem 3. The equational theory of NetKAT is PSPACE-complete.

Proof sketch. To show PSPACE-hardness, reduce KA to NetKAT as
follows. Let Σ be a finite alphabet. For a regular expression e
over Σ, let R(e) be the regular set of strings over Σ as defined
in §4. Transform e to a NetKAT expression e′ by replacing each
occurrence in e of a symbol p ∈ Σ with (p · dup) and prepending
with an arbitrary but fixed atom α. It follows from Lemmas 6 and
8 that R(e1) = R(e2) if and only if R(e′1) = R(e′2) if and only if
G(e′1) = G(e′2) if and only if Je′1K = Je′2K.

To show that the problem is in PSPACE, given two NetKAT
expressions e1 and e2, we know that Je1K 6= Je2K if and only if
there is a packet pk and packet history h such that h ∈ Je1K (pk) \
Je2K (pk) or h ∈ Je2K (pk) \ Je1K (pk); let us say the former
without loss of generality. We guess pk nondeterministically and
follow a nondeterministically-guessed trajectory through e1 that
produces some h ∈ Je1K (pk). At the same time, we trace all
possible trajectories through e2 that could generate a prefix of
h, ensuring that none of these produce h ∈ Je2K. It takes only
polynomial space to represent the current values of the fields of the
head packet and the possible positions in e2 for the current prefix of
h. The algorithm is nondeterministic, but can be made deterministic
using Savitch’s theorem.

5. Reachability Properties
Network administrators often ask questions such as, “Can all hosts
talk to each other?”, or “Are managed hosts kept separate from un-
managed hosts?”, or “Does all untrusted traffic traverse the intru-
sion detection system?”, and so on. Automated tools for answering
these and other questions about reachability properties have been
the focus of several recent research projects [10, 11, 19]. Most ex-
isting tools work by encoding the topology and policy as a log-
ical structure, and then translating the reachability property into
a formula whose satisfiability can be checked using a SAT solver
or other tool. This section presents a different approach: we show
how to encode two important classes of reachability properties as
NetKAT equations. We then prove the equations are sound and com-
plete with respect to intuitive, semantic definitions of reachability
using the language model developed in Section 4.



Reachability. The simplest reachability properties answer ques-
tions such as, “Can host A send packets to host B?” If A can send
packets to B, then the denotational model of the network must in-
clude a packet history that starts from host A and ends at host B:
〈pkB , · · · , pkA〉. More generally, we can ask if packets satisfying
some predicate a can be transformed so that they satisfy some pred-
icate b. These predicates may denote single hosts, groups of hosts,
or even arbitrary classes of traffic, such as Web traffic.

To reason about reachability, we use a small generalization of
the logical crossbar model introduced in Section 2. In the logical
crossbar model, we model the end-to-end behavior of the network
using the following NetKAT expression,

in · (p · t)* · out
where p and t define the behavior of switches and links as dup-
free NetKAT policies. Because the policy does not contain dup,
it does not record the individual “hops” that packets take as they
go through the network. To do this, we must augment the logical
crossbar to record the state of the packet at each intermediate hop:

in · dup · (p · t · dup)* · out
Using this encoding, we can define reachability as follows:

Definition 2 (Reachability). We say b is reachable from a if and
only if there exists a trace

〈pk1, · · · , pkn〉 ∈ rng(Jdup · (p · t · dup)*K)

such that JaK 〈pkn〉 = {〈pkn〉} and JbK 〈pk1〉 = {〈pk1〉}.
To decide whether b is reachable from a we check the following

NetKAT equivalence:

a · dup · (p · t · dup)* · b 6≡ 0

Intuitively, the prefix predicate, a, filters the policy to only include
histories that begin with packets satisfying a. Similarly, the postfix
predicate, b, filters the policy to only include histories that end with
packets satisfying b. We do need to prove that this equation holds if
and only if b is reachable from a. The key to the proof is to translate
both the denotational definition of reachability and the reachability
equation to the language model, where they are easy to relate.

Theorem 4 (Reachability Correctness). For predicates a and b,
policy p, and topology t, a · dup · (p · t · dup)* · b 6≡ 0, if and only
if b is reachable from a.

Proof. We translate the NetKAT equation into the language model:

a · dup · (p · t · dup)* · b 6≡ 0
⇒ ∃α, πn, · · · , π1.

α · πn · dup · · · dup · π1 ∈ G(a · dup · (p · t · dup)* · b)

We also translate each term in the semantic definition of reachabil-
ity into the language model:

∃pk1, · · · , pkn.
〈pk1, · · · , pkn〉 ∈ rng( Jdup · (p · t · dup)*K),
JaK 〈pkn〉 = {〈pkn〉} and
JbK 〈pk1〉 = {〈pk1〉}

⇒ ∃π′1, · · · , π′m.
απ′

m
· π′m · dup · · · dup · π′1 ∈ G(dup · (p · t · dup)*),

απ′
m
· π′m ∈ G(a) and

απ′
1
· π′1 ∈ G(b)

To prove soundness we let α = απn and m = n to show that if

α · πn · dup · · · dup · π1 ∈ G(a · dup · (p · t · dup)* · b)
then,

απ′
m
· π′m · dup · · · dup · π′1 ∈ G(dup · (p · t · dup)*)

Host 1

Host 4

Switch A Switch B

Host 3

Host 2

1

5

3

6

4

2

Figure 8. A simple network controlled by two parties.

which holds by definition of �. The proof of completeness follows
by a similar argument.

Waypointing. A waypoint, w, from a to b is a location that all
packets traverse en route from a to b. For example, a network
operator might want to ensure that all traffic from untrusted hosts
to trusted hosts traverses a firewall.

Definition 3 (Waypoint). We sayw is a waypoint from a to b, if and
only if, for all histories 〈pk1 · · · pkn〉 ∈ rng( Jdup · (p · t · dup)*K)
where JaK 〈pkn〉 = {〈pkn〉} and JbK 〈pk1〉 = {〈pk1〉}, there ex-
ists a pkx ∈ 〈pk1 · · · pkn〉 such that:

• JwK 〈pkx〉 = {〈pkx〉},
• JbK pk i = {} for all 1 < i < x, and
• JaK pk j = {} for all x < j < n.

To decide whether w is a waypoint from a to b, we check the
following NetKAT inequality:

a · dup · (p · t · dup)* · b
≤ a · dup · (¬b · p · t · dup)* · w · (¬a · p · t · dup)* · b

The left-hand side is exactly hop-by-hop reachability from a to b.
The right-hand side is also a hop-by-hop expression, but it has a
predicate to check that packets traverse w. Furthermore, it tests
that packets do not prematurely visit b before w or return to a after
reaching w.

Theorem 5 (Waypoint Correctness). For predicates a, b, and w,

a · dup · (p · t · dup)* · b
≤ a · dup · (¬b · p · t · dup)* · w · (¬a · p · t · dup)* · b

if and only if all packets from a to b are waypointed through w.

Proof. Similar to the proof of reachability correctness above. See
the long version of this paper for the full proofs.

Using these encodings and theorems as building blocks, we can
develop techniques for checking other reachability properties as
well. For example, we can check for self-loops, test whether a fire-
wall policy is correctly implemented, and string together multiple
waypoints into composite tests.

6. Traffic Isolation
NetKAT’s policy combinators help programmers construct complex
network policies out of simple parts. The most basic combinator
is union, which combines two policies by taking the union of
the results generated by the sub-policies. However, naive use of
union can lead to undesirable results, because each sub-policy may
receive and modify packets intended for the other sub-policy.



Example. Consider the network in Figure 8. Suppose the task
of routing traffic between hosts 1 and 2 has been assigned to one
programmer, while the task of routing traffic between hosts 3 and
4 has been assigned to another programmer. The first programmer
might produce the following policy for switch B,

pB1 , sw = B · (pt = 6 · pt← 2 + pt = 2 · pt← 6)

and the second programmer might produce a similar switch policy
for B. This second policy differs from the first only by sending
traffic from port 6 out port 4 rather than port 2:

pB2 , sw = B · (pt = 6 · pt← 4 + pt = 4 · pt← 6)

Similar policies pA1 and pA2 define the behavior at switchA. Now,
if we assume t captures the topology of the network properly, then

((pA1 + pB1) · t)*

correctly sends traffic from host 1 to host 2. However, when the
second policy is added in,

(((pA1 + pB1) + (pA2 + pB2)) · t)*

packets sent from host 1 will be copied to host 4 as well as host
2. In this instance, union actually produces too many behaviors.
In the best case, sending additional packets to host 4 from host 1
leads to unnecessary congestion. In the worst case, it may violate
the security policy for host 1. Either alternative demonstrates the
need for better ways of composing forwarding policies.

Slices. A network slice [8] is a lightweight abstraction that facil-
itates modular construction of policies. Intuitively, a slice defines a
piece of the network that can be programmed independently of the
rest of the network. The boundaries of a slice are defined by ingress
(in) and egress (out) predicates, while the behavior in the slice is
determined by the internal policy p. Each slice also has a unique
identifier (w) to differentiate it from other slices.2

Packets that match in are injected into the slice. Once in a slice,
packets stay in the slice and obey p until they match the predicate
out, at which point they are ejected. We write slices as follows:

{in} w : (p) {out}

where in and out are the ingress and egress predicates and p defines
the internal policy.

To define slices in NetKAT, we begin by picking a header field,
for example, tag, to record the packet’s current slice.3 In order for
our elaboration to have the desired properties, however, the tag
field must not be used elsewhere in the policy or in the ingress
or egress predicates. We call a predicate tag-free if it commutes
with any modification of the tag field, and a policy tag-free if it
commutes with any test of the tag field.

Given tag-free predicates in, out and policy p, and a tag w0

representing packets not in any slice, we can compile a slice into
NetKAT as follows:

L{in} w : (p) {out}Mw0 ,
let pre = (tag = w0 · in · tag← w + tag = w) in
let post = (out · tag← w0 + ¬out) in
(pre · p · post)

Compilation wraps the slice policy with pre- and post-processing
policies, pre and post. The pre policy tests whether a packet (i)
is outside the slice (tagged with w0) and matches the ingress pred-
icate, in which case it is injected by tagging it with w, or (ii) has

2 The unique identifier w may be defined by the compiler and need not
appear in the surface syntax.
3 In practice, the vlan field is often used to differentiate different classes of
network traffic [34].

already been injected (already tagged withw). Once injected, pack-
ets are processed by p. If p emits a packet that matches the egress
predicate out, then post strips the tag, restoring w0. Otherwise, the
packet remains in the slice and is left unmodified.

Isolation. A key property of slices is that once a packet enters a
slice, it is processed solely by the policy of that one slice until it is
ejected, even across multiple hops in the topology. The following
theorem captures this idea more precisely.

Theorem 6 (Slice Composition). For all tag-free slice ingress and
egress predicates in and out, identifiers w, policies s, q, tag-free
policies p, and topologies t, if

• s = L{in} w : (p) {out}Mw0 ,
• w 6= w0,
• out · t · dup · q ≡ 0,
• q · t · dup · in ≡ 0,
• q drops w-tagged traffic,

then

((s+ q) · t · dup)* ≡ (s · t · dup)* + (q · t · dup)*.

In a nutshell, this theorem says that executing the union of s and
q is the same as sending packets through two separate copies of the
network, one containing the slice and the other containing q. The
proof of the theorem is by equational reasoning and makes use of
the KAT-DENESTING theorem from Figure 4.

An interesting corollary of the result above is that when the
ingress slice boundary of s and the domain of q do not overlap,
for traffic destined for the ingress of s, the union of s and q is
equivalent to s alone.

Corollary 1. For all tag-free slice ingress and egress predicates
in and out, identifiers w, policies s, q, and topologies t, such that

• s = L{in} w : (p) {out}Mw0 ,
• w 6= w0,
• out · t · dup · q ≡ 0,
• q · t · dup · in ≡ 0,
• in · q ≡ 0, then

in · tag = w0 · ((s+ q) · t · dup)*
≡ in · tag = w0 · (s · t · dup)*

Corollary 1 connects to traditional language-based information
flow properties [27]. If s defines public, low-security data and q
defines private, high security data, the corollary implies that the
observable behavior of the network remains unchanged regardless
of whether the high-security data (q) is present, absent, or replaced
by some alternate high security data (q′).

Example, redux. Slices provide a solution to the scenario de-
scribed in the example at the beginning of the section. We can
assign each programmer a unique slice with boundaries that cor-
respond to the locations of the end hosts under control of that slice.
For instance, the first programmer’s in and out predicates include
the network access points for hosts 1 and 2, while the second pro-
grammer’s in and out predicates include the network access points
for hosts 3 and 4.

in1 , sw = A · pt = 1 + sw = B · pt = 2

out1 , sw = A · pt = 1 + sw = B · pt = 2

s1 , {in1} w1 : (pA1 + pB1) {out1}

in2 , sw = A · pt = 3 + sw = B · pt = 4

out2 , sw = A · pt = 3 + sw = B · pt = 4

s2 , {in2} w2 : (pA2 + pB2) {out2}



Pattern Action
typ=SSH Drop if typ=SSH then 0
port=1 Output 2 else if pt=1 then pt:=2
port=2 Output 1 else if pt=2 then pt:=1
* Drop else 0

Figure 9. A flow table and an equivalent NetKAT policy.

ONF Action Sequence a ::= 1 | f ← n · a
ONF Action Sum as ::= 0 | a+ as
ONF Predicate b ::= 1 | f = n · b
ONF Local ` ::= as | if b then as else `
ONF p ::= 0 | (sw = sw · `) + p

Figure 10. OpenFlow Normal Form.

The original difficulty with this example was caused by packet
duplication when, for example, a packet was sent from host 1 to
host 2. Corollary 1 proves that we can use slices to solve the
problem: host 1 is connected to slice 1, and restricting the input
to that of slice 1 implies that the behavior of the entire program is
precisely that of slice 1 alone.

7. Compilation
In order to execute a NetKAT program on an OpenFlow switch,
we must compile it to a flow table, the low-level programming
abstraction that OpenFlow supports. A flow table is a prioritized
list of rules, where each rule consists of a pattern to match packet
headers and actions to apply to matching packets. When a packet
arrives at a switch, the actions associated with the highest priority
matching rule are applied to it.

For example, the flow table on the left-hand side of figure 9
blocks SSH packets, but forwards all other traffic between ports 1
and 2. Alongside the flow table is an equivalent NetKAT policy. To
make the connection between these two equivalent representations
obvious, we introduce a conditional construct as shorthand:

if b then as else `
def
= (b · as) + (¬b · `)

Logically, a flow table pattern is a conjunction of positive lit-
erals, and each action is a combination of modifications. We can
interpret prioritized rules as cascades of conditional expressions. In
this section we describe the design of a compiler based on this idea.

The input to the compiler is NetKAT without dup or sw := n
terms. These constructs are necessary to model network topology,
but the output produced by the compiler is meant to execute on
switches. Therefore, it is reasonable to exclude these features. The
output of the compiler is a stylized subset of NetKAT called Open-
Flow Normal Form (ONF). An ONF policy is a sum of conditional
cascades, where each cascade is guarded by a test for a switch:

(sw = sw1 · `1) + · · ·+ (sw = swn · `n)

Each term can be interpreted as a complete flow table for a given
switch. Figure 10 presents the full grammar for ONF. Mapping
ONF to flow tables, is mostly straightforward, and many of the
low-level details have been addressed in previous work [7].

The rest of this section outlines the major steps required to com-
pile NetKAT to ONF. Each step eliminates or restricts an element
of NetKAT syntax. In other words, each step translates from one
intermediate representation to another until we arrive at ONF. We
write NetKAT−(op) to denote NetKAT expressions that do not use
the op operator. For example, if:

p ∈ NetKAT−(dup,sw←)

then p does not contain dup and does not modify the sw field. This
is the source language for the compiler, as described above.

Step 1: Star elimination. The first step is to eliminate Kleene star
from the input policy. This step is critical as switches do not sup-
port iterated processing of packets—indeed, many switches only
support a single phase of processing by a table! Formally, we prove
that any program without dup, or, less importantly, assignment to
sw, is equivalent to a Kleene star-free program (again without the
dup primitive or assignments to sw).

Lemma 9 (Star Elimination). If p ∈ NetKAT−(dup,sw←), then there
exists p′ ∈ NetKAT−(dup,sw←,∗) where p ≡ p′.

Proof. We show that p′ can be obtained from the normal form
used in the completeness theorem. More specifically, let p′′ be
the policy obtained from p by the normalization construction of
Lemma 7. By construction, dup can only appear in the normal form
of an expression already containing dup, so p′′ cannot contain dup.
R(p′′) ⊆ I and p′′ does not contain dup, so R(p′′) ⊆ At · P .
Therefore, p′′ does not contain Kleene star.

Let us now prove that any assignment of the form sw ← swi
in p′′ is preceded in the same term by the corresponding test
sw = swi. Because p does not contain any assignment of the form
sw ← sw i, it commutes with any test of the form sw = sw i.
Therefore p′′ also commutes with any test of the form sw = sw i. It
follows that p′′ can be written as a sum of α ·p for some atom α and
complete assignment p. Suppose for a contradiction that term, α
contains a test sw = sw i, and p contains an assignment sw← sw j ,
with sw i 6= sw j . Then

α · (sw = sw i) · p′′ · (sw = sw j) ≥ α · p 6= 0

α · (sw = sw j) · p′′ · (sw = sw i) = 0

but those two terms are also equal, which is a contradiction.
Therefore any assignment of the form sw ← swi in p′′ is pre-

ceded, in the same term, by the corresponding test sw = swi, and
can be removed using axiom PA-FILTER-MOD to produce the de-
sired p′. Tests and assignments to other fields than sw could appear
in between, but we can use the commutativity axioms PA-MOD-
MOD-COMM and PA-MOD-FILTER-COMM to move the assignment
sw← swi to just after the test sw = swi.

Step 2: Switch specialization. Next, we show that every star-free
policy can be specialized for the switches in the network. This
transformation allows us to remove nested tests of the sw field and
put the policy into a form where it can easily be compiled into a
flow table for each switch.

Lemma 10 (Switch Specialization). If p ∈ NetKAT−(dup,sw←,∗),
then for all switches sw i, there exists p′ ∈ NetKAT−(dup,sw←,∗,sw)

such that sw = sw i · p ≡ sw = sw i · p′.

Proof. Let g be the unique homomorphism of NetKAT defined on
primitive programs by:

g(sw = sw) ,

{
1 if sw = sw i
0 otherwise

g(f ← v) , f ← v

g(dup) , dup

For every primitive program element x of NetKAT−(dup,sw←,∗), we
have both:

sw = sw i · x ≡ g(x) · sw = sw i

g(x) · sw = sw i ≡ sw = sw i · g(x)



(if dst = A then pt := 1 else 0) +
(if src = B then pt := 2 else 0)

= if dst = A · src = B then pt := 1 + pt := 2
else if dst = A then pt := 1
else if src = B then pt := 2
else 0

Figure 11. Compiling ONF policy union.

(if typ = SSH then vlan :=W else 1) ·
(if dst = A then pt := 1 else if dst = B then pt := 2 else 0)

= if dst = A · typ = SSH then vlan :=W · pt := 1
else if dst = A then pt := 1
else if dst = B · typ = SSH then vlan :=W · pt := 2
else if dst = B then pt := 2
else 0

Figure 12. Compiling ONF policy sequence.

Hence, applying KAT-COMMUTE [2, Lemma 4.4] twice shows:

sw = sw i · p ≡ g(p) · sw = sw i

g(p) · sw = sw i ≡ sw = sw i · g(p)

By the definition of g, any occurrence of sw = v in p is replaced
by either 1 or 0 in g(p). Moreover, since p ∈ NetKAT−(dup,sw←,∗),
it follows that g(p) does not contain any occurrence of sw = v and
since p′ = g(p) ∈ NetKAT−(dup,sw←,∗,sw) we also have

sw = sw i · p ≡ sw = sw i · p′

Step 3: Converting to ONF. The third step is to compile policies
in NetKAT−(dup,sw←,∗,sw) to ONF. This is a recursive procedure
that first compiles sub-policies to ONF.

To calculate the union of two ONF policies, we take the cross-
product of the predicates and actions. This procedure is based on
earlier work [23], but we present a purely syntactic proof of cor-
rectness. Figure 11 shows an example of compiling policy union,
which illustrates why the cross-product construction is necessary.

Calculating the sequence of two ONF policies is more involved,
since we have to commute the modifications in the first policy
with the tests in the second policy to produce a single if-then-
else cascade, as illustrated in figure 12. As the NetKAT axiom
PA-MOD-FILTER-COMM shows, modifications and tests commute
naively only if they affect distinct fields. The compiler has several
transformations to ensure that various kinds of overlapping tests
and modifications do commute.

Lemma 11 (Switch-local Compilation).
If p ∈ NetKAT−(dup,sw←,∗,sw) then there exists a policy p′ such that
p ≡ p′ and p′ ∈ ONF.

The proof goes by induction on the structure of p.

Step 4: Combining results. Lemmas 9, 10 and 11 suffice to prove
any policy p in NetKAT−(dup,sw←) may be converted to OpenFlow
normal form.

Theorem 7 (ONF). If pin ∈ NetKAT−(dup,sw←) then there exists
pout ≡ pin such that pout ∈ ONF.

Optimizations. Naive compilation of network programs can pro-
duce flow tables that are unmanageably large [23]. Hence, existing
systems implement optimizations to generate smaller tables. For
example, the following lemma describes a common optimization
called fall-through elimination, which removes unnecessary rules
from the table.

Lemma 12 (Fall-through Elimination). If b1 ≤ b2 then

if b1 then as else if b2 then as else ` ≡ if b2 then as else `

We plan to study further optimizations in future work.

8. Related Work
Kleene algebra is named for its inventor, Stephen Cole Kleene.
Much of the basic algebraic theory of KA was developed by John
Horton Conway [4]. Kleene algebra with tests was introduced by
Kozen [13, 14]. KA and KAT have been successfully applied in
many practical verification tasks, including verification of compiler
optimizations [16], pointer analysis [22], concurrency control [3],
and device drivers [15]. This is the first time KA has been used
as a network programming language or applied to verification of
networks. The proof of the main result in this paper—completeness
of the equational axioms—is based on a novel model of KAT.

While many other systems have been proposed for analyzing
networks, we believe ours is the first to provide a complete, high-
level algebra for reasoning about network programs as they are
written. Systems such as Anteater [19], FlowChecker [1], Header
Space Analysis [10], VeriFlow [11], and Formally Verifiable Net-
working [33], encode information about network topology and for-
warding policies into SAT formulae (Anteater), graph-based rep-
resentations (VeriFlow, Header Space Analysis), or higher-order
logic (Formally Verifiable Networking). These systems then define
custom algorithms over these models to check specific properties
such as reachability or packet loss. Such systems can check for vi-
olations of important network invariants, but do not provide sound
and complete systems for reasoning directly about programs. More-
over, although these systems have expressive languages for encod-
ing properties, they do not connect these encodings back to deno-
tational or operational models of the network. In contrast, in sec-
tion 5, we show how to encode a reachability property as a NetKAT
equation and then prove that the reachability equation is equivalent
to a semantic definition of reachability.

As a programming language, NetKAT is most similar to Net-
Core [7, 23] and Pyretic [24], which both stemmed from earlier
work on Frenetic [6]. NetCore defined the fragment of NetKAT with
filters, modification and union, and Pyretic extended NetCore with
sequential composition (although Pyretic has neither a formal se-
mantics nor a compiler). Neither language defined an equational
theory for reasoning about programs, nor did they include Kleene
star—unlike these previous languages, NetKAT programs can de-
scribe potentially infinite behaviors.

NDLog [18] is a logic programming language with an explicit
notion of location and a distributed execution model. In contrast to
NDLog, NetKAT and NetCore are designed for programming cen-
tralized (not distributed) SDN controllers. Because NDLog is based
around Datalog (with general recursion and pragmatic extensions
that complicate its semantics), equivalence of NDLog programs is
undecidable [29]. NetKAT’s Kleene star is able to model network
behavior, but has decidable (PSPACE-complete) equivalence.

9. Conclusion
This paper presents NetKAT, a new language for SDN programming
and reasoning that is based on a solid semantic foundation—Kleene
algebra with tests. NetKAT’s denotational semantics describes net-
work programs as functions from packet histories to sets of pack-
ets histories and its equational theory is sound and complete with
respect to this model. The language enables programmers to create
expressive, compositional network programs and reason effectively
about their semantics. We demonstrate the power of our framework
on a range of practical applications including reachability, traffic
isolation, access control, and compiler correctness.
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