
Don’t You Worry ’Bout a Packet: Unified
Programming for In-Network Computing

George Karlos
Vrije Universiteit Amsterdam

Henri Bal
Vrije Universiteit Amsterdam

Lin Wang
Vrije Universiteit Amsterdam

ABSTRACT
In-network computing is gaining momentum as programma-
ble switches are increasingly employed for compute acceler-
ation. Designed for packet processing, data plane program-
ming languages force developers to express compute in net-
working terms, resulting in a complex, error-prone practice.
We envision the unification of switch and host programming
and propose the Net Compute Language (NCL), a C/C++ ex-
tension for expressing computational kernels for switches to
execute. NCL implements Compute Centric Communication
(C3), our proposed programming model for INC under which,
point-to-point primitives are augmented to carry out com-
putations. We motivate our approach with real-world use
cases and discuss the technical challenges for its realization.
ACM Reference Format:
George Karlos, Henri Bal, and Lin Wang. 2021. Don’t You Worry
’Bout a Packet: Unified Programming for In-Network Computing.
In The Twentieth ACM Workshop on Hot Topics in Networks (Hot-
Nets ’21), November 10–12, 2021, Virtual Event, United Kingdom.
ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/3484266.
3487395
1 INTRODUCTION
The fast evolution of software-defined networking (SDN) [14]
has led to network switches capable of Tb/s processing while
offering increasingly programmable data plane functional-
ity [2, 8, 10, 19, 35, 37]. This development has allowed for un-
precedented innovation in networking [3, 40, 57], and given
rise to a new paradigm: in-network computing (INC) [44, 55].

Under INC, application-specific computations occur inside
the network, improving overall throughput, latency and even
energy efficiency [55]. Prior work has realized the potential
of programmable switches on a variety of distributed services

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom
© 2021 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-9087-3/21/11.
https://doi.org/10.1145/3484266.3487395

such as data aggregation [47], caching [23, 29], stream pro-
cessing [21], query processing [28, 54], agreement [12, 22, 60],
and ML training [17, 26, 48]. Offloading heavy-duty tasks
like (de)compression [56] and ML inference [46, 52, 59], or
even simple data transformations [25], to on-path switches
has shown potential for substantial performance gains.

To aid data plane customization, a healthy number of lan-
guages have been proposed [5, 7, 49, 50], with P4 [5] and
NPL [7] arguably the most popular. Bearing API differences,
data plane languages share two fundamental properties. First,
they are designed around network functionality and thus ex-
pose verbose packet processing. Second, modern switching
fabrics rely on application-specific integrated circuits (ASICs)
to maintain high speeds. These are not akin to general pur-
pose programming, so data plane languages are necessarily
confined to a programming model close to the hardware.

The above characteristics translate to constructs like packet
parsers and match-action tables that, while crucial to packet
processing, fall short for expressing compute. Programmers
are thus forced to encode application logic in unfamiliar
terms, often employing clever tricks to realize simple func-
tionality. INC applications are encoded as L4/L5 protocols,
which also complicates host side code with packet crafting
concerns. Such hurdles make INC programming difficult and
error-prone, inhibiting the realization of its full potential.

Driven by numerous INC successes, we believe it is time to
view the network as yet another accelerator. But, to achieve
this, a fitting programming model is required. One that ex-
isting data plane languages do not offer. To that end, we
introduce the Compute Centric Communication (C3) model
for INC. In C3, hosts exchange data arrays in user-defined
chunks, by communication primitives programmed to also
perform computations on them. We propose the Net Com-
pute Language (NCL) to realize C3 and unify switch/host
programming by letting programmers express such com-
putations in C/C++. Its compiler targets both switches and
hosts, and a runtime transparently handles network plumb-
ing. Our system relieves programmers from packet process-
ing concerns, letting them focus on application logic. In the
remaining of this paper, we present and motivate our vision.

2 BACKGROUND AND MOTIVATION
Over the years, P4 [5] has become the de facto data plane
programming standard, supported by switches [2, 10, 19, 37],

https://doi.org/10.1145/3484266.3487395
https://doi.org/10.1145/3484266.3487395
https://doi.org/10.1145/3484266.3487395


HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom George Karlos, Henri Bal, and Lin Wang

M
et
ad
at
a

TCAM/SRAM

H
ea
de
rs

PHV ALUs

Pa
rs
er

D
ep
ar
se
r

IP
v4

Et
he
r

N
et
C
ac
he

Register
Arrays

(a) Protocol-independent switch architecture (PISA)
 1. action CacheHit(idx) { meta.hit = true; meta.idx = idx; }

 2. action ReadValid() { meta.valid = Valid.read(meta.idx); }

 3. table CacheLookup { key = {headers.cache.key: exact }

 4.                 actions = {CacheHit} }

 5. table CacheValid { actions = {ReadValid} }

 6. 

 7. CacheLookup.apply();

 8. if ( meta.hit && headers.cache.op == GET)

 9.   CacheValid.apply();

10.   if ( meta.valid)

11.     Read0.apply(); Read1.apply(); ...

12. ipv4.apply(); ether.apply();

Networking
Compute

(b) In-network KVS cache (GET) based on NetCache [23]

Figure 1: P4 INC application and its mapping on PISA

SmartNICs [34, 43, 58] and even DPUs [37]. P4 implements
the protocol-independent switch architecture (PISA) shown
in Fig. 1a, a generalization of RMT [6] and dRMT [9].

Packet processing starts with a programmable parser that
extracts headers into the packet header vector (PHV), to-
gether with user-defined and architecture-defined metadata.
The PHV is processed by a pipeline in VLIW fashion. At
each stage it is matched against match-action tables (MATs),
where match-rules (stored in TCAM/SRAM) determine ac-
tions for the stage’s ALUs. Actions are programmable and
can modify the PHV and persistent register arrays. Finally, a
deparser programmatically reconstructs the packet.

Considerable efforts have beenmade to simplify data plane
programming [15, 16, 49]. Yet, existing solutions are unsuit-
able for INC as they all fundamentally revolve around packet
processing. In particular, we identify the following obstacles:

Complex programming semantics. INC programming
in P4 requires deep understanding of packet processing with
PISA. Resulting code is typically long, even when express-
ing simple logic. Fig. 1b sketches the GET operation of Net-
Cache [23], an in-network KVS cache. A MAT is applied to
look up a key. On hit, a flag and the index of the value in
a register array are written to metadata (PHV). The flag is
checked and if set, the validity of the value is checked by
applying another table to read from the Valid register. If
valid, multiple tables are applied (Read0, Read1) to retrieve
the value, each reading a portion and writing it to the PHV.
Such indirections result in obnoxious control flow and struc-
ture that often resembles assembly code, suggesting that a
compiler could handle it with better correctness guarantees.

Tedious network plumbing. INC programmers need to
deal with normal network operations such as IPv4 routing
and Ethernet forwarding, as well as the protocol encoding
their application. This complicates both switch and host pro-
gramming. The code of Fig. 1b only executes if the parser
(not shown in the figure) has recognized the NetCache pro-
tocol. To do that, it must be programmed to parse the en-
tire header stack, including L2 and L3. In addition, the rout-
ing/forwarding behavior of the underlying protocols must
be incorporated into the program, by defining and applying
the appropriate tables. Finally, on the host side, packets that
follow the INC application protocol must be crafted. Such
plumbing requires programmers to have profound knowl-
edge in networking, which inevitably raises the bar for INC.

Inflexible development and deployment. A disjoint
development process for such heterogeneous systems can
lead to subtle compatibility bugs (e.g., type system and en-
dianness differences) that are hard to catch and fix. This in-
creases development and maintenance costs. Since P4 stays
at the single device level, an application spanning multi-
ple switches has to be manually partitioned into separate
P4 programs and separately deployed. This requires good
knowledge of the target platform to be available beforehand.

3 A PROGRAMMING METHOD FOR INC
To open up INC programming to non-networking experts,
we introduce Compute Centric Communication (C3), a pro-
gramming model that treats the network as an accelerator,
and propose a complete programming system based on it.

3.1 The C3 programming model
C3 is an array-based model. Hosts exchange data arrays
through point-to-point communication primitives that also
perform computations on them, on network devices between
the source and destination. Hence, INC is initiated on-demand
by the sender. Unlike traditional send/recv, C3 communica-
tion primitives are applied to multiple arrays simultaneously.
Central to C3 is the window abstraction that is used to

hide the details of packet-based communication. Arrays are
transported one window at a time, and a one-to-one corre-
spondence with packets is not necessary (§4.2). Windows
associate elements across arrays, in a user-controlled way,
in order to form a basic unit of processing.
Programmers express compute in network kernels. These

are window-processing functions that receivers of windows
(switches and hosts) execute on receipt. They can modify
window data and device state, and make small forwarding
decisions (§4.1). C3 does not specify a transport mechanism,
thus a network kernel defines a protocol-agnostic, window-
based communication primitive.
Fig. 2 shows an INC example in C3. Host-A is directly

connected to a programmable switch, and Host-B also has



Unified Programming for In-Network Computing HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

w0
h1

h0

S
w1 w2 w3

w1

w2

kernel(h0, h1, "Host-B");


Host-B

w0

w3

Host-A

Figure 2: In-network computation under C3

connectivity to it. Host-A initiates the in-network computa-
tion by invoking a kernel to send its arrays h0, h1 to Host-B.

Windows are constructed (w0, w1, ...) and sent out one by
one. In this case, the arrays are “split” evenly in windows
of length two. Host-A has sent the first three windows and
is about to send w3. Window w2 is currently on the wire.
Window w1 is on the switch and the kernel is executing on
it, using both data from w1 and a switch array S. Window w0
has already been processed by the switch. According to the
kernel’s programming, w0 has been modified and forwarded
towards Host-B, where it will be handled by another kernel.

3.2 A programming system for C3
Our proposed programming system consists of a domain-
specific language (DSL) for programming network kernels,
its compiler and supporting libraries. Fig. 3a shows an overview.
The Net Compute Language (NCL) extends C/C++ with

the ability to describe network kernels, and network device
resources - similar in fashion to the CUDA [36] / OpenCL [24]
extensions for GPU/FPGA/DSP acceleration. Its standard
library includes kernel and resource handling APIs as well
as a collection of switch-side data-structures. For instance,
fast MAT lookups can be exposed as Maps or bloom-filters.

NCL exposes no networking concerns, with the exception
of a small, declarative API for influencing window forward-
ing. Such a mechanism is required when different switches
or hosts have different roles [12] and/or window process-
ing location depends on runtime conditions [23]. For this
reason, programmers can provide an Abstract Network De-
scription (AND), defining an overlay network configuration
of the functional components of their application. Window
forwarding inside a kernel is parameterized by the location
labels specified in the AND. NCL also allows programmers
to place different resources and/or different versions of a
kernel on different devices, again using AND location labels.
The runtime component of NCL, libncrt, has a multi-

faceted role. First, it includes definitions for built-in types,
constants, and function overlays required by the NCL exten-
sions. NCL kernels are written for the data plane, but may
involve the control plane under the hood. For instance, host
code is allowed to update variables that are read-only by
switch code. Transparent control-plane interaction is also
part of the runtime. Finally, it implements the windowing
mechanism completely transparently to the user. This means

libncrt

Abstract NetworkApplication

Runtime

Compiler

Hardware

libncp

NCP

UDP

Description (AND)

Runtime API

DPDK

Other TargetsOther Targets

RDMAPOSIX

C/C++ NCL

Network Switch

x86 AArch P4 NPL

Host

LLVM IR

(a) The NCL software stack

kernel-b

Compute Forwarding
Y

N

pk
t i

n

N
C

P 
?

pk
t o

ut

NCP Backend
Protocols

Other Protocols

kernel-a

(b) Switch behavior

s1 h1

h2

h3

s2

(c) Mapping to real net

Figure 3: A complete programming system for C3

that when a kernel is invoked, windows are determined from
a window specification provided by the programmer, and
from them packets are constructed and sent out.
Window-based communication is carried out by the Net

Compute Protocol (NCP). Besides being a transport protocol
for windows, NCP also encodes kernel execution context.
For instance, it can carry information about which kernel
to execute, the offsets of different array chunks, or bytes in
a packet that the NCL compiler decided to use as scratch
memory. Our goal for NCP is to be implemented over multi-
ple transport backends, like POSIX sockets over UDP [32],
DPDK [45] and RDMA/RoCE [33]. NCP is part of the run-
time and, except for selecting a backend, the programmer
does not interact with it directly. A switch executes a kernel
only when the NCP protocol has been recognized, and will
forward NCP packets based on the selected backend (Fig. 3b).
As such, a portion of the runtime resides on the switch.

The NCL compiler is based on LLVM [27] and targets
data-plane languages. It takes an NCL C/C++ program and
an AND file and outputs a host binary, and a program for
every switch in the AND file. Application deployment is out
of scope. In general, a mechanism that maps the overlay net-
work of the AND file into a physical network and allocates
network resources accordingly [4] is assumed to be in place.
Such mapping is shown in Fig. 3c. This mechanism places
application components to physical devices and ensures con-
nectivity by populating routing tables appropriately.

4 INC PROGRAMMINGWITH NCL
In this section we discuss in detail the NCL’s main compo-
nents, namely, network (or NCL) kernels and windows, and
sketch two example INC applications in NCL.

4.1 Network kernels
From the perspective of the application programmer, tradi-
tional communication primitives, like send() and recv(), have
straightforward functions: (a) put data on the wire and (b)



HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom George Karlos, Henri Bal, and Lin Wang

take data from the wire and deliver it to the application. De-
tails of the mechanism depend on the underlying established
protocol(s) and are mostly hidden. NCL kernels establish
communication similarly, but they also perform computa-
tions to the data according to the kernel’s programming.
NCL kernels run on devices that understand NCP. These

are both network devices like switches, and end hosts. For
this reason there are two kinds of network kernels, namely,
outgoing and incoming. Outgoing kernels execute on switches
and incoming kernels execute on hosts to handle the receipt
of windows. A function is declared as a network kernel by
the _net_ declaration specifier, and incoming/outgoing ker-
nels are distinguished by a second declaration specifier. The
_net_ _out_ combination denotes an outgoing kernel and
the _net_ _in_ combination, an incoming kernel.

Outgoing kernels. Outgoing kernels resemble send() in
that their invocation implies data is sent from the invoking
host to another. It also implies that the data is processed by
on-path switches, one window at a time and according to
the kernel’s programming. Unlike send(), an outgoing kernel
can have multiple array inputs through its arguments.
To accommodate different kinds of applications, we en-

vision two APIs for outgoing kernel invocations. The first
one is data-centric and operates on entire arrays. That is, a
kernel invocation completes only when all its input arrays
have been consumed, resembling more a send() in a loop.
The second one gives finer control to the programmer, let-
ting them send individual windows. Such mechanism could
become a building block for richer interfaces [1, 53].

Programmers can optionally supply the _at_(label) dec-
laration specifier to restrict a kernel to a specific location.
This allows to write multiple versions of the kernel for dif-
ferent switches with different roles. The label here must
be a valid label in the AND file. Location-less kernels run
on all switches in SPMD fashion. For this reason, a builtin
location struct provides information about the current lo-
cation such that divergent behavior can still be expressed.
Outgoing kernels run on network switches when a win-

dow arrives and have single-thread execution semantics.
They have access to window data as well as switch memory,
statically allocated by the programmer for stateful operations.
Window data is accessed through the kernel’s arguments
and a builtin window struct provides information about the
current window, including bits provided by the user (§4.2).
Switch memory is only accessible in kernel code and is

declared through global variables prefixed with the _net_
declaration specifier. Optionally, a location may also be sup-
plied, using the _at_(label) declaration specifier with a
valid AND label. Location-less switch memory exists on all
switches, however, modifications to it are local. That is, NCL
makes no consistency guarantees, as distributed shared state
in the data plane is still an open problem [61].

NCL also exposes control variables. These reside on switches,
but are read-only from kernel code and written only by host
code. Control variables are declared by the _net_ _ctrl_
_at_(label) combination of declaration specifiers, i.e. loca-
tion is required. Again, NCL makes no consistency guaran-
tees and out-of-band mechanisms, potentially involving the
network controller (e.g., ONOS [41]), are required.

Finally, outgoing kernels can make simple forwarding de-
cisions for a window. They can return the window to the
previous hop (_reflect()), pass it on (_pass(), default be-
havior), broadcast it (_bcast()), or drop it (_drop()). Their
behavior depends on the AND file. For instance, _bcast()
sends a window to all devices, one hop away - in the overlay
- from the current location, and _pass() can also accept a
valid label from the AND as a parameter.

Incoming Kernels. Incoming kernels resemble recv().
They are invoked when a window is expected by the host,
and execute when it arrives. They have read/write access to
window data, and, unlike outgoing kernels, can also access
host memory. A location is meaningless for incoming kernels
because they exist on all hosts.
An incoming kernel is “paired” with an outgoing kernel

and must match its parameter list so that window data is ac-
cessed in the samemanner. Host memory is accessed through
global variables or by extending the incoming kernel’s pa-
rameter list and passing additional host pointers. Extra pa-
rameters must be marked as _ext_. In its simplest form, an
incoming kernel can just copy window data to host memory
for subsequent processing.

4.2 Data windows
A window is NCL’s abstraction over packets and the basic
unit of processing for kernels. Windows are transparently
constructed and encoded into packets by the runtime. While
sharing similarities, windows are not packets. In fact, our
aim is to disassociate the two: a packet can carry one or more
windows, and a window can span multiple packets.

Constructing windows means associating values across
arrays into chunks, to be processed together according to the
application’s needs. A declarative API gives the programmer
agency over this process. For instance, they can specify a
mask with the number of elements from each array. As an
example, Fig. 2 uses a {2,2,2} mask to associate two ele-
ments from each array. A mask is associated with kernel
invocations (Fig. 4 main), but its length must always match
the number of pointers in an _out_ kernel’s signature.
NCL defines a builtin window struct, that is only accessi-

ble in kernel code and contains various metadata about the
current window (e.g., sequence number, sender etc.). This
struct can be extended by the programmer to include addi-
tional information that might be useful to the kernel. For



Unified Programming for In-Network Computing HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

 1. _net_ _at_("s1") int accum[DATA_LEN] = {0};

 2. _net_ _at_("s1") unsigned count[DATA_LEN/WIN_LEN] = {0};

 3. _net_ _at_("s1") _ctrl_ unsigned nworkers;

 4. 

 5. _net_ _out_ void allreduce(int *data) {

 6.   unsigned base = window.seq * window.len;

 7.   for (unsigned i = 0; i < window.len; ++i)

 8.     accum[base + i] += data[i];

 9.   if (++count[window.seq] == nworkers) {

10.     memcpy(data, &accum[base], window.len * 4);

11.     count[window.seq] = 0; _bcast();

12.   } else { _drop(); }

13. }

14.

15. _net_ _in_ void result(int *data, _ext_ int *hdata,

16.                                         _ext_ bool *done){...}

17. int main() {

18.   ncl::ctrl_wr(&nworkers, 16);

19.   ncl::out(allreduce, {data}, wnd, mask);

20.   while (!done) ncl::in(result, {data, &done}, wnd, mask);}


Figure 4: A synchronous AllReduce operation in NCL

instance, for a uniform split like the one of Fig. 2, the pro-
grammer could attach a length field, or the entire mask itself.
Extended window structs are associated with kernel defini-
tions, but different instances can be attached to different
kernel invocations.

4.3 Use Cases
We illustrate NCL by sketching the implementations of two
common INC applications.

AllReduce. AllReduce is a collective aggregation opera-
tion. It is fundamental to distributed data-parallel ML train-
ing [42] and has been the subject of a good amount of INC
literature [17, 26, 48]. Each worker 𝑖 holds an array 𝐴𝑖 and
the goal is to compute an array 𝐵 with 𝐵 [ 𝑗] = ∑

𝑖 𝐴𝑖 [ 𝑗]. For
instance, for arrays {1, 1, 1}, {2, 2, 2}, {3, 3, 3} the result is
{6, 6, 6}. Fig. 4 sketches an in-network AllReduce in NCL.
Workers are connected to a ToR switch, labelled s1, that

aggregates their data and broadcasts the result. They invoke
an _out_ kernel (line 19) to send data to the switch and
then iteratively invoke an _in_ kernel (line 20) to handle
incoming windows with aggregation results. An extended
parameter list (line 15) allows to copy results (e.g., to update
the model) and set a flag that controls the loop.
The switch code uses the accum array to accumulate val-

ues. Windows allow creating (implicit) aggregation slots in
the accum array, sized by a window’s length. The count ar-
ray tracks the number of windows accumulated at each slot.
On line 6, the kernel first computes an index for the first
element of the window’s slot in accum. Here, the seq field of
the window struct is builtin, but the len field is user-provided.
In the next step, the kernel iterates over window data, accu-
mulating each value. Then, the slot’s counter is incremented
and compared against the _ctrl_ variable nworkers to de-
termine if the slot is finished. If equal, the values of that
slot are copied to the window, the counter is reset, and the
window is broadcasted. Otherwise, the window is dropped.

KVSCache. An in-network cache sits between clients and
storage servers. It serves GET queries for hot items directly
and forwards the rest to a storage server. Fig. 5 sketches an
implementation in NCL. To simplify the example we omitted
hot item detection and the DELETE operation. We also used
a single storage server. For key-partitioned storage clusters,
the kernel is extended to _pass() windows accordingly.
The cache stores 256 items of 8-byte keys and 128-byte

values. It is implemented as a combination of a Map from
NCL’s standard library (implicitly _ctrl_) for keys, and an
array for values. The storage server controls the map and
associates keys with indices to the Cache array that stores the
values. This design resembles NetCache [23] and is needed
because the map is implemented as a MAT under the hood,
which (at the time of writing) is only managed by the control
plane. The Valid array is used to track item validity.

On a PUT query (line 6), if the item is in the cache, it gets
invalidated. A PUT query is always forwarded to the storage
server, indicated by the absence of a forwarding decision in
either path. The storage server uses the same kernel to do
an update (line 12) that writes the new value, sets it valid,
and drops the window. Note that the same code is used to
insert a new value in the cache, with the exception that the
storage server must first insert an entry to the Idx map.

On a GET query (line 8) the key is looked up. If found and
valid, the value is written to the window and sent back to the
client with a _reflect() call. In any other case the window
is forwarded to the storage server; implicit _pass(). Finally,
the kernel does nothing on a GET response from the server
(line 15), i.e. the window is forwarded to the client.

Although not shown in Fig. 5, for a cache eviction, the
storage server just removes an item from the Idx map.

5 THE NCL COMPILER ARCHITECTURE
The nclc compiler is based on LLVM [27]. It takes as input
an NCL C/C++ program and an AND file, and targets LLVM
supported architectures (e.g., x86, AArch) for host code and
PISA architectures (e.g., PSA [18], TNA [20]) for switch code.
As is typical with accelerator-targetting compilers [31, 39],
nclc employs a dual compilation pipeline, shown in Fig. 6.

The frontend extends Clang [30] with minor rewriting and
source level checks, and outputs two LLVM IR files: one for
host and one for switch code. The host pipeline (Fig. 6 left)
consists of typical C/C++ compilation steps with some minor
instrumentation for the runtime. The device pipeline lowers
switch side LLVM IR to P4 and “links” it with a template
switch configuration. This is done in four stages:

Conformance checking. Not all LLVM IR maps to PISA.
For instance, loops must have provably constant trip counts,
or recursive calls are disallowed. Conservative dataflow anal-
ysis can catch these and reject the program. This stage does



HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom George Karlos, Henri Bal, and Lin Wang

 1. _net_ _at_("s1") ncl::Map<uint64_t, uint8_t, 256> Idx;


 2. _net_ _at_("s1") char Cache[256][128] = {{0}};


 3. _net_ _at_("s1") bool Valid[256] = {false};


 4.


 5. _net_ _out_ query(uint64_t key, char *val, bool update) {


 6.   if (window.from != SERVER && update) {       // client PUT


 7.     if (auto *idx = Idx[key]) Valid[*idx] = false;


 8.   } else if (window.from != SERVER) {          // client GET        


 9.     if (auto *idx = Idx[key]) {                       // hit


10.       if (Valid[*idx]) {


11.         memcpy(val, Cache[*idx], 128); _reflect(); } }


12.   } else if (update) {                      // server update


13.     auto *idx = Idx[key]; memcpy(Cache[*idx], val, 128);


14.     Valid[idx] = true; _drop();


15.   } else { }                          // server GET response


16. }

Figure 5: An In-Network KVS cache (GET, PUT) in NCL

various IR level checks for e.g., location conflicts between
kernels and switch memory or invalid window masks.

IR versioning. This stage uses location info from kernel
signatures and the AND to create multiple IR modules, con-
taining each location’s kernels and location struct imple-
mentation. It may also attempt to split location-less kernels
by inspecting top-level branching on location struct fields.
Subsequent stages examine all IR modules this stage outputs.

Analysis and optimization. This stage analyzes and
transforms the IR in preparation for code-generation. First,
loops are unrolled, and typical early SSA optimizations are
applied, like const. folding/propagation, GVN/CSE, DCE etc.

Next, we have generic PISA transformations. An idealized
PISA target, with a single, arbitrary-length, match-action
pipeline is assumed, and the CFG is transformed to a table
graph (and actions) for it. Control flow is mapped to branch-
ing statements or MAT lookups. Window data is accessed
through the packet part of the PHV, and intermediate values
become metadata by a (kind of a) reverse SROA pass, map-
ping SSA registers to a metadata struct. The compiler may
also make some high level decisions here, like moving part
of the CFG (e.g., small trip count loops) to the packet parser.
Finally, we have arch-specific transformations. The CFG

is mapped to the programmable blocks defined by a specific
PISA architecture. Based on this, it is also decided if recircu-
lation is required. Given chip-specific information, this stage
may reject a program. For instance, the PHV size depends on
the VLIW length, which may be too small for a given kernel.

Code generation. This stage transforms LLVM IR to P4.
Dangeti et al. proposed a P4 to LLVM compiler to achieve
better optimizations for P4 programs [13].We plan to use this
as a starting point for code generation and work backwards.
In the final step, the generated P4 code is merged with a
template switch configuration. For this part we aim to build
on prior work [51, 62] that has shown the feasibility of such
modularity. The final P4 program is given to a P4 backend to
eventually accept/reject it. This is needed for two reasons: (a)
chip constraints are not publicly available and (b) switch ISAs

nclc.fe

clang.fe

nc
lc

 

libncrt linker

op
t

op
t

LLVM

...

x86, AArch, ...

...

Reject

host.o

Network
NCL

Program




Description

libncp
libdpdk

Versioning

Conformance

P4 compiler

Analysis/Opt.

Generic
PISA

Target

Abstract

Codegen

+rewrite/check

Merging

switch.p4
+feedback

+instru

Codegen

op
t

host IR switch IR

host.bin switch.bin switch.p4info

Figure 6: The NCL compilation trajectory

and driver specifications are also proprietary, preventing
nclc from generating binaries directly.

6 CONCLUSION AND FUTUREWORK
While fundamentally addressing INC programming, we also
identify some open problem and places for future work.

NCL requires a concrete concurrency and memory model.
That is, memory access semantics in the presence of inter/intra-
window parallelism. It is apparent that barrier-like opera-
tions do not fit this model, as ordering is hardware enforced.
Thus, focus should be put on atomics and their extent. This
requires deeper study of P4 semantics [11, §17.4.1] and the
details of target platforms. The latter may not be as straight-
forward, given that currently, this information is not public.

Reliance on a P4 backend limits portability and leads to a
potentially lengthy trial-and-error process until an NCL pro-
gram is accepted. It also requires programmatically receiving
feedback and addressing it, a challenging task on its own.
For the long-term success of our system, and INC adoption
in general, an openmiddle ground is required. An example is
the NVVM IR [38]. A valid NVVM IR module is guaranteed
to be compilable by NVIDIA’s proprietary backend, allowing
high-level languages to easily target GPU devices. Something
similar might also be possible for P4 backends.

For an early prototype we aim for a smaller set of features:
Sockets/UDP backend, one kernel-invoking API, and win-
dows that fit a packet. We note that multi-packet windows
pose significant challenges. Storing multiple packets may not
yet be practical due to limited switch memory, or pipeline
stages may be too few to access enough memory locations.

Future work could extend NCL to more platforms. For in-
stance, ASIC limitations could be lifted by bump-in-the-wire
accelerators [17], and incoming kernels could be offloaded to
host-side accelerators (e.g., SmartNICs or DPUs). Windows
could also be extended to handle more complex associations
or multidimensional arrays. Finally, NCL would greatly ben-
efit from external tools for network mapping, deployment,
debugging, and testing of programs.

Acknowledgement. This research was supported by Dutch
Research Council (NWO) grant OCENW.KLEIN.209.



Unified Programming for In-Network Computing HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

REFERENCES
[1] Gustavo Alonso, Carsten Binnig, Ippokratis Pandis, Kenneth Salem, Jan

Skrzypczak, Ryan Stutsman, Lasse Thostrup, Tianzheng Wang, Zeke
Wang, and Tobias Ziegler. 2019. DPI: the data processing interface for
modern networks. CIDR 2019 Online Proceedings (2019).

[2] Arista. 2021. 7170 Series - High Performance Multi-function Pro-
grammable Platforms. (2021). https://www.arista.com/en/products/
7170-series

[3] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni An-
tichi, Minian Yu, and Michael Mitzenmacher. 2020. PINT: Probabilistic
In-Band Network Telemetry. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on the Appli-
cations, Technologies, Architectures, and Protocols for Computer Commu-
nication (SIGCOMM ’20). Association for Computing Machinery, New
York, NY, USA, 662–680. https://doi.org/10.1145/3387514.3405894

[4] Marcel Blöcher, Lin Wang, Patrick Eugster, and Max Schmidt. 2021.
Switches for HIRE: Resource Scheduling for Data Center in-Network
Computing. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS 2021). Association for Computing Machinery, New
York, NY, USA, 268–285. https://doi.org/10.1145/3445814.3446760

[5] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
Independent Packet Processors. SIGCOMM Comput. Commun. Rev. 44,
3 (July 2014), 87–95. https://doi.org/10.1145/2656877.2656890

[6] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding Metamorphosis: Fast Programmable Match-Action Process-
ing in Hardware for SDN. In Proceedings of the ACM SIGCOMM 2013
Conference on SIGCOMM (SIGCOMM ’13). Association for Comput-
ing Machinery, New York, NY, USA, 99–110. https://doi.org/10.1145/
2486001.2486011

[7] Broadcom. 2021. NPL - Network Programming Language. (2021).
https://nplang.org

[8] Broadcom. 2021. Trident4. https://www.broadcom.com/products/
ethernet-connectivity/switching/strataxgs/bcm56880-series. (2021).

[9] Sharad Chole, Andy Fingerhut, Sha Ma, Anirudh Sivaraman, Shay Var-
gaftik, Alon Berger, Gal Mendelson, Mohammad Alizadeh, Shang-Tse
Chuang, Isaac Keslassy, Ariel Orda, and Tom Edsall. 2017. DRMT: Dis-
aggregated Programmable Switching. In Proceedings of the Conference
of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). Association for Computing Machinery, New York, NY, USA, 1–14.
https://doi.org/10.1145/3098822.3098823

[10] Cisco. 2021. Cisco Silicon One. (2021). https://www.cisco.com/c/en/
us/solutions/silicon-one.html

[11] The P4 Language Consortium. 2021. P416 Language Specification.
(2021). https://p4.org/p4-spec/docs/P4-16-v1.2.2.html

[12] Huynh Tu Dang, Pietro Bressana, Han Wang, Ki Suh Lee, Noa Zil-
berman, Hakim Weatherspoon, Marco Canini, Fernando Pedone, and
Robert Soulé. 2020. P4xos: Consensus as a Network Service. IEEE/ACM
Trans. Netw. 28, 4 (Aug. 2020), 1726–1738. https://doi.org/10.1109/
TNET.2020.2992106

[13] Tharun Kumar Dangeti, Venkata Keerthy S., and Ramakrishna
Upadrasta. 2018. P4LLVM: An LLVM Based P4 Compiler. In 2018 IEEE
26th International Conference on Network Protocols (ICNP). 424–429.
https://doi.org/10.1109/ICNP.2018.00059

[14] Nick Feamster, Jennifer Rexford, and Ellen Zegura. 2014. The Road to
SDN: An Intellectual History of Programmable Networks. SIGCOMM
Comput. Commun. Rev. 44, 2 (April 2014), 87–98. https://doi.org/10.
1145/2602204.2602219

[15] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou,
Bingchuan Tian, Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu.
2020. Lyra: A Cross-Platform Language and Compiler for Data Plane
Programming on Heterogeneous ASICs. In Proceedings of the Annual
Conference of the ACM Special Interest Group on Data Communica-
tion on the Applications, Technologies, Architectures, and Protocols for
Computer Communication (SIGCOMM ’20). Association for Computing
Machinery, New York, NY, USA, 435–450. https://doi.org/10.1145/
3387514.3405879

[16] Xiangyu Gao, Taegyun Kim, Aatish Kishan Varma, Anirudh Sivara-
man, and Srinivas Narayana. 2019. Autogenerating Fast Packet-
Processing Code Using Program Synthesis. In Proceedings of the
18th ACM Workshop on Hot Topics in Networks (HotNets ’19). As-
sociation for Computing Machinery, New York, NY, USA, 150–160.
https://doi.org/10.1145/3365609.3365858

[17] Nadeen Gebara, Manya Ghobadi, and Paolo Costa. 2021. In-network
Aggregation for Shared Machine Learning Clusters. In Proceedings of
Machine Learning and Systems, Vol. 3. 829–844.

[18] The P4.org Architecture Working Group. 2021. P416 Portable Switch
Architecture (PSA). (2021). https://p4.org/p4-spec/docs/PSA.html

[19] Intel. 2021. Intel Tofino Series. (2021). https://www.intel.com/content/
www/us/en/products/network-io/programmable-ethernet-switch.
html

[20] Intel. 2021. P416 Intel Tofilo Native Architecture - Public Ver-
sion. (2021). https://github.com/barefootnetworks/Open-Tofino/
blob/master/PUBLIC_Tofino-Native-Arch-Document.pdf

[21] Theo Jepsen, Masoud Moshref, Antonio Carzaniga, Nate Foster, and
Robert Soulé. 2018. Life in the Fast Lane: A Line-Rate Linear Road. In
Proceedings of the Symposium on SDN Research (SOSR ’18). Association
for Computing Machinery, New York, NY, USA, Article 10, 7 pages.
https://doi.org/10.1145/3185467.3185494

[22] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert
Soulé, Changhoon Kim, and Ion Stoica. 2018. Netchain: Scale-Free
Sub-RTT Coordination. In Proceedings of the 15th USENIX Conference
on Networked Systems Design and Implementation (NSDI’18). USENIX
Association, USA, 35–49.

[23] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate
Foster, Changhoon Kim, and Ion Stoica. 2017. NetCache: Balancing
Key-Value Stores with Fast In-Network Caching. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP ’17). Association
for Computing Machinery, New York, NY, USA, 121–136. https://doi.
org/10.1145/3132747.3132764

[24] Khronos Group. 2021. OpenCL - Open Standard for Parallel Program-
ming of Heterogeneous Systems. https://www.khronos.org/opencl/.
(2021).

[25] Ike Kunze, René Glebke, Jan Scheiper, Matthias Bodenbenner, Robert H
Schmitt, and Klaus Wehrle. 2021. Investigating the Applicability of
In-Network Computing to Industrial Scenarios. IEEE ICPS (2021).

[26] ChonLam Lao, Yanfang Le, Kshiteej Mahajan, Yixi Chen, Wenfei Wu,
Aditya Akella, and Michael Swift. 2021. ATP: In-network Aggregation
for Multi-tenant Learning. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). USENIX Association,
741–761.

[27] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization
Feedback-Directed and Runtime Optimization (CGO ’04). IEEE Com-
puter Society, USA, 75.

[28] Alberto Lerner, Rana Hussein, and P. Cudré-Mauroux. 2019. The Case
for Network Accelerated Query Processing. In CIDR.

https://www.arista.com/en/products/7170-series
https://www.arista.com/en/products/7170-series
https://doi.org/10.1145/3387514.3405894
https://doi.org/10.1145/3445814.3446760
https://doi.org/10.1145/2656877.2656890
https://doi.org/10.1145/2486001.2486011
https://doi.org/10.1145/2486001.2486011
https://nplang.org
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://doi.org/10.1145/3098822.3098823
https://www.cisco.com/c/en/us/solutions/silicon-one.html
https://www.cisco.com/c/en/us/solutions/silicon-one.html
https://p4.org/p4-spec/docs/P4-16-v1.2.2.html
https://doi.org/10.1109/TNET.2020.2992106
https://doi.org/10.1109/TNET.2020.2992106
https://doi.org/10.1109/ICNP.2018.00059
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/2602204.2602219
https://doi.org/10.1145/3387514.3405879
https://doi.org/10.1145/3387514.3405879
https://doi.org/10.1145/3365609.3365858
https://p4.org/p4-spec/docs/PSA.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://www.intel.com/content/www/us/en/products/network-io/programmable-ethernet-switch.html
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch-Document.pdf
https://github.com/barefootnetworks/Open-Tofino/blob/master/PUBLIC_Tofino-Native-Arch-Document.pdf
https://doi.org/10.1145/3185467.3185494
https://doi.org/10.1145/3132747.3132764
https://doi.org/10.1145/3132747.3132764
https://www.khronos.org/opencl/


HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom George Karlos, Henri Bal, and Lin Wang

[29] Zaoxing Liu, Zhihao Bai, Zhenming Liu, Xiaozhou Li, Changhoon Kim,
Vladimir Braverman, Xin Jin, and Ion Stoica. 2019. DistCache: Prov-
able Load Balancing for Large-Scale Storage Systems with Distributed
Caching. In Proceedings of the 17th USENIX Conference on File and
Storage Technologies (FAST’19). USENIX Association, USA, 143–157.

[30] LLVM. 2021. Clang: a C language family frontend for LLVM. https:
//clang.llvm.org. (2021).

[31] LLVM. 2021. Compiling CUDA with clang. https://llvm.org/docs/
CompileCudaWithLLVM.html. (2021).

[32] man7.org. 2021. udp(7) - Linux manual page. https://man7.org/linux/
man-pages/man7/udp.7.html. (2021).

[33] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi,
Arvind Krishnamurthy, Sylvia Ratnasamy, and Scott Shenker. 2018.
Revisiting Network Support for RDMA. In Proceedings of the 2018
Conference of the ACM Special Interest Group on Data Communication
(SIGCOMM ’18). Association for Computing Machinery, New York, NY,
USA, 313–326. https://doi.org/10.1145/3230543.3230557

[34] Netronome. 2021. Agilio CX SmartNICs. https://www.netronome.
com/products/agilio-cx/. (2021).

[35] NoviFlow. 2021. NoviSwitch. (2021). https://noviflow.com/noviswitch
[36] NVIDIA. 2021. CUDA C++ Programming Guide. https://docs.nvidia.

com/cuda/cuda-c-programming-guide/index.html. (2021).
[37] NVIDIA. 2021. NVIDIA Ethernet P4. (2021). https://developer.nvidia.

com/networking/ethernet-p4
[38] NVIDIA. 2021. NVVM IR Specification 1.7. https://docs.nvidia.com/

cuda/nvvm-ir-spec/index.html. (2021).
[39] NVIDIA. 2021. The CUDA Compilation Trajectory. https:

//docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#
cuda-compilation-trajectory. (2021).

[40] Vladimir Olteanu, Alexandru Agache, Andrei Voinescu, and Costin
Raiciu. 2018. Stateless Datacenter Load-Balancing with Beamer. In
Proceedings of the 15th USENIX Conference on Networked Systems Design
and Implementation (NSDI’18). USENIX Association, USA, 125–139.

[41] Open Networking Foundation. 2021. ONOS - Open Network Operating
System. https://opennetworking.org/onos/. (2021).

[42] Yanghua Peng, Yibo Zhu, Yangrui Chen, Yixin Bao, Bairen Yi, Chang
Lan, Chuan Wu, and Chuanxiong Guo. 2019. A Generic Commu-
nication Scheduler for Distributed DNN Training Acceleration. In
Proceedings of the 27th ACM Symposium on Operating Systems Princi-
ples (SOSP ’19). Association for Computing Machinery, New York, NY,
USA, 16–29. https://doi.org/10.1145/3341301.3359642

[43] Pensando. 2020. Pensando DSC-25 Distributed Services
Card. https://pensando.io/wp-content/uploads/2020/03/
Pensando-DSC-25-Product-Brief.pdf. (2020).

[44] Dan R. K. Ports and Jacob Nelson. 2019. When Should The Network
Be The Computer?. In Proceedings of the Workshop on Hot Topics in
Operating Systems (HotOS ’19). Association for Computing Machinery,
New York, NY, USA, 209–215. https://doi.org/10.1145/3317550.3321439

[45] DPDK Project. 2021. Data Plane Development Kit. https://www.dpdk.
org/. (2021).

[46] Davide Sanvito, Giuseppe Siracusano, and Roberto Bifulco. 2018. Can
the Network Be the AI Accelerator?. In Proceedings of the 2018 Morning
Workshop on In-Network Computing (NetCompute ’18). Association for
Computing Machinery, New York, NY, USA, 20–25. https://doi.org/
10.1145/3229591.3229594

[47] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini,
and Panos Kalnis. 2017. In-Network Computation is a Dumb Idea
Whose Time Has Come. In Proceedings of the 16th ACM Workshop
on Hot Topics in Networks (HotNets-XVI). Association for Computing
Machinery, New York, NY, USA, 150–156. https://doi.org/10.1145/
3152434.3152461

[48] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis,
Changhoon Kim, Arvind Krishnamurthy, Masoud Moshref, Dan Ports,
and Peter Richtarik. 2021. Scaling Distributed Machine Learning with
In-Network Aggregation. In 18th USENIX Symposium on Networked
Systems Design and Implementation (NSDI 21). USENIX Association,
785–808.

[49] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim,
Mohammad Alizadeh, Hari Balakrishnan, George Varghese, Nick McK-
eown, and Steve Licking. 2016. Packet Transactions: High-Level Pro-
gramming for Line-Rate Switches. In Proceedings of the 2016 ACM
SIGCOMM Conference (SIGCOMM ’16). Association for Computing Ma-
chinery, New York, NY, USA, 15–28. https://doi.org/10.1145/2934872.
2934900

[50] Haoyu Song. 2013. Protocol-Oblivious Forwarding: Unleash the Power
of SDN through a Future-Proof Forwarding Plane. In Proceedings of
the Second ACM SIGCOMMWorkshop on Hot Topics in Software Defined
Networking (HotSDN ’13). Association for Computing Machinery, New
York, NY, USA, 127–132. https://doi.org/10.1145/2491185.2491190

[51] Hardik Soni, Myriana Rifai, Praveen Kumar, Ryan Doenges, and Nate
Foster. 2020. Composing Dataplane Programs with uP4. In Proceedings
of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and
Protocols for Computer Communication (SIGCOMM ’20). Association
for Computing Machinery, New York, NY, USA, 329–343. https://doi.
org/10.1145/3387514.3405872

[52] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, and Kunle
Olukotun. 2020. Taurus: An intelligent data plane. arXiv preprint
arXiv:2002.08987 (2020).

[53] Lasse Thostrup, Jan Skrzypczak, Matthias Jasny, Tobias Ziegler, and
Carsten Binnig. 2021. DFI: The Data Flow Interface for High-Speed
Networks. In Proceedings of the 2021 International Conference on Man-
agement of Data (SIGMOD/PODS ’21). Association for Computing Ma-
chinery, New York, NY, USA, 1825–1837. https://doi.org/10.1145/
3448016.3452816

[54] Muhammad Tirmazi, Ran Ben Basat, Jiaqi Gao, and Minlan Yu. 2020.
Cheetah: Accelerating Database Queries with Switch Pruning. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD ’20). Association for Computing Machin-
ery, New York, NY, USA, 2407–2422. https://doi.org/10.1145/3318464.
3389698

[55] Yuta Tokusashi, Huynh Tu Dang, Fernando Pedone, Robert Soulé,
and Noa Zilberman. 2019. The Case For In-Network Computing On
Demand. In Proceedings of the Fourteenth EuroSys Conference 2019
(EuroSys ’19). Association for Computing Machinery, New York, NY,
USA, Article 21, 16 pages. https://doi.org/10.1145/3302424.3303979

[56] Sébastien Vaucher, Niloofar Yazdani, Pascal Felber, Daniel E. Lucani,
and Valerio Schiavoni. 2020. ZipLine: In-Network Compression at Line
Speed. In Proceedings of the 16th International Conference on Emerging
Networking EXperiments and Technologies (CoNEXT ’20). Association
for Computing Machinery, New York, NY, USA, 399–405. https://doi.
org/10.1145/3386367.3431302

[57] DingmingWu, Ang Chen, T. S. Eugene Ng, GuohuiWang, and Haiyong
Wang. 2019. Accelerated Service Chaining on a Single Switch ASIC.
In Proceedings of the 18th ACM Workshop on Hot Topics in Networks
(HotNets ’19). Association for Computing Machinery, New York, NY,
USA, 141–149. https://doi.org/10.1145/3365609.3365849

[58] Xilinx. 2021. Alveo U25 SmartNIC Accelerator Card. (2021). https:
//www.xilinx.com/products/boards-and-kits/alveo/u25.html

[59] Zhaoqi Xiong and Noa Zilberman. 2019. Do Switches Dream of Ma-
chine Learning? Toward In-Network Classification. In Proceedings
of the 18th ACM Workshop on Hot Topics in Networks (HotNets ’19).
Association for Computing Machinery, New York, NY, USA, 25–33.

https://clang.llvm.org
https://clang.llvm.org
https://llvm.org/docs/CompileCudaWithLLVM.html
https://llvm.org/docs/CompileCudaWithLLVM.html
https://man7.org/linux/man-pages/man7/udp.7.html
https://man7.org/linux/man-pages/man7/udp.7.html
https://doi.org/10.1145/3230543.3230557
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://noviflow.com/noviswitch
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://developer.nvidia.com/networking/ethernet-p4
https://developer.nvidia.com/networking/ethernet-p4
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://docs.nvidia.com/cuda/nvvm-ir-spec/index.html
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#cuda-compilation-trajectory
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#cuda-compilation-trajectory
https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html#cuda-compilation-trajectory
https://opennetworking.org/onos/
https://doi.org/10.1145/3341301.3359642
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://pensando.io/wp-content/uploads/2020/03/Pensando-DSC-25-Product-Brief.pdf
https://doi.org/10.1145/3317550.3321439
https://www.dpdk.org/
https://www.dpdk.org/
https://doi.org/10.1145/3229591.3229594
https://doi.org/10.1145/3229591.3229594
https://doi.org/10.1145/3152434.3152461
https://doi.org/10.1145/3152434.3152461
https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/2934872.2934900
https://doi.org/10.1145/2491185.2491190
https://doi.org/10.1145/3387514.3405872
https://doi.org/10.1145/3387514.3405872
https://doi.org/10.1145/3448016.3452816
https://doi.org/10.1145/3448016.3452816
https://doi.org/10.1145/3318464.3389698
https://doi.org/10.1145/3318464.3389698
https://doi.org/10.1145/3302424.3303979
https://doi.org/10.1145/3386367.3431302
https://doi.org/10.1145/3386367.3431302
https://doi.org/10.1145/3365609.3365849
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html
https://www.xilinx.com/products/boards-and-kits/alveo/u25.html


Unified Programming for In-Network Computing HotNets ’21, November 10–12, 2021, Virtual Event, United Kingdom

https://doi.org/10.1145/3365609.3365864
[60] Zhuolong Yu, Yiwen Zhang, Vladimir Braverman, Mosharaf Chowd-

hury, and Xin Jin. 2020. NetLock: Fast, Centralized Lock Management
Using Programmable Switches. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on the Appli-
cations, Technologies, Architectures, and Protocols for Computer Commu-
nication (SIGCOMM ’20). Association for Computing Machinery, New
York, NY, USA, 126–138. https://doi.org/10.1145/3387514.3405857

[61] Lior Zeno, Dan R. K. Ports, Jacob Nelson, and Mark Silberstein. 2020.
SwiShmem: Distributed Shared State Abstractions for Programmable

Switches. In Proceedings of the 19th ACM Workshop on Hot Topics in
Networks (HotNets ’20). Association for Computing Machinery, New
York, NY, USA, 160–167. https://doi.org/10.1145/3422604.3425946

[62] Peng Zheng, Theophilus Benson, and Chengchen Hu. 2018. P4Visor:
Lightweight Virtualization and Composition Primitives for Building
and Testing Modular Programs. In Proceedings of the 14th International
Conference on Emerging Networking EXperiments and Technologies
(CoNEXT ’18). Association for Computing Machinery, New York, NY,
USA, 98–111. https://doi.org/10.1145/3281411.3281436

https://doi.org/10.1145/3365609.3365864
https://doi.org/10.1145/3387514.3405857
https://doi.org/10.1145/3422604.3425946
https://doi.org/10.1145/3281411.3281436

	Abstract
	1 Introduction
	2 Background and Motivation
	3 A programming method for INC
	3.1 The C3 programming model
	3.2 A programming system for C3

	4 INC programming with NCL
	4.1 Network kernels
	4.2 Data windows
	4.3 Use Cases

	5 The NCL Compiler Architecture
	6 Conclusion and Future Work
	References

