
Mantis: Reactive Programmable Switches
Liangcheng Yu

University of Pennsylvania
leoyu@seas.upenn.edu

John Sonchack
Princeton University
jsonch@princeton.edu

Vincent Liu
University of Pennsylvania

liuv@seas.upenn.edu

ABSTRACT
For modern data center switches, the ability to—with minimum
latency and maximum flexibility—react to current network condi-
tions is important for managing increasingly dynamic networks.
The traditional approach to implementing this type of behavior is
through a control plane that is orders of magnitude slower than the
speed at which typical data center congestion events occur. More
recent alternatives like programmable switches can remember sta-
tistics about passing traffic and adjust behavior accordingly, but
unfortunately, their capabilities severely limit what can be done.

In this paper, we present Mantis, a framework for implementing
fine-grained reactive behavior on today’s programmable switches
with the help of a specialized reactive control plane architecture.
Mantis is, thus, a combination of language for specifying dynamic
components of packet processing and an optimized, general, and
safe control loop for implementing them. Mantis provides a simple-
to-reason-about set of abstractions for users, and the Mantis control
plane can react to changes in the network in 10s of µs.

CCS CONCEPTS
•Networks→Programmable networks;Programming inter-
faces; In-network processing; Network dynamics;

KEYWORDS
Programmable networks, P4, Reconfiguration, Control plane

ACM Reference Format:
Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive
Programmable Switches. In Annual conference of the ACM Special Interest
Group on Data Communication on the applications, technologies, architectures,
and protocols for computer communication (SIGCOMM ’20), August 10–14,
2020, Virtual Event, NY, USA. ACM, New York, NY, USA, 14 pages. https:
//doi.org/10.1145/3387514.3405870

1 INTRODUCTION
Modern data center networks are becoming increasingly dynamic.
Their switches, in addition to providing simple forwarding function-
ality, are often expected to change their packet processing behavior
in reaction to fluctuating network conditions, e.g., to distribute
traffic [2, 11, 17, 49], handle failures [27, 28], implement flow con-
trol [14, 32, 50], or apply expressive security policies [20, 25, 45].

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7955-7/20/08. . . $15.00
https://doi.org/10.1145/3387514.3405870

� �
malleable value value_var { width : 16; init : 1; }
malleable field field_var {

width : 32; init : hdr.foo;
alts {hdr.foo, hdr.bar}

}
malleable table table_var {

reads { ${field_var} : exact; }
actions { my_action; drop; }

}
action my_action() {

add(${field_var}, hdr.baz, ${value_var});
}
reaction my_reaction(reg qdepths[1:10]) {

uint16_t current_max = 0, max_port = 0;
for (int i = 1; i <= 10; ++i)

if (qdepths[i] > current_max) {
current_max = qdepths[i]; max_port = i;

}
${value_var} = max_port;

}� �
Figure 1: An example P4R code snippet with fields, val-
ues, and a table that can be modified at runtime using fine-
grained reactions. malleable variables are annotated as such.
Malleable field and value variables are referenced as ${var}.

For each of these tasks, reacting to the current state of the network
is critical to maintaining strict Service-Level Objectives (SLOs).

Parallel to this trend has been a realization that the majority
of congestion events in today’s data centers are microscopic in
duration. For instance, [57] found that, in one production data
center, 90% of continuous periods of high utilization lasted for less
than 200 µs. Studies of other data centers have shown similar levels
of volatility in network traffic over small timescales [5, 37].

As a result, recent work has proposed pushing an increasing
amount of adaptive behavior into the network devices themselves.
Load balancing is one such example. While switches have long
been able to statically spread load over the network using mech-
anisms like ECMP, microbursts and other transient events pro-
vide a compelling case for making more complex routing deci-
sions locally at each device, where it is possible to react at very
small timescales [2, 11, 50]. This is in contrast to more traditional
OpenFlow-style approaches, which rely on a relatively slow control
loop passing through a centralized controller. Similarly reactive
systems have been proposed for other use cases [20, 25, 28, 52].

The cost of faster reaction time in these systems? For many, it
is custom hardware modifications that add the features directly
into the data plane [2, 11, 28]. Unfortunately, developing these
custom ASICs is both extremely expensive and time-consuming.
Programmable switches provide a promising alternative, allowing
users to integrate some amount of statistics gathering and compu-
tation into the packet processing pipeline, but as we describe in
Section 2, the limitations of today’s programmable switches are
well known and difficult to overcome, despite sustained efforts from
the networking community.

296

https://doi.org/10.1145/3387514.3405870
https://doi.org/10.1145/3387514.3405870
https://doi.org/10.1145/3387514.3405870

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Liangcheng Yu, John Sonchack, and Vincent Liu

In this paper, we present Mantis, a framework for implementing
fine-grained reactive behavior in today’s programmable switches.
Like traditional network architectures, Mantis relies on the data
plane to perform packet processing and the control plane to imple-
ment arbitrary control logic. Unlike traditional architectures, the
Mantis control plane is designed to—at the granularity of 10s of
µs—continually measure and adjust the behavior of the data plane.
Mantis is, thus, a combination of (1) an extension to the P4 language,
P4R, that helps to specify which parts of the data plane should be
malleable, and (2) the Mantis agent, an optimized control plane that
provides both a Turing-complete substrate and serializability guar-
antees for user-defined reactions. While Mantis’s reliance on the
CPU means that it cannot react to every packet, it enables sub-RTT
reaction time, which we show is sufficient for many applications.

Figure 1 shows an example P4R program. In it, we can observe a
set of novel primitives that can replace any of their traditional P4
counterparts: malleable values, which can be reconfigured at run-
time to take on any numeric value; malleable fields, which can be
reconfigured to reference P4 packet/metadata fields; and malleable
tables, which function as normal match-action tables, but are aug-
mented with support for fast and serializable updates. Mantis will
continuously poll headers/state from the data plane and modify the
above primitives based on user-specified reactions—each iteration
of the reaction loop allows arbitrarily complex reaction logic, is
guaranteed to operate on fresh data, permits concurrent traditional
control plane operations, and provides serializable isolation with
respect to reads, writes, and packet processing. Our prototype and
evaluation of Mantis and the P4R language demonstrate their utility
in a wide range of use cases that are difficult/expensive to imple-
ment otherwise.1 This paper makes the following contributions:
• We introduce a novel extension to the P4 language, P4R, that
treats reactions to current network conditions as a first-class
citizen. Alongwith this language, we present a Flex/Bison-based
compiler that translates P4R into a pair of artifacts: (1) a valid
but malleable P4-14 v1.0.5 program and (2) C reaction code that
polls data plane state and updates its malleable portions.

• We also develop the Mantis agent, a control plane architecture
that can execute reactions quickly and safely on a Wedge100BF-
series switch. Depending on the reaction complexity, our cur-
rent implementation can react at a granularity of 10s of µs (less
than an RTT in most networks) and guarantees serializable
isolation of both the measurements and updates.

• Finally, we present a series of use cases that demonstrate the
utility of Mantis and dynamic reaction. A surprising result of
our work is that, not only does Mantis outperform centralized
approaches, it can often outperform pure data plane approaches
along important metrics.

This work does not raise any ethical issues.

2 BACKGROUND AND MOTIVATION
We begin this paper by describing the architecture of today’s Re-
configurable Match Table (RMT) switches with a focus on their
capacity to react to current network conditions. To that end, RMT
switches are based on the abstraction of a pipeline of match-action

1The open-source P4R compiler can be found at https://github.com/eniac/Mantis

.p4r Reactions

Malleable

P4 Program

Mantis

Control Plane

Switch

Compiler

Figure 2:Mantis. A P4Rprogram is compiled into a pair of ar-
tifacts that support high-frequency, switch-local reactions.

tables. For a given packet and table, the switch will index into the
table using a subset of packets’ fields and metadata, extracting an
action that it will then apply to the current packet. Some switches
may also include a small amount of SRAM for stateful processing.
The ‘reconfigurable’ of RMT refers to the ability to change both the
fields considered in the match as well as the action that is executed.

In this context, a reaction involves aggregating statistics (e.g.,
packet count or queue depth) from across packets and then using
those statistics to influence the processing of subsequent packets
(e.g., by redirecting a subset of them or tagging them with a com-
puted value). In principle, an RMT switch with stateful SRAM can
be configured to do both of the above actions—measurement and
control—entirely within the data plane, and prior work has done
exactly this for a subset of use cases [12, 40]. In practice, however,
today’s state-of-the-art RMT implementations suffer from a num-
ber of well-known limitations, some of which may be fundamental
to efficient ASICs [4] and none of which are addressed by exist-
ing hardware. These include, but are not limited to constraints on
the operations allowed in actions (e.g., no multiplication/division,
limited branching, etc.), a fixed number of stages in the pipeline,
restrictions of SRAM accesses to a single element/stage, and a dis-
connect between ingress/egress pipelines.

When encountering one of these limitations, prior work has
tended to take one of a few different approaches. Some expend
heroic efforts approximate the original algorithms in a way that
fits the constraints [39, 40, 53]. Others assume novel hardware
primitives that add the appropriate flexibility to the data plane [15,
22, 33, 41]. Some in the latter category might still be developed into
the former; however, for a general approach that works on today’s
networks, workarounds typically involve one of the following.

Resubmission and recirculation. Themost direct way to circum-
vent the data plane limitations is to send traffic back through the
packet processing pipeline multiple times and, if necessary, across
pipelines [4, 15, 22, 41]. Theoretically, with enough recirculations,
one can overcome limitations in both computational power (achiev-
ing Turing-completeness) and memory flexibility (acquiring access
to any number of SRAM entries any number of times).

The primary drawback is that, each time a packet is recirculated,
it potentially impacts other traffic. Recirculating every packet twice,
for instance, drops usable throughput of the switch to 38%; three
times reduces throughput to just 16% [51]. As modern switches are
generally limited by their packet-level bandwidth, the size of the
recirculated packets is immaterial. Recirculated packet processing
also introduces the potential for violations of consistency/isolation.

Chaining/reloading the data plane. For cases where stage count
is the main limitation, an alternative approach is to chain or swap
in/out network functionality as needed [24, 52]. Unfortunately,

297

Mantis: Reactive Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

chaining imposes requirements on the network topology and work-
load, and installing a new data plane program renders the switch
temporarily unavailable (several seconds in current implementa-
tions). It, therefore, only applies for coarse-grained reactions and
cases where sufficient capacity exists elsewhere in the network.

Control plane assistance. Finally, we note that data planes have
long been unable to implement all of the functionality needed inside
a network. Instead, they are typically augmented with a control
plane an onboard CPU to which the data plane can offload more
complex tasks such as routing and management when those types
of packets arrive. The two planes communicate by passingmessages
or, from the control plane, by polling counters and updating table
entries—all of these can be done without disrupting normal switch
operations. Unfortunately, traditional control planes assume that
accesses are not time-critical and, thus, are generally orders of
magnitude slower than the duration of network events [11, 28].

3 DESIGN OVERVIEW
Mantis is a framework for fast, expressive in-network reactions on
today’s RMT switches. Mantis has two primary goals:
(1) To enable general and flexible dynamic reactions that surpass

the limitations of today’s switches—measuring an arbitrary set
of data plane metrics, computing an arbitrary set of statistics
over that data, and manipulating the data plane without impact-
ing normal traffic. To sustain typical network volatility, this
process should be able to operate on a sub-RTT granularity.

(2) To package the above capability into a reaction abstraction that
hides themany complexities of implementing reactive behavior,
e.g., ensuring that the data plane is malleable, coordinating data-
control plane communication at runtime, and reasoning about
asynchronous behavior.

Explicitly not a goal of our system is support for arbitrary changes
to the data plane at runtime. For that, we refer interested readers to
prior work that has successfully emulated P4 using match-action
tables [13], albeit at a high cost (for an L2 switch, a 6.5× increase
in match stages and 83% bandwidth penalty). Instead, we assume
that the general structure of the data plane is known a priori and
that reactions only need to touch a subset of data plane objects.

We demonstrate, using Mantis, that the above approach is suffi-
cient to implement a range of network architectures that are difficult
and/or costly to implement in today’s RMT switches. We discuss
and evaluate these applications, listed in Table 1, in Section 8.

Core abstractions. Two abstractions underlie our work:
MALLEABLE ENTITIES — In Mantis, specific primitives in the data

plane program can be tagged as ‘malleable,’ indicating that they
should be amenable to fine-grained modification at runtime. Mal-
leable values, used in the expressions of data-plane actions, can
take on any constant value; malleable fields act as dynamic refer-
ences to a predefined set of existing header and metadata fields; and
malleable tables function exactly like normal match-action tables,
but with the ability to be modified at a fine-granularity.
REACTIONS — Measuring the network and modifying malleable

portions of the data plane are ‘reactions’—small C functions that are
compiled and dynamically loaded into a custom, reaction-centric
control plane running on each switch’s local CPU. In Mantis, the

⟨p4_declaration⟩ ::= ⟨mbl_declaration⟩ | ⟨reaction_declaration⟩ | ...

⟨mbl_declaration⟩ ::= ‘malleable’ ⟨table_declaration⟩ (malleable entities)
| ‘malleable’ ⟨mbl_val_declaration⟩
| ‘malleable’ ⟨mbl_fld_declaration⟩

⟨mbl_val_declaration⟩ ::= ‘value’ ⟨mbl_name⟩ ‘{’
⟨width_declaration⟩ ‘;’
‘init :’ ⟨const_value⟩ ‘;’ ‘}’

⟨mbl_fld_declaration⟩ ::= ‘field’ ⟨mbl_name⟩ ‘{’
⟨width_declaration⟩ ‘;’
‘init :’ ⟨field_ref ⟩ ‘;’
‘alts {’ ⟨field_ref ⟩ [‘,’ ⟨field_ref ⟩]* ‘}’ ‘;’ ‘}’

⟨reaction_declaration⟩ ::= ‘reaction’ ⟨reaction_name⟩ (reactions)
‘(’ [⟨reaction_args⟩ [, ⟨reaction_args⟩]*] ‘)’
‘{ // C-like code }’

⟨reaction_args⟩ ::= ‘ing’ ⟨reaction_arg⟩
| ‘egr’ ⟨reaction_arg⟩
| ‘reg’ ⟨register_ref ⟩ ‘[’ ⟨const_value⟩ ‘:’ ⟨const_value⟩ ‘]’

⟨reaction_arg⟩ ::= ‘${’ ⟨mbl_read_ref ⟩ ‘}’
| ⟨field_ref ⟩
| ⟨header_ref ⟩
| ⟨field_value⟩

⟨field_or_masked_ref ⟩ ::= ‘${’ ⟨mbl_read_ref ⟩ ‘}’ (references)
| ‘${’ ⟨mbl_read_ref ⟩ ‘}’ ‘mask’ ⟨const_value⟩
| ...

⟨arg⟩ ::= ‘${’ ⟨mbl_read_ref ⟩ ‘}’ | ...

⟨exp⟩ ::= ‘${’ ⟨mbl_read_ref ⟩ ‘}’ | ...

Figure 3: The P4R extensions to the P4-14 v1.0.5 grammar.
Gray non-terminal nodes refer to legacy rules in [48], and
nodes ending in _name indicate stringswhose first character
is a letter. mbl_read_ref s can access both malleable values
and fields. Note that all writes in P4-14 are done via primi-
tive actions, which we omit for similar reasons to [48].

control plane will, as quickly as possible, poll the parameters of
each reaction function and react to the measurements by updating
malleable entities according to these user-defined functions.

System architecture. On top of the above abstractions, Mantis
combines a language, a compiler, and a control plane architecture,
all designed to enable fast, simple, and safe control loops for pro-
grammable switches. Figure 2 depicts the architecture of Mantis.
• The P4R language: Actualizing our two core abstractions is a
simple extension to P4—one where certain fields, values, and
tables can be tagged as ‘malleable.’

• The Mantis compiler: The compiler transforms P4R programs
into a pair of artifacts: (1) a valid P4 program that reformulates
the P4R to ensure thatmetrics are exported and that malleables
are runtime-configurable and (2) a reaction function implemen-
tation that interfaces with the generated P4 program.

• The Mantis control plane: An optimized control plane agent run-
ning on the switch CPU is responsible for the rapid, serializable
coordination of measurement and updates.

Paper roadmap.We start in Section 4 by describing the P4R lan-
guage and how Mantis translates from P4R to P4 without any isola-
tion guarantees. Section 5 then introduces Mantis’s approach for
guaranteeing per-pipeline serializable isolation of reads, writes, and
packet processing. Finally, Section 6 presents the Mantis control
plane before delving into the implementation/evaluation.

298

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Liangcheng Yu, John Sonchack, and Vincent Liu

4 LANGUAGE AND TRANSFORMATIONS
Adhering to best practices in language design [21], P4R reuses the
basic syntax and semantics of the P4 programming language. It
then allows users to tag various P4 objects as ‘malleable’ and define
the reaction functions that modify those objects. We already saw
an example of both language features in Figure 1.

Grammar. Briefly, malleable fields and values are declared with
a width, an initial value, and in the case of a malleable field, a set
of potential aliases to which the entity can reference. Malleable
tables are declared with an annotation to indicate that the compiler
should prepare for its use in a reaction loop. Otherwise, all three
can be used in the same way as their traditional P4 counterparts.

The precise extensions wemake to the P4-14 grammar are shown
in Figure 3. The grammar follows the naming conventions of [48].
Note that, like [48], we omit our changes to primitive actions such as
modify_field and add_to_field, whose existence is platform de-
pendent. In general, however, any field or value parameter to these
primitive actions may be replaced with a reference to a malleable
(mbl_read_ref or mbl_write_ref, depending on the semantics).

Reaction functions. Of note are reaction functions like the one in
Figure 1 that allow users to embed C code that specifies the control
plane behavior that accompanies the data plane implementation.

Syntactically, reactions mirror C, but with a couple of changes.
The first is the parameters to a reaction, which are a set of fields,
registers, or malleable fields/values from the data plane. Before
executing the body of the reaction, Mantis polls the current value
of all of these parameters. Note that if there are multiple line cards
with distinct register state, a separate instance of the Mantis agent
will run for each. The second is the use of malleables within the
function body. For malleable fields and values, these can be ref-
erenced with the same ${var} notation used in the rest of the
P4R program—the compiler will replace them with generated func-
tions that write to the data plane or read the last written value,
depending on the context. For malleable tables, users can interact
directly via a set of automatically generated library functions, e.g.,
table_var.addEntry(...).

Semantically, all registered reaction functions are executed se-
quentially, in a loop. Mantis does not guarantee a specific ordering
but does guarantee serializability between parameter polling, up-
dates to malleable entities, and packets’ processing (see Section 5).

4.1 Producing Malleable P4
Supporting fast and safe reactions is Mantis’s compiler, which trans-
forms P4R into a valid P4 program, but one in which malleable enti-
ties can be rapidly updated at runtime. In this section, we describe
through several examples the necessary transformations for mal-
leable fields and values without considering isolation guarantees.
Note that we do not describe one-off writes of malleable tables as
(ignoring isolation) they are already modifiable in today’s switches.

Values. Figure 4 shows a simple example of a definition and use of
a malleable value, value_var. The original P4R code can be found
in the four non-bolded lines, which contain the entity definition
and its use within the P4 add primitive.

The Mantis compiler transforms the code as follows. It instan-
tiates the value in a metadata header (p4r_meta_) and generates

� �
- malleable value value_var { width : 16; init : 1; }
+ header_type p4r_meta_t_ {
+ fields { value_var : 16; }
+ }
+ metadata p4r_meta_t_ p4r_meta_ { value_var : 1; };

// Applied once at the beginning of the pipeline
+ table p4r_init_ {
+ actions { p4r_init_action_; }
+ size : 1;
+ }
+ action p4r_init_action_(value_var) {
+ modify_field(p4r_meta_.value_var, value_var);
+ }
action my_action() {

± add(hdr.foo, hdr.bar, ${value_var} p4r_meta_.value_var);
}� �

Figure 4: Mantis’s transformation of a malleable value.
Strikethroughs and ‘-’ annotations indicate P4R code that
is removed by the transformation; boldbold text and ‘+’ annota-
tions indicate P4 code that is generated by Mantis.� �
- malleable field write_var {
- .width : 32; init : hdr.foo;
- .alts { hdr.foo, hdr.bar }
- }
+ header_type p4r_meta_t_ {
+ fields { write_var_alt : 1; }
+ }
+ metadata p4r_meta_t_ p4r_meta_;
// Action applied once (with value loads)

+ action p4r_init_action_(write_var_alt) {
+ modify_field(p4r_meta_.write_var_alt, write_var_alt);
+ }
// For every use of the malleable field
table my_table {

reads { hdr.qux : exact;
± p4r_meta_.write_var_alt : exact; }
± actions { my_action_hdr_foo_;
± my_action_hdr_bar_; }
}

± action my_action_hdr_foo_(baz) {
± modify_field(${write_var} hdr.foo, baz);
}

+ action my_action_hdr_bar_(baz) {
+ modify_field(hdr.bar, baz);
+ }� �

Figure 5: Transformation for malleable fields that we wish
to use on the ‘left-hand side’ of assignments.
an associated table (p4r_init_) with a single possible action. This
table is applied at the beginning of each packet processing pipeline,
and it is what allows Mantis to assign different values to the malle-
able at runtime by updating just a single table entry. As we will
see later, this initialization table serves many purposes, configuring
malleables and version control bits for the entire pipeline.

Fields (write). P4R also includes malleable fields, which act as
references to a predefined set of existing P4 fields; users can dynam-
ically ‘shift’ the target of the reference to any member of the set,
e.g., to change the matched field of a table. As references, malleable
fields are L-values, meaning that they can appear on either the
left- or right-hand side of an assignment operator in the data plane
program. We focus first on ‘left-hand’ usages. Figure 5 shows an
example. Specifically, it shows a scenario where the programmer
seeks to store the value of baz into either hdr.foo or hdr.bar.

A naïve implementation of this functionality would be to replace
the malleable with a generated metadata field and, after every use

299

Mantis: Reactive Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

� �
- malleable field read_var {
- .width : 32; init : hdr.foo;
- .alts { hdr.foo, hdr.bar }
-.}
+ header_type p4r_meta_t_ {
+ fields { read_var_alt : 1; }
+ }
+ metadata p4r_meta_t_ p4r_meta_;
// Action applied once (with value loads)

+ action p4r_init_action_(read_var_alt) {
+ modify_field(p4r_meta_.read_var_alt, read_var_alt);
+ }
// For every use of the malleable field
table my_table {

± reads { ${read_var} : exact;
+ hdr.foo : ternary; hdr.bar : ternary;
± p4r_meta_.read_var_alt : exact; }
± actions { my_action_hdr_foo_;
± my_action_hdr_bar_; }
}

± action my_action_hdr_foo_() {
± add(hdr.qux, hdr.baz, ${read_var} hdr.foo);
}

+ action my_action_hdr_bar_() {
+ add(hdr.qux, hdr.baz, hdr.bar);
+ }� �

Figure 6: Transformation for malleable fields that we wish
to use on the ‘right-hand side’ of assignments. This example
combines uses inside an action and a table match field.

of it, add a match-action table whose sole purpose is to copy the
current value of the generated field back into the referenced field.
The inserted table would have a distinct action for every possible
‘alt,’ and users would modify the default action when changing
the target of the reference. Unfortunately, there are several issues
with this strawman. First, it adds additional tables and potentially
stages to the data plane program. Second, it violates the atomicity of
reference shifts as a concurrent shift might cause the reference to act
as hdr.foo or hdr.bar in different actions applied to the same packet.
Even without concurrent shifts, uses of both the malleable and the
field to which it references in the same action can be problematic.

To address the above challenges, Mantis performs two tasks. The
first is to declare and load, at the beginning of the pipeline and for ev-
ery relevant malleable field, a metadata field (e.g., write_var_alt)
with width ⌈log2 |alts|⌉ that determines, at runtime, the alterna-
tive that it references. The second is to transform every table that
assigns the malleable field to also match on write_var_alt.

This extra match field allows the data plane to call specialized
action functions that are instantiated for each possible configuration
of the malleable fields. While this strategy increases the number of
entries in affected tables to:∑

(m,a)∈Entries

(∏
v ∈mbls(a)

|valts |
)

it avoids the table/stage costs of the strawman (often the bottleneck
in programmable switches) and the atomicity issues. We anticipate
that the number of affected actions, the number of malleable fields
per action, and the number of alternatives per malleable field will
all be relatively small in most cases.

Fields (read). Malleable fields can also be used on the right-hand
side of assignments almost anywhere a field can be referenced in
P4, e.g., inside an action, as a table match field, or in a field_list.
Figure 6 shows a couple of examples.

Inside an action, we can apply the previous method of loading
the selector field at the beginning of the pipeline and specializ-
ing actions. Slightly more complex is the use of malleable fields
in table matches. Here, the compiler, in addition to matching on
read_var_alt, replaces the malleable match field with |alts| in-
stantiated match fields. For example, when the user adds an entry
for ${read_var} = 0, Mantis inserts two entries into my_table:

• (foo=0, bar=*, read_var_alt=0)
• (foo=*, bar=0, read_var_alt=1)

Note that this means exact matches on a malleable field need
to become ternary to accommodate the wildcard; ternary and
lpm matches can remain. Also note that using a malleable in a
table match, on its own, does not necessitate action specialization—
specialization is only necessary if it is used within the given action.

Compound usages. While the above examples all include only a
single malleable entity, Mantis allows the use of multiple entities
in the same program and the same tables/actions.

One place where multiple malleables would interact is the ini-
tialization at the beginning of the pipeline. To minimize the number
of necessary tables and actions, we can reuse a single init_action
for multiple malleables (field or value) by passing in multiple pa-
rameters and including multiple assignments in the action body. If
the number or aggregate size of the parameters exceeds the limits of
a single action, Mantis will create multiple init tables. In this case,
minimizing the number of tables involves a bin packing problem.
Mantis solves this with a simple greedy algorithm in which it sorts
the parameters in order of decreasing size and finds the ‘first fit.’

The other place where they might interact is in the tables and ac-
tions of the P4 program. For malleable values, their composition is
trivial as any instance can be directly replaced with the designated
metadata field regardless of context. For malleable fields, multiple
uses of the same field—whether left-hand or right—can be coalesced;
each action needs to be specialized at most one time. For uses of
different fields, transformations are applied recursively. For exam-
ple, two malleable fields used in the same action will require two
stages of action specialization that will result in an enumeration of
all possible permutation of alternatives. Note an optimization when
the fields are read, but not written—loading values in prior stages
may result in lower overhead than instantiating all permutations.

4.2 Gathering Measurements
In addition to ensuring that portions of the data plane can be rapidly
updated, Mantis also ensures that reaction function parameters can
be rapidly read. While P4 provides many ways to read information
from the data plane (e.g., digests, counters, the copy_to_cpu flag,
etc.), to ensure fast reaction time, the chosen mechanisms need to
have the following properties:

R1 Measurement should not be on a per-packet basis. While we
seek fast reaction time, switch CPUs are not equipped and
should not be expected to handle line-rate processing.

R2 The measurement schedule should be flexible. While reactions
should be as close to real-time as possible, concurrent man-
agement tasks and varying reaction execution time mean that
the Mantis should tolerate fluctuating measurement intervals.

300

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Liangcheng Yu, John Sonchack, and Vincent Liu

R3 Measurements should return the most recent data. For in-
stance, the regular export of digests from the data plane would
be undesirable as the most recent digests might be head-of-
line blocked behind previously unprocessed digests.

Mantis presents an abstraction where the data plane updates
measurements on every packet, but the control plane only polls
those measurements when it is ready to process the next iteration
of the reaction loop. Mantis implements this protocol via stateful
registers that can be updated in the data plane and polled from the
control plane; Mantis stores the polled values in a C variable/array
for use in the user-defined reactions. Note that, this pull-based
model will only see a subset of updates, thus, users should ensure
that any necessary information is retained across packets.

Compiler transformations. Header/metadata reaction parame-
ters are collected from every passing packet into generated registers
at the end of the pipeline specified by their ing/egr annotation; the
Mantis compiler places the register after the last modification to the
field. User-defined register parameters can be read from the control
plane directly, modulo the transformations described in Section 5.2.

Similar to the generation of the init action, Mantis packs header
and metadata reaction parameters into as few registers as possible
using the sorted-first-fit algorithm discussed previously. The only
difference is that parameters from different reactions may be con-
sidered separately when packing. Although this may consumemore
resources than otherwise, it allows Mantis to poll only the most
relevant parameters immediately before executing the reaction,
which improves the freshness of the measured data.

5 ENFORCING ISOLATION2

A critical piece of the reaction abstraction is isolation between
measurement, modifications, and packet processing. To seewhy this
is important, consider a reaction function that takes as arguments
the 5-tuple from a packet. While a user might reasonably expect
that the parameters passed into her reaction function all came from
a single packet, without isolation, this is unlikely unless no new
packets arrive between the first and last measurement.

To address this challenge,Mantis provides per-pipeline, per-reaction
serializable isolation betweenmeasurements, malleable entity updates,
and packet processing. Said differently, from the perspective of a
single packet processing pipeline, the three types of operations—
gathering of measurements, application of a reaction, and process-
ing of packets—all appear to execute in some sequential order,
despite the inherent parallelism of packet processing.

This particular level of isolation is deliberate as it is both practi-
cal and efficient to implement. Stronger guarantees like grouping
measurement and updates into a single transaction are useful but
difficult to implement in today’s switches. Similarly, cross-pipeline
guarantees, while potentially useful, would require some type of
in-band coordination between all pipelines [53]. We leave an explo-
ration of these stronger models for future work.

5.1 Serializable Isolation of Updates
We begin with how Mantis guarantees serializability of reactions’
effects before discussing measurement collection in Section 5.2.

2‘Isolation’ here refers to same type of isolation used in ACID [55].

5.1.1 Updates to fields and values

For malleable fields and values, the generated P4 of Section 4.1 is
specifically crafted to be atomically modifiable. In particular, for
both types of entities, their value is determined at the beginning of
each pipeline, in the p4r_init_ table. As RMT switches typically
guarantee the consistency of a single table entry modification, so
long as we can pack all configuration of malleable entities into a
single p4r_init_action_ (see Section 4.1), we can leverage the
action as a serialization point. As a concrete example, consider a
P4R program with two malleables (value_var and field_var):

action p4r_init_action_(value_var, field_var_alt) {
modify_field(p4r_meta_.value_var, value_var);
modify_field(p4r_meta_.field_var_alt, field_var_alt);

}

A single table entry update can change both atomically. New packets
that enter the pipeline will use the updated assignments, while
packets that have already passed this stage will continue to use the
previous set of assignments.

The above strategy works until the P4R metadata used in a single
pipeline of the P4R program exceeds the allowed size of the action
(a platform-dependent value). As mentioned in Section 4.1, this case
forces the compiler to split the p4r_init_ table into several, e.g.,
p4r_init1_, p4r_init2_, etc. Updates to these tables can be made
serializable by treating all except the first as normal, malleable
tables and using the method described in the subsequent section.

5.1.2 Updates to tables

Handling malleable table modifications is slightly more complex.
Conceptually, Mantis’s approach is similar to that of [35, 36], but
with a few critical differences that stem from Mantis’s goal of ex-
tremely fast and repeated updates.

More specifically, in [35], Reitblatt et al. guarantee consistent
updates in SDN deployments using a two-phase protocol. The pro-
tocol assumes that every packet is tagged with the current version
number, i . Thus, to install a new configuration, the first step is
to add the complete set of new rules across the internal nodes of
the network such that the new rules only match on packets with
version i + 1. The second step is then to, one-by-one, update all
ingress nodes to tag packets entering the network with version
i + 1. After a conservative timeout, the older configuration set is
eventually removed from the internal nodes.

There are at least a couple of issues with applying the above
protocol directly to Mantis’s reaction loop. The first relates to the
handling of frequent updates: given how often Mantis can update
tables, conservative timeouts and the need to keep around multiple
‘in-flight’ updates can easily lead to order-of-magnitude increases
in necessary table space. The second relates to reaction time: every
update in [35] requires an insertion for every table entry in the
new configuration, regardless of whether it was changed from the
previous version or not.3 Removal of stale versions doubles the
latency overhead when the throughput of the control plane is the
bottleneck.

Mantis, in contrast, guarantees serializability of groups of ar-
bitrary and repeated table updates, where the required time is

3While [35] mentions possible optimizations that only apply the delta between old
and new configurations, it does not discuss how to handle more than one such update.

301

Mantis: Reactive Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

drop()default

ActionMatch

vv = 1

my_action(0)hdr.a = 0 ⋀ vv = 0

Action

drop()

Match

default

vv = 1

my_action(0)hdr.a = 0 ⋀ vv = 0

Action

drop()

Match

default

vv = 0

hdr.a = 0 ⋀ vv = 1 my_action(0)

my_action(0)hdr.a = 0 ⋀ vv = 0

Action

drop()

Match

default

vv = 0

COMMIT

1

2

3

Figure 7: Ensuring sequentially consistency for table entry adds using three-phase updates. Multiple entries across multiple
tables can be modified in step 1 before they are atomically committed in step 2 . The rule is mirrored in step 3 to assist with
fast subsequent updates.

vv = 0 vv = 0 vv = 1 vv = 1

COMMIT

2

my_action(1)hdr.a = 1 ⋀ vv = 1

hdr.a = 1 ⋀ vv = 0 my_action(1)

hdr.a = 0 ⋀ vv = 1 my_action(0)

my_action(0)hdr.a = 0 ⋀ vv = 0

Action

drop()

Match

default

my_action(2)hdr.a = 1 ⋀ vv = 1

hdr.a = 1 ⋀ vv = 0 my_action(1)

hdr.a = 0 ⋀ vv = 1 my_action(0)

my_action(0)hdr.a = 0 ⋀ vv = 0

Action

drop()

Match

default

my_action(2)hdr.a = 1 ⋀ vv = 1

hdr.a = 1 ⋀ vv = 0 my_action(1)

hdr.a = 0 ⋀ vv = 1 my_action(0)

my_action(0)hdr.a = 0 ⋀ vv = 0

Action

drop()

Match

default

my_action(2)hdr.a = 1 ⋀ vv = 1

hdr.a = 1 ⋀ vv = 0 my_action(2)

hdr.a = 0 ⋀ vv = 1 my_action(0)

my_action(0)hdr.a = 0 ⋀ vv = 0

Action

drop()

Match

default

1

3

Figure 8: Ensuring sequentially consistency for table entry updates using three-phase updates. As in Figure 7, multiple entries
and tables can be modified in step 1 . Unaffected entries remain untouched.
proportional to the number of P4R table interactions and the space
overhead is bounded. Mantis’s approach relies on a 1-bit version
control flag, vv, that is set in the init_action alongside the mal-
leable fields/values; vv is also added as an exact-match field to every
malleable table. With the vv field, every entry in every malleable
table is doubled: one copy with vv = 0 and the other with vv = 1.
Active entries can be flipped atomically by updating the vv bit.

Note that a 1-bit version flag is sufficient in Mantis as Mantis
loads malleable entity configurations and the version control bit at
the beginning of each pipeline and deliberately does not guarantee
cross-pipeline isolation (e.g., between ingress and egress or across
recirculations). Thus, old versions only persist for the maximum
latency of a pipeline, which is typically measured in the 100s of
nanoseconds. PCIe latency from the control plane is an order of
magnitude higher, so the maximum number of active versions is
two, regardless of the complexity of the reaction’s effects.

Adding a new entry to the table at runtime employs a three-step
update, as shown in Figure 7. Assume, w.l.o.g., that vv begins at 1.
In this configuration, the entries with vv = 1 serve as the primary
copy, while the entries with vv = 0 serve as a shadow copy.

(1) The Mantis control plane first prepares the entries it wishes
to add by adding them to the table, but with the requirement
that vv = 0. Any number of entries and tables can be modified
in this step; meanwhile, all packets will continue to use the
vv = 1 and the default action.

(2) In the second step, Mantis then commits all of the added entries
by atomically flipping the version control bit, vv = vv ⊕ 1 by
updating the p4r_init_ table. Note that any inflight packets
that have already passed the init stage will continue to use
the vv = 1 copy even after the commit.

(3) Finally, so that the entry canwithstand a subsequent flip back to
vv = 1, Mantis mirrors updates to the shadow copy. While this
step has no visible effect on the network, it amortizes the cost
of maintaining the shadow to keep latency more predictable.

Updating an existing table entry proceeds as in Figure 8. As
mentioned above, init tables beyond the first are handled using
the same mechanism. p4r_init1_ (the first table) is considered the
‘master’ and contains the version control bit; all other init tables
will contain two entries (one for each version) just like a malleable

p4r_meta_.mv
= 1

1

idx0: 1.1.1.1

register
p4r_ipv4_src

idx0: 2.2.2.2

register
p4r_ipv4_src

idx1: 1.1.1.1idx1: 2.2.2.2

2

Figure 9: Ensuring measurement isolation for measured
data plane fields. For mv = 1, index 1 is the working copy
and index 0 is the checkpoint copy. For mv = 0, vice versa.
table. Thus, when dealing with multiple init tables, the master is
always updated last. Deleting an entry looks similar to adding a
table entry, but in reverse: the shadow copy is deleted in the prepare
step and the original primary is deleted after the commit. All three
types of operations—add, update, and remove—can share a prepare
and commit step, even if they touch the same tables and entries. A
proof of serializability of this process follows from that of [35].

5.2 Serializable Isolation of Measurements
Mantis also guarantees that the polling of the registers that store
reaction parameters reflects a serial execution with respect to
packet processing. Asmentioned, a naïve implementation of register
polling would result in an inconsistent view of reaction arguments.

Fields.Mantis ensures that the data plane will not overwrite the
registers that store reaction-parameter fields (see Section 4.2) by
using a register array rather than an individual register. These
arrays have two entries each: a ‘working’ copy and a ‘checkpoint’
copy, both gated on a 1-bit mv bit that is set in the p4r_init_ action
of each pipeline along with vv. We configure the data plane such
that it only writes to the working copy.

Figure 9 demonstrates an example usage of this mechanism.
When the control plane wishes to measure a group of generated
field-storing registers, it first 1 flips the measurement version bit.
Assuming that the flip was from 0 → 1, index 0 of both registers
are now the checkpoint copies and should not be touched by the
data plane. Mantis can, therefore, take as much time as it needs to
2 read those values; meanwhile, the data plane will continue to
update the working-copy entries.

Registers and register arrays.Mantis can also collect values con-
tained in stateful elements, e.g., registers, using a ‘double-buffering’
scheme. Specifically, it creates a duplicate version of the register
with twice as many instances. In every action that writes to the

302

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Liangcheng Yu, John Sonchack, and Vincent Liu

original user-defined register, Mantis saves the written value (and
in the case of a register array, the accessed index) to metadata fields
and mirrors the fields to the duplicated register. The written index
is the original index prepended by the mv bit.

A complicating factor in register measurement (and the reason
why we need a duplicate rather than reusing the original) is that
not every register will be updated on every packet. In fact, in the
case of a register array, at most a single index will be updated per
packet. Because of this, the control plane may observe stale values.
For example, consider a case where a register R contains the value
ri in both mv = 0 and mv = 1, and R gets updated to ri+1 in the
working copy, mv = 1. If the control plane flips mv twice before
another update of R, then it will observe ri+1 followed by a stale
reading of ri . Until a new update of R, the measured value will
alternate between ri and ri+1.

The above effect necessitates an additional mechanism. Mantis
adds to every duplicated register a ‘timestamp’ register whose en-
tries are incremented every time the associated register’s entries
are updated. This allows the Mantis control plane to identify which
entries have changed since the copy was last read. The control
plane keeps a cache of these values; entries are only replaced when
the associated timestamp is updated, ensuring that it holds only
the most up-to-date contents of every register entry.

We note a potential optimization when the stateful element is
never read within the data plane—a common pattern with switch
counters and other statistics. In this case, the original register is
not necessary and can be eliminated.

6 THE MANTIS CONTROL PLANE
TheMantis control plane runs on a switch’s onboard CPUs and uses
the measurements and malleable code described in the previous
sections to interact with the switching ASIC. Modern data center
switches already use this CPU for tasks such as routing, monitoring,
and configuration; however, these interactions are traditionally
assumed to be one-off and asynchronous, i.e., ‘on the slow path.’

We pursue a different goal: to, as quickly as possible, poll data
plane registers and react to them in a user-defined fashion. Rather
than treating each interaction between the data and control plane as
an isolated event, Mantis presents an alternative architecture—one
where the control plane executes one of a set of predetermined
actions repeatedly, and without pause. With a highly optimized
control-plane agent and driver, Mantis can execute iterations of the
control plane loop at granularities that are on the same order of
magnitude as the PCIe latency of the underlying system, and an
order of magnitude lower than a typical data center RTT.

Control plane architecture. The operation of the Mantis control
plane is split into two phases:
(1) Prologue: The prologue phase encompasses the initialization of

malleable values/fields, populating initial table entries, setting
up memoization, and configuring driver sessions of the switch.

(2) Dialogue: The dialogue phase is where the control plane—as
rapidly as possible—polls measurement registers and executes
user-defined reactions based on the collected measurement.

Mantis is explicitly optimized for repeated accesses and updates
to the same set of reaction parameters and malleables; this in-
cludes several custom driver modifications that support repeat

interactions. Mantis optimizations include precomputation of meta-
data during the prologue; batching of requests during the dialogue;
and caching/memoization of device instructions in the prologue (for
statically computable driver operations) as well as the dialogue (for
repeated table modifications). The latter is particularly important
for speeding up mv updates, etc. Thus, control flow is as follows:

// prologue
helper_state = precompute_metadata();
memo = setup_cache(helper_state);
run_user_initialization(helper_state, memo);
// dialogue
while(!stopped) {
updateTable(memo, "p4r_init_", {measure_ver : mv ^ 1});
read_measurements(memo, mv); mv ^= 1;
run_user_reaction(memo, helper_state, vv ^ 1);
updateTable(memo, "p4r_init_", {config_ver : vv ^ 1});
fill_shadow_tables(memo, vv); vv ^= 1;

}

The dialogue loop is single-threaded to avoid driver contention
and consistency issues; however, if the switch contains multiple
disjoint linecards or pipelines, these can be handled by spawning
multiple Mantis agent threads, each handling its own component.
To minimize latency, Mantis runs as a busy loop in a reserved CPU
core, with the option to trade latency for lower CPU utilization.

Stateful dialogue.We note that Mantis allows users to retain state
across iterations of the dialogue loop. Examples of behavior that
may require this functionality include computing average through-
put, tracking buffer depth gradients, or using the reaction loop
to sample statistics over time. Mantis supports this behavior in-
trinsically through C static variables, which, when used inside
a function, allocate space in the DATA segment of the program’s
memory and retain their value across function invocations.

Legacy control plane accesses.We also note that Mantis does not
preclude legacy control plane accesses, e.g., for routing protocols,
handling of higher-level protocols, and manual network operator
interaction. Concurrent use is fine as the underlying drivers are
typically designed to be thread-safe. Further, due to the poll-based
and single-threaded nature of the Mantis agent, at most one reac-
tion is active at any time. Thus, the CPU-ASIC interactions of a
legacy application will only need to queue behind at most one set
of operations from Mantis. We evaluate this effect in Section 8.2.

7 IMPLEMENTATION
We implemented a prototype of Mantis, including a P4R compiler,
control plane agent, and modified driver infrastructure. Our proto-
type runs on a Wedge100BF-32X.

Compiler. The Mantis compiler translates .p4r files into a P4 pro-
gram and C library. In total, the compiler implementation consists
of 4,000 lines of C++ and around 1,250 lines of grammar. The com-
piler’s parsing frontend is implemented with Flex/Bison. While
parsing, the compiler builds an AST of the input program and, over
several translation passes, adds/updates nodes to implement the
transformations in Sections 4 and 5.While parsing the P4R program,
the compiler also extracts reaction function definitions. With the
help of the P4 compiler, the compiler translates the arguments and
malleable entity modifications into executable code that properly
handles argument mirroring and isolation.

303

Mantis: Reactive Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

 0

 20

 40

 60

 80

 100

 4 8 12 16 20 24 28 32

L
a
te

n
c
y
 [
u
s
]

Total state [B]

Field
Register

(a) Argument measurement.

 0

 20

 40

 60

 80

 100

 1 3 5 7 9 11

L
a
te

n
c
y
 [
u
s
]

Number of accesses

Table
Value/Field

(b) Malleable entity updates.

Figure 10: Latency of raw measurements/updates in Mantis.
These numbers do not include isolation mechanisms.

Dynamic loading. The C reaction function is compiled into a
shared object with gcc so that, at runtime, Mantis can load the user
reaction loops via shared objects and dynamic loading. Not only
does this separate the implementation of the control plane from
that of user code, it also potentially enables users to change their
reaction functions without interrupting switch operations.

To signal a change, a user-defined signal will activate a transition
flag in the running agent. The flag will break out of the reaction
loop after any current dialogue completes, unload the previous
dialogue module, and link the new shared object. Users can specify
whether the prologue user initialization should be re-executed.

Control plane. Our prototype control plane dynamically unload-
s/reloads .so files that implement the reaction prologues and di-
alogues, before executing the high-frequency measurement and
reaction loop described in Section 6. To ensure fast reaction time,
we reserve a core for the reaction loop, configure the loop thread
with high priority, and set a SCHED_FIFO real-time scheduling pol-
icy. As mentioned in Section 6, these can be scaled back in return
for increased reaction time. We also modify the existing drivers and
control plane interfaces in order to optimize latency.

8 EVALUATION
We evaluated Mantis using our prototype implementation. All ex-
perimentswere run on a hardware testbed consisting of aWedge100-
BF-32X switch connected to a set of servers via 25Gbps links.

8.1 Mantis Achieves Fast Reaction Times
Tomeasure the reaction time ofMantis, wemicrobenchmark raw op-
erations (before the mechanisms of Section 5) inMantis, fromwhich
we can construct a cost model. The microbenchmarks show the
latency of reading reaction arguments and writing to malleables.

Figure 10a plots the latency of measuring the data plane versus
the total size of the state that is read. We show results for both 32-bit
field arguments and 32-bit register arguments. For field arguments
(ingress or egress), the latency of measurement is dependent on the
number of packed 32-bit registers that the control plane must read.
This value increases linearly modulo packing efficiency. For register
arguments, our kernel driver optimizations ensure that reads of
multiple entries of a single register array are cheap, each additional
byte incurring only 10s of ns of latency. We do not show results for
reading from multiple register arrays as the results are identical to
field arguments (as field arguments are implemented as registers).

Figure 10b shows results for updates of the data plane. Here, we
plot latency versus the number of updates. For scalar malleables
(fields and values), the latency of updates is constant as long as

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

R
e
a
c
ti
o
n
 t
im

e
 [
u
s
]

Utilization [%]

Figure 11: CPU utilization
and reaction time tradeoff.

 0

 0.2

 0.4

 0.6

 0.8

 1

 200 250 300 350 400 450

C
D

F

Latency [us]

w/ Mantis
w/o Mantis

Figure 12: Latency of a con-
current legacy table update
with and without Mantis.

all of the accesses can be handled within a single p4r_init_ table
(very large in today’s switches). After that point, we would need
to include the latency of the update protocol. For malleable tables,
latency increases linearly with the number of entries modified. Note
that, for table insertions, the latency may be more complex [8]; how-
ever, we anticipate that most reactions will be updates or involve
smaller tables.

The total latency of a reaction function is, thus, approximately:

F10b(1 tblMod) +
∑

a∈args

(
F10a(a)

)
+C

+
∑

t ∈tblMods

(
2F10b(t)

)
+ 2F10b(Ninit − 1) + F10b(1 tblMod)

where F10a and F10b are functions that correspond to Figures 10a and
10b, respectively; C is the execution time of the reaction logic; and
Ninit is the number of init tables in the generated program. The
first half of the equation corresponds to the latency of serializable
measurement and the reaction logic. The second half corresponds
to the latency of serializable updates. For all of the use cases in
Table 1, end-to-end reaction time was on the order of 10s of µs.

8.2 Mantis Can Co-exist with Other Functions
We next explore Mantis’s overhead in switch and CPU resources.

CPU. By default, the Mantis control plane agent occupies one
dedicated core for its dialogue loop; however, as mentioned in
Section 6, it is possible to reduce this utilization at the cost of
slower reaction times. Figure 11 shows this tradeoff for the update
of a single malleable field with nanosleep for pacing. Reducing
utilization to 20% still keeps the average reaction time to 10s of µs.

We also evaluate the impact of Mantis’s fast reaction loop on
concurrent, legacy switch operations. Specifically, we configure a
parallel control plane (running on a different core of the switch
CPU) that submits a continuous stream of table entry updates to
the switch. We note that this is likely more aggressive than most
legacy control planes. Mantis does slow down its neighbor, but the
impact is relatively small; it mostly comes when the neighbor’s
update is blocked behind Mantis’s current operation, creating a
bimodal distribution. Even so, the median and p99 latency of legacy
switch operations in the presence of Mantis versus without it are
within 4.64% and 6.45%, respectively.

Memory. The other primary overhead of Mantis is switch memory,
which is used for init tables, measurement registers, malleable table
shadow entries, and transformations for malleable fields. The effect
of the first three sources are simple to reason about: init tables
add a small number of tables with 1–2 entries each, measurement

304

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Liangcheng Yu, John Sonchack, and Vincent Liu

Malleables LoC Control Flow Memory

Example Reaction val fld tbl P4R P4 Stgs Tbls Regs SRAM TCAM Metadata

Flow size estimation
and DoS mitigation

Reads packet headers from the data plane to derive an estimate
of the data sent by all senders in the network. Blocks senders
that exceed a threshold rate.

✓ 81 95 2 2 1 48KB 1.28KB 263b

Route
recomputation

Detects failures using a gray failure detector—marking the link
as down if received heartbeats dip below δ = ⌊η TdTs ⌋ for con-
secutive loops. Routes are recomputed on detection.

✓ 30 158 1 6 6 192KB 0KB 160b

Hash polarization
mitigation

Reads queue depth of a set of load-balanced ECMP ports. If there
is persistent imbalance, changes the ECMP hashing strategy to
prevent polarization.

✓ 157 245 3 8 1 160KB 0KB 498b

Reinforcement
Learning

Reads packet counts and queue depths for different ports to
compute a reward function. Uses RL techniques to optimize
DCTCP marking threshold reconfiguration policy.

✓ 132 239 2 13 6 192KB 0KB 380b

Table 1: Examples of network features that can be formulated as reactions. Evaluation metrics are measured in terms of
marginal increase over a basic router. See Section 8 for a more detailed evaluation of these examples.

 0
 20
 40
 60
 80

 100
 120
 140

 1 2 3 4 5

T
C

A
M

 [
K

B
]

Number of alts

tiReadX (512)
tiReadX (1024)

tiWriteX (512)
tiWriteX (1024)

(a) K = 32.

 20

 40

 60

 80

 100

 120

 140

 8 16 24 32

T
C

A
M

 [
K

B
]

Malleable field width [b]

tiReadX (512)
tiReadX (1024)

tiWriteX (512)
tiWriteX (1024)

(b) A = 5.

Figure 13: Malleable field TCAM usage.

registers are proportional to the number of arguments, and shadow
table entries double the memory required for each malleable table.

The memory cost for malleable field transformations is slightly
more complex. To evaluate it, we consider a K-bit malleable field
${X} with A possible alternatives. We use a table tiWriteX that
matches on the 5-tuple (all ternary matches) and writes to ${X} in
an action, similar to Figure 5. We also use a table tiReadX that uses
X in an action and as a field match, similar to Figure 6 but matching
on the 5-tuple plus X .

Figure 13 shows both tables’ TCAM usage (the main bottleneck
in this scenario). We evaluate two table occupancies, 512 and 1024.
These are the number of user-defined entries, not the number of
actual entries, which will be higher to account for the instantiated
actions. As shown in Figure 13a, for a given field width, TCAM
usage scales linearly with A in tiWriteX. For tiReadX, usage is
asymptotically quadratic because the compiler needs to instantiate
actions and add A extra ternary match columns. Varying the field
width, we obtain Figure 13b, which shows that for tiReadX, usage
is proportional to K and tiWriteX size is constant with respect to
K as, when A is fixed, the number of action instantiations is fixed.

8.3 Mantis, in Context
We also evaluate Mantis in the context of the use cases of Table 1.
We emphasize that these examples are not complete solutions, nor
do they preclude the existence of a future workaround. Rather, they
are intended as instruments through which we can understand
the utility of Mantis, its relationship to existing data/control-plane
alternatives, and the range of what it can express.

8.3.1 Use Case #1: Flow Size Estimation and DoS Mitigation

The first use casewe examine includes a classic problem in computer
networks: flow size estimation. Flow sizes are useful for a variety
of tasks, including Heavy Hitters, DDoS victim detection, etc [29].
Unfortunately, given the scale of today’s networks, obtaining a
precise account of the network’s flow sizes is not always feasible.
Instead, most modern approaches rely on approximation.

Two solutions are prototypical for this problem. The first is
sFlow and its variants [34] where the control plane constructs
approximate flow statistics from sampled packets. The second is
sketch-based approaches [44] where the data plane records, in a
compact representation, statistics over flows. With representatives
in both a traditional control plane utility and programmable data
plane algorithm, this use case is an ideal proving ground for Mantis.

As a reaction, we use a similar setup to Poseidon [56], which
among other things, proposed dynamic reinstallation of data plane
programs to respond to DDoS attacks. For simplicity, we model
their per-sender statistics and rate-limiting defense, but the same
techniques would apply to 5-tuples and more complex defenses.

Algorithm.We configure the data plane to track the current packet’s
source IP and a counter of the total number of bytes received. The
reaction takes these two values as parameters and keeps a hash
table of all sources. On every iteration, it attributes the marginal
increase in total byte count from the previous dialogue to the given

source IP. The reaction then computes the rate using f̂t−f̂t0
t−t0 , where

f̂t is the counter at time t and t0 is the time immediately prior to
the first observation of the flow. To prevent spurious detection of
new flows, we impose a minimum duration before a flow becomes
eligible for blocking. For our experiments, we set a simple 1Gbps
threshold, but reiterate that arbitrary C is allowed.

Results. To evaluate the accuracy of size estimation in Mantis,
we use tcpreplay with a CAIDA [7] ISP-backbone trace. For this
experiment, Mantis was able to sustain a sampling rate of ∼10 µs,
corresponding to an average of ∼1 in 5 packets.

Figure 14 shows the average estimation error of Mantis versus
the sFlow-based estimator and a pair of data plane implementations.
For sFlow, we use the 1:30,000 sampling frequency suggested in [37].

305

Mantis: Reactive Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

 0

 50

 100

 150

 200

 250

 10 100 1000 10000 100000

A
v
g

 e
s
ti
m

a
ti
o

n
 e

rr
o

r
[%

]
fo

r
fl
o

w
 s

iz
e

 >
 x

Actual flow size [packets]

Data Plane Hash Table [8192]
Data Plane Hash Table [16384]

Count-Min Sketch [8192]
Count-Min Sketch [16384]

sFlow [1:30k]
Mantis

Figure 14: Average estimation error for Mantis and several
alternatives. Mantis outperforms sFlow by orders of magni-
tude, and when equalizing the number of stages, beats data
plane implementations for small flows as well.

 0

 200

 400

 600

 800

 1000

 0 5 10 15 20 25 30

T
h

ro
u

g
h

p
u

t
[k

p
p

s
]

100-us window index

Malicious
Benign Flows

Figure 15: Aggregate throughput for legitimate flows from
S {1,2, ...,250} sending to D. When S0 begins to flood the net-
work, Mantis detects and suppresses it orders of magnitude
faster than similar systems (cf. Figure 14 of [56]).
For the data plane implementations, we include a hash table as
well as a 2-stage count-min sketch. Following the configuration
guidance of [44], we chunk the trace into 20 s blocks (each with
around 8.9M packets and 370K flows) and configure all tables to
have 8,192 entries (the next power of two above their setting of
4,500). We also show data plane results for 16 K entries; Mantis’s
performance was unchanged.

Compared to sFlow, Mantis is significantly more accurate due to
its higher sampling frequency. This effect becomes pronounced as
we approach sFlow’s sampling granularity. Compared to both data-
plane approaches, Mantis provides slightly worse but comparable
accuracy for large flows, and orders of magnitude better accuracy
for small flows. The overall trend holds across table sizes. The reason
is that, in Mantis, inaccuracy is caused primarily by sampling error,
which is bounded; in contrast, sketch inaccuracy is due to collisions,
which may misattribute arbitrarily many bytes to the wrong flow.

Figure 15 shows the reaction in action. 250 legitimate TCP flows
utilize 20% of a 10Gbps bottleneck link before a single malicious
sender arrives and blasts UDP traffic at 25Gbps using a DPDK send-
ing script. The Mantis reaction can install a mitigation rule within
∼100 µs (from the timestamp of the first packet of the malicious
flow). Accounting for packet delays and TCP mechanisms, the be-
nign flows return to steady-state operation within ∼500 µs, orders
of magnitude faster than traditional reconfiguration.

8.3.2 Use Case #2: Route Recomputation on Gray-failures

The second use case leverages Mantis’s reaction time more directly
via a gray-failure route recomputation scheme. In this use case, the
reaction loop measures the frequency of heartbeats from neighbor-
ing nodes and triggers a control-plane route recomputation when
the frequency drops below a threshold.

 0

 50

 100

 150

 200

 250

16 32 64 128

R
e
a
c
ti
o
n
 t
im

e
 [
u
s
]

Number of ports

(a) Latency vs ports (η = 0.5)

 0

 50

 100

 150

 200

 20 40 60 80

R
e
a
c
ti
o
n
 t
im

e
 [
u
s
]

η [%]

(b) Latency vs η (ports = 64)

Figure 16: The time to accurately detect failures and reroute
for a robust Mantis-based gray failure detector.
Algorithm. Our failure detection scheme is based on a previously
proposed gray-failure detector [28] whose original design required
specialized hardware support. In our formulation, we install in every
node adjacent to the switch a heartbeat generator that produces
high-priority packets at a granularity of Ts (1 µs in our tests). The
detecting switch accumulates a per-port count of these heartbeats
and the current timestamp in the data plane.

By polling (serializably) the counts and timestamp, a Mantis
reaction can compare the number of observed heartbeat messages
with the number of expected messages. More specifically, it can use
a threshold δ = ⌊ηTdTs ⌋ where Td is the time since the last dialogue
and η ∈ [0, 1] captures expectations for the successful delivery of
heartbeats—a high η will demand a more reliable link and catch
failures faster and a low η will allow for more outliers at the cost
of reaction time. Two consecutive polling periods with fewer than
δ heartbeats trigger recomputation and installation of new routes.

A few features of this use case would be challenging without
Mantis. Compared to a traditional control plane solution that polls
raw packet counters, Mantis offers fast reaction speed and serial-
izable reads of counters/timestamps that remove inaccuracies due
to data/control-plane latency. Compared to a fully data plane so-
lution that computes the threshold and activates detours, Mantis
avoids the significant overheads of approximating division when
computing δ [39] by offloading it to the control plane. Involving
the control plane also opens up the possibility of arbitrary route
recomputation and table modifications (data planes are typically
limited to static backup paths or inefficient detour protocols [27]).

Results. Figure 16 shows the end-to-end reaction time of failure
detection and route recomputation in Mantis for various configu-
ration parameters. To emulate link failures, we leveraged switch
APIs that disabled physical ports on the switch. Reaction time is
defined as the difference between the control-plane timestamps of
the link-down event and the installation of the new routing rules.

Figure 16a shows that Mantis can restore connectivity within
100–200 µs with low variance. What variance it does have is a result
of the position of the failure in the first Td window—if it occurs
right before the ASIC reads the count, detection is faster. Figure 16b
shows reaction time for different ηs. Overall, the impact of η is
low as the majority of the reaction time is due to measuring all of
the ports and ensuring isolation. We contrast the above results to
typical control plane failure detectors that require 10s ofms to detect
failures and an additional fewms to route around them [28].We also
contrast the results to an idealized detection algorithm [15], which
would be limited by sampling accuracy rather than detection latency.
For example,η=20% andTs=1 µs implies a minimum reaction time of

306

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Liangcheng Yu, John Sonchack, and Vincent Liu

15 µs. Waiting for consecutive threshold violations would increase
this time. The slightly lower latency comes at the cost of the benefits
of control plane route recomputation.

8.3.3 Use Case #3: Hash Polarization Mitigation

Our third example is inspired by conversations with production
network operators who noted the need to tune ECMP hashing func-
tions for optimal load balancing given a particular packet header
distribution. P4R can be used to reconfigure the inputs to a hash
function at runtime to shift the function over time.

It can accomplish this by replacing the ‘5-tuple’ input into the
ECMP hash function with five malleable fields, each of which can
become a reference to alternative fields in the packet’s headers.
To constrain the number of instantiated field_lists, we apply the
optimization from the end of Section 4.1. The reaction function
then takes a register array of per-egress packet counters and com-
putes the Median Absolute Deviation (MAD) of the port utilizations.
When the MAD differs for a sufficient amount of time, it shifts the
inputs to find a better hash configuration for the current workload.

Compared to a control plane implementation that polls egress
counters, Mantis provides isolation guarantees, which have been
shown to be critical when evaluating ECMP balance [53, 57]. Com-
pared to a data plane implementation that does the comparison
in-band, the algorithm requires two operations that are difficult on
today’s switches. The first is the need to propagate egress coun-
ters (where packet counts can be observed) to the ingress (where
routing decisions are possible), which often requires a recirculation.
The second is the MAD computation, which traditionally requires
computing the data’s median, then the median difference from that
value. A streaming algorithm suitable for use in networks would
likely require us to use estimates of the median over only prior data
and assume that value does not change significantly over time [38].

8.3.4 Use Case #4: Reinforcement Learning

Finally, we note that Mantis’s reaction abstraction is a good fit for
feedback loops like those of Reinforcement Learning (RL). More
formally, in each iteration i , the Mantis agent measures data plane
state, si , and reacts in some way, ai . The state then transitions to
si+1 resulting in a scalar reward ri . During execution, Mantis will
make observations of the form ei = (si ,ai , ri , si+1) and adjust to
maximize the expected cumulative reward.

Many tasks can fit into the above framework, but as an example,
we consider the task of tuning the DCTCP ECN threshold heuris-
tic [3] to optimize the sum of the utilization of the switch with the
inverse of queue length. We do this via off-policy Q-learning [46].
Specifically, we cast the ECN marking threshold as a malleable
value, configurable from the control plane via reactions ai , and
poll queue depth and a counter register from the egress pipeline as
the observed state si . At each step, Mantis uses an ϵ-greedy policy
to either exploit or explore the space; updates of the state-value
function follow the TD control algorithm in [46].

Although others have proposed in-network RL previously, these
solutions have tended to rely on custom accelerators [26]. RL is
difficult in existing switches both because of the need for a feedback
loop and the extremely limited computational ability of switch
ALUs. Instead, Mantis-based RL can leverage the CPU and can
easily extend to arbitrary models, including neural networks.

9 RELATEDWORK
Over the years, a sequence of influential work [6, 31, 47] has pro-
vided network operators with an increasing amount of control at
an increasingly fine granularity. A subset has also looked at control
plane latency, though usually in the context of SDNs [8, 45].

Workarounds for data plane limitations. We are not the first
to observe the limitations of today’s programmable switches [4],
and a slew of recent work has proposed data plane approximation-
s/workarounds for specific building blocks [39, 40, 44]. While both
innovative and effective, it is not clear that every protocol can be
adapted to a pure P4-model, nor is it clear that every operator will
have the time/expertise to develop an adaptation. Our work takes
a different approach, allowing users to use arbitrary C as long as
the application fits in the ‘reaction’ paradigm.

A subclass of the above workarounds involves the control plane
in the workaround for precisely the reasons Mantis does [41, 52,
53, 56]. Mantis is a generalization of these proposals and one that
presents a convenient (and potentially finer-grained) abstraction.

Alternative hardware architectures. Similar in spirit is work
that has proposed alternative hardware solutions to the problem of
data plane expressivity. Some of these propose and use modifica-
tions to RMT-style switches [15, 16, 22, 33, 42]; others propose the
use of distinct hardware architectures such as FPGAs [9, 18, 30]. Un-
fortunately, given the current trends of network bandwidth versus
compute power, it is unlikely that future switches and routers will
be both line-rate and Turing-complete. In contrast, Mantis strives to
provide a high degree of expressiveness on today’s RMT switches.

Update and measurement isolation. Ensuring consistency and
isolation of network updates is a classic problem in traditional and
SDN networks, and many solutions have been proposed in those
domains [10, 19, 35]. Some of these have also used a two-phase
protocol [1, 23, 35]; however, as mentioned in Section 5.1.2 our
focus on frequent, repeated updates of the data plane distinguish our
design, implementation, and optimizations. Related work in the data
plane has instead tended to focus on cross-pipeline consistency [53]
and intra-pipeline atomicity [43].

Data plane virtualization. Finally, prior work has also observed
the utility of match tables for runtime modifications [13, 54]. As
mentioned in Section 3, however, this comes at a high cost. Instead,
we target reactions in which most of the data plane is fixed, with
only a few parameters dependent on current network conditions.

10 CONCLUSION
In this paper, we describe Mantis, a framework that reformulates
common network tasks as reactions to current network conditions.
We show that theMantis compiler and control plane architecture en-
able fine-grained RTT-level reaction loops, while the P4R language
simplifies the process of designing and implementing reactions.

ACKNOWLEDGMENTS
We gratefully acknowledge Vladimir Gurevich, Changhoon Kim,
our shepherd Manya Ghobadi, and the anonymous SIGCOMM re-
viewers for all of their help and thoughtful comments. This work
was supported in part by Facebook, VMWare, NSF grant CNS-
1845749, and DARPA Contract No. HR001117C0047.

307

Mantis: Reactive Programmable Switches SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA

REFERENCES
[1] Richard Alimi, Ye Wang, and Y. Richard Yang. 2008. Shadow Configuration as

a Network Management Primitive. In Proceedings of the ACM SIGCOMM 2008
Conference on Data Communication (SIGCOMM ’08). Association for Computing
Machinery, New York, NY, USA, 111–122.

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
Congestion-aware Load Balancing for Datacenters. In Proceedings of the 2014
ACM Conference on SIGCOMM (SIGCOMM ’14). ACM, New York, NY, USA,
503–514. https://doi.org/10.1145/2619239.2626316

[3] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Jitendra Padhye,
Parveen Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010.
Data Center TCP (DCTCP). SIGCOMM Comput. Commun. Rev. 40, 4 (Aug. 2010),
63–74.

[4] R. Ben-Basat, X. Chen, G. Einziger, and O. Rottenstreich. 2018. Efficient Measure-
ment on Programmable Switches Using Probabilistic Recirculation. In 2018 IEEE
26th International Conference on Network Protocols (ICNP). 313–323.

[5] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network Traffic
Characteristics of Data Centers in the Wild. In Proceedings of the 10th ACM SIG-
COMM Conference on Internet Measurement (IMC ’10). Association for Computing
Machinery, New York, NY, USA, 267–280.

[6] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and et
al. 2014. P4: Programming Protocol-Independent Packet Processors. SIGCOMM
Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[7] Caida. 2019. The CAIDA UCSD Statistical information for the CAIDA
Anonymized Internet Traces. https://www.caida.org/data/passive/passive_trace_
statistics.xml. (2019).

[8] Huan Chen and Theophilus Benson. 2017. Hermes: Providing Tight Control
over High-Performance SDN Switches. In Proceedings of the 13th International
Conference on Emerging Networking EXperiments and Technologies (CoNEXT ’17).
Association for Computing Machinery, New York, NY, USA, 283–295.

[9] Daniel Firestone, Andrew Putnam, Hari Angepat, Derek Chiou, Adrian Caulfield,
Eric Chung, Matt Humphrey, Kalin Ovtcharov, Jitu Padhye, Doug Burger, Dave
Maltz, Albert Greenberg, Sambhrama Mundkur, Alireza Dabagh, Mike An-
drewartha, Vivek Bhanu, Harish Kumar Chandrappa, Somesh Chaturmohta,
Jack Lavier, Norman Lam, Fengfen Liu, Gautham Popuri, Shachar Raindel, Te-
jas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth Srivastava,
Anshuman Verma, Qasim Zuhair, Deepak Bansal, Kushagra Vaid, and David A.
Maltz. 2018. Azure Accelerated Networking: SmartNICs in the Public Cloud.
In 15th USENIX Symposium on Networked Systems Design and Implementation
(NSDI). USENIX Association.

[10] K. Foerster, S. Schmid, and S. Vissicchio. 2019. Survey of Consistent Software-
Defined Network Updates. IEEE Communications Surveys Tutorials 21, 2 (Sec-
ondquarter 2019), 1435–1461. https://doi.org/10.1109/COMST.2018.2876749

[11] Soudeh Ghorbani, Zibin Yang, P. Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-Latency Data Center
Networks. In Proceedings of the Conference of the ACM Special Interest Group on
Data Communication (SIGCOMM ’17). Association for Computing Machinery,
New York, NY, USA, 225–238.

[12] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer Rexford, and
Walter Willinger. 2018. Sonata: Query-Driven Streaming Network Telemetry.
In Proceedings of the 2018 Conference of the ACM Special Interest Group on Data
Communication (SIGCOMM ’18). Association for Computing Machinery, New
York, NY, USA, 357–371. https://doi.org/10.1145/3230543.3230555

[13] David Hancock and Jacobus van der Merwe. 2016. HyPer4: Using P4 to
Virtualize the Programmable Data Plane. In Proceedings of the 12th Interna-
tional on Conference on Emerging Networking EXperiments and Technologies
(CoNEXT ’16). Association for Computing Machinery, New York, NY, USA, 35–49.
https://doi.org/10.1145/2999572.2999607

[14] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.
Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-Architecting Datacenter
Networks and Stacks for Low Latency andHigh Performance. In Proceedings of the
Conference of the ACM Special Interest Group on Data Communication (SIGCOMM
’17). Association for Computing Machinery, New York, NY, USA, 29–42.

[15] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and David Walker.
2020. Contra: A Programmable System for Performance-aware Routing. In 17th
USENIX Symposium on Networked Systems Design and Implementation (NSDI
20). USENIX Association, Santa Clara, CA, 701–721. https://www.usenix.org/
conference/nsdi20/presentation/hsu

[16] Stephen Ibanez, Gianni Antichi, Gordon Brebner, and Nick McKeown. 2019.
Event-Driven Packet Processing. In Proceedings of the 18th ACM Workshop on
Hot Topics in Networks (HotNets ’19). Association for Computing Machinery, New
York, NY, USA, 133–140.

[17] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun
Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, and et al. 2013.
B4: Experience with a Globally-Deployed Software Defined Wan. In Proceedings

of the ACM SIGCOMM 2013 Conference on SIGCOMM (SIGCOMM ’13). Association
for Computing Machinery, New York, NY, USA, 3–14.

[18] Vimalkumar Jeyakumar, Mohammad Alizadeh, Yilong Geng, Changhoon Kim,
and David Mazières. 2014. Millions of Little Minions: Using Packets for Low
Latency Network Programming and Visibility. In Proceedings of the 2014 ACM
Conference on SIGCOMM (SIGCOMM ’14). Association for Computing Machinery,
New York, NY, USA, 3–14.

[19] John P. John, Ethan Katz-Bassett, Arvind Krishnamurthy, Thomas Anderson, and
Arun Venkataramani. 2008. Consensus Routing: The Internet as a Distributed
System. In Proceedings of the 5th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’08). USENIX Association, USA, 351–364.

[20] Qiao Kang, Lei Xue, Adam Morrison, Yuxin Tang, Ang Chen, and Xiapu Luo.
2020. Programmable In-Network Security for Context-aware BYOD Policies.
In 29th USENIX Security Symposium (USENIX Security 20). USENIX Association,
Boston, MA.

[21] Gabor Karsai, Holger Krahn, Claas Pinkernell, Bernhard Rumpe, Martin Schindler,
and Steven Völkel. 2014. Design Guidelines for Domain Specific Languages. CoRR
abs/1409.2378 (2014). arXiv:1409.2378

[22] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer
Rexford. 2016. HULA: Scalable Load Balancing Using Programmable Data Planes.
In Proceedings of the Symposium on SDN Research (SOSR ’16). Association for
Computing Machinery, New York, NY, USA, Article 10, 12 pages.

[23] Naga Praveen Katta, Jennifer Rexford, and David Walker. 2013. Incremental
Consistent Updates. In Proceedings of the Second ACM SIGCOMMWorkshop on Hot
Topics in Software Defined Networking (HotSDN ’13). Association for Computing
Machinery, New York, NY, USA, 49–54.

[24] Junaid Khalid and Aditya Akella. 2019. Correctness and Performance for Stateful
Chained Network Functions. In 16th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 19). USENIX Association, Boston, MA, 501–516.
https://www.usenix.org/conference/nsdi19/presentation/khalid

[25] Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Renqian Luo, Ningyi Xu,
Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016. ClickNP: Highly Flexible
and High Performance Network Processing with Reconfigurable Hardware. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). Association
for Computing Machinery, New York, NY, USA, 1–14.

[26] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian
Huang. 2019. Accelerating Distributed Reinforcement Learning with In-Switch
Computing. In Proceedings of the 46th International Symposium on Computer
Architecture (ISCA ’19). Association for Computing Machinery, New York, NY,
USA, 279–291.

[27] Junda Liu, Aurojit Panda, Ankit Singla, Brighten Godfrey, Michael Schapira,
and Scott Shenker. 2013. Ensuring Connectivity via Data Plane Mechanisms. In
Presented as part of the 10th USENIX Symposium on Networked Systems Design
and Implementation (NSDI’13). USENIX Association, Lombard, IL, 113–126.

[28] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.
2013. F10: A Fault-Tolerant Engineered Network. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementation (NSDI’13).
USENIX Association, USA, 399–412.

[29] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and Vladimir
Braverman. 2016. One Sketch to Rule Them All: Rethinking Network Flow
Monitoring with UnivMon. In Proceedings of the 2016 ACM SIGCOMM Conference
(SIGCOMM ’16). ACM, New York, NY, USA, 101–114. https://doi.org/10.1145/
2934872.2934906

[30] John W. Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad
Naous, Ramanan Raghuraman, and Jianying Luo. 2007. NetFPGA–An Open
Platform for Gigabit-Rate Network Switching and Routing. In Proceedings of the
2007 IEEE International Conference on Microelectronic Systems Education (MSE
’07). IEEE Computer Society, USA, 160–161.

[31] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Pe-
terson, Jennifer Rexford, Scott Shenker, and Jonathan Turner. 2008. OpenFlow:
Enabling Innovation in Campus Networks. SIGCOMM Comput. Commun. Rev. 38,
2 (March 2008), 69–74.

[32] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.
Homa: A Receiver-Driven Low-Latency Transport Protocol Using Network Pri-
orities. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’18). Association for Computing Machinery,
New York, NY, USA, 221–235.

[33] Srinivas Narayana, Anirudh Sivaraman, Vikram Nathan, Prateesh Goyal, Venkat
Arun, Mohammad Alizadeh, Vimalkumar Jeyakumar, and Changhoon Kim. 2017.
Language-Directed Hardware Design for Network Performance Monitoring. In
Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication (SIGCOMM ’17). ACM, New York, NY, USA, 85–98.

[34] P. Phaal, S. Panchen, and N. McKee. 2001. InMon Corporation’s sFlow: A Method
for Monitoring Traffic in Switched and Routed Networks. RFC 3176 (Informa-
tional). (2001).

[35] Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
2012. Abstractions for Network Update. In Proceedings of the ACM SIGCOMM 2012
Conference on Applications, Technologies, Architectures, and Protocols for Computer

308

https://doi.org/10.1145/2619239.2626316
https://www.caida.org/data/passive/passive_trace_statistics.xml
https://www.caida.org/data/passive/passive_trace_statistics.xml
https://doi.org/10.1109/COMST.2018.2876749
https://doi.org/10.1145/3230543.3230555
https://doi.org/10.1145/2999572.2999607
https://www.usenix.org/conference/nsdi20/presentation/hsu
https://www.usenix.org/conference/nsdi20/presentation/hsu
http://arxiv.org/abs/1409.2378
https://www.usenix.org/conference/nsdi19/presentation/khalid
https://doi.org/10.1145/2934872.2934906
https://doi.org/10.1145/2934872.2934906

SIGCOMM ’20, August 10–14, 2020, Virtual Event, NY, USA Liangcheng Yu, John Sonchack, and Vincent Liu

Communication (SIGCOMM ’12). Association for Computing Machinery, New
York, NY, USA, 323–334.

[36] Mark Reitblatt, Nate Foster, Jennifer Rexford, and David Walker. 2011. Consistent
updates for software-defined networks: Change you can believe in!. In Proceedings
of the 10th ACM Workshop on Hot Topics in Networks. 1–6.

[37] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C. Snoeren.
2015. Inside the Social Network’s (Datacenter) Network. In Proceedings of the 2015
ACM Conference on Special Interest Group on Data Communication (SIGCOMM
’15). Association for Computing Machinery, New York, NY, USA, 123–137.

[38] shabbychef (https://stats.stackexchange.com/users/795/shabbychef). [n.
d.]. Online algorithm for mean absolute deviation and large data
set. Cross Validated. ([n. d.]). https://stats.stackexchange.com/q/3378
URL:https://stats.stackexchange.com/q/3378 (version: 2010-10-07).

[39] Naveen Kr. Sharma, Antoine Kaufmann, Thomas Anderson, Changhoon Kim,
Arvind Krishnamurthy, Jacob Nelson, and Simon Peter. 2017. Evaluating the
Power of Flexible Packet Processing for Network Resource Allocation. In Pro-
ceedings of the 14th USENIX Conference on Networked Systems Design and Imple-
mentation (NSDI’17). USENIX Association, USA, 67–82.

[40] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.
Approximating Fair Queueing on Reconfigurable Switches. In 15th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 18). USENIX
Association, Renton, WA, 1–16.

[41] Naveen Kr. Sharma, Chenxingyu Zhao, Ming Liu, Pravein G Kannan, Changhoon
Kim, Arvind Krishnamurthy, and Anirudh Sivaraman. 2020. Programmable
Calendar Queues for High-speed Packet Scheduling. In 17th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 20). USENIX Association,
Santa Clara, CA, 685–699.

[42] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.
2016. Packet Transactions: High-Level Programming for Line-Rate Switches. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). ACM, New
York, NY, USA, 15–28.

[43] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad
Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.
2016. Packet Transactions: High-Level Programming for Line-Rate Switches. In
Proceedings of the 2016 ACM SIGCOMM Conference (SIGCOMM ’16). Association
for Computing Machinery, New York, NY, USA, 15–28.

[44] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S. Muthukrish-
nan, and Jennifer Rexford. 2017. Heavy-Hitter Detection Entirely in the Data
Plane. In Proceedings of the Symposium on SDN Research (SOSR ’17). Association

for Computing Machinery, New York, NY, USA, 164–176.
[45] John Sonchack, Jonathan M. Smith, Adam J. Aviv, and Eric Keller. 2016. Enabling

Practical Software-defined Networking Security Applications with OFX. In 23rd
Annual Network and Distributed System Security Symposium (NDSS ’16). Internet
Society.

[46] Richard S Sutton et al. [n. d.]. Introduction to reinforcement learning. Vol. 135.
[47] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden.

1997. A survey of active network research. IEEE Communications Magazine 35, 1
(Jan 1997), 80–86. https://doi.org/10.1109/35.568214

[48] The P4 Language Consortium. 2018. The P4 Language Specification. (2018).
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf

[49] Erico Vanini, Rong Pan, Mohammad Alizadeh, Parvin Taheri, and Tom Edsall.
2017. Let It Flow: Resilient Asymmetric Load Balancing with Flowlet Switching.
In Proceedings of the 14th USENIX Conference on Networked Systems Design and
Implementation (NSDI’17). USENIX Association, USA, 407–420.

[50] WG802.1. 2011. IEEE 802.1Qbb: Priority-based flow control. (2011). https:
//1.ieee802.org/dcb/802-1qbb/

[51] Dingming Wu, Ang Chen, T. S. Eugene Ng, Guohui Wang, and Haiyong Wang.
2019. Accelerated Service Chaining on a Single Switch ASIC. In Proceedings of
the 18th ACM Workshop on Hot Topics in Networks (HotNets ’19). Association for
Computing Machinery, New York, NY, USA, 141–149.

[52] Jiarong Xing, Wenqing Wu, and Ang Chen. 2019. Architecting Programmable
Data Plane Defenses into the Network with FastFlex. In Proceedings of the 18th
ACM Workshop on Hot Topics in Networks (HotNets ’19). Association for Comput-
ing Machinery, New York, NY, USA, 161–169.

[53] Nofel Yaseen, John Sonchack, and Vincent Liu. 2018. Synchronized Network
Snapshots. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication (SIGCOMM ’18). Association for Computing Machinery,
New York, NY, USA, 402–416.

[54] Cheng Zhang, Jun Bi, Yu Zhou, Abdul Basit Dogar, and Jianping Wu. 2017.
HyperV: A high performance hypervisor for virtualization of the programmable
data plane. In 2017 26th International Conference on Computer Communication
and Networks (ICCCN). IEEE, 1–9.

[55] Irene Y. Zhang. 2017. Operation Ordering in Systems. (2017). https://irenezhang.
net/research/consistency.html

[56] Menghao Zhang, Guan-Yu Li, Shicheng Wang, Chang Liu, Ang Chen, Hongxin
Hu, Guofei Gu, Qianqian Li, Mingwei Xu, and Jianping Wu. 2020. Poseidon:
Mitigating Volumetric DDoS Attacks with Programmable Switches.

[57] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution Measurement of Data Center Microbursts. In Proceedings of the 2017
Internet Measurement Conference (IMC ’17). ACM, New York, NY, USA, 78–85.

309

https://stats.stackexchange.com/q/3378
https://doi.org/10.1109/35.568214
https://p4.org/p4-spec/p4-14/v1.0.5/tex/p4.pdf
https://1.ieee802.org/dcb/802-1qbb/
https://1.ieee802.org/dcb/802-1qbb/
https://irenezhang.net/research/consistency.html
https://irenezhang.net/research/consistency.html

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Design Overview
	4 Language and Transformations
	4.1 Producing Malleable P4
	4.2 Gathering Measurements

	5 Enforcing Isolation
	5.1 Serializable Isolation of Updates
	5.2 Serializable Isolation of Measurements

	6 The Mantis Control Plane
	7 Implementation
	8 Evaluation
	8.1 Mantis Achieves Fast Reaction Times
	8.2 Mantis Can Co-exist with Other Functions
	8.3 Mantis, in Context

	9 Related Work
	10 Conclusion
	Acknowledgments
	References

