
Compiling Packet Programs to Reconfigurable Switches

Lavanya Jose?, Lisa Yan?, George Varghese‡, Nick McKeown?
?Stanford University, ‡Microsoft Research

Abstract

Programmable switching chips are becoming more com-
monplace, along with new packet processing languages
to configure the forwarding behavior. Our paper explores
the design of a compiler for such switching chips, in par-
ticular how to map logical lookup tables to physical ta-
bles, while meeting data and control dependencies in the
program. We study the interplay between Integer Linear
Programming (ILP) and greedy algorithms to generate
solutions optimized for latency, pipeline occupancy, or
power consumption. ILP is slower but more likely to fit
hard cases; further, ILP can be used to suggest the best
greedy approach. We compile benchmarks from real pro-
duction networks to two different programmable switch
architectures: RMT and Intel’s FlexPipe. Greedy solu-
tions can fail to fit and can require up to 38% more stages,
42% more cycles, or 45% more power for some bench-
marks. Our analysis also identifies critical resources in
chips. For a complicated use case, doubling the TCAM
per stage reduces the minimum number of stages needed
by 12.5%.

1 Introduction
The Internet pioneers called for “dumb, minimal and
streamlined” packet forwarding [11]. However, over
time, switches have grown complex with the addition
of access control, tunneling, overlay formats, etc., spec-
ified in over 7,000 RFCs. Programmable switch hard-
ware called NPUs [10, 17] were an initial attempt to ad-
dress changes. Yet NPUs, while flexible, are too slow:
the fastest fixed-function switch chips today operate at
over 2.5Tb/s, an order of magnitude faster than the fastest
NPU, and two orders faster than a CPU.

As a consequence, almost all switching today is done
by chips like Broadcom’s Trident [9]; arriving packets
are processed by a fast sequence of pipeline stages, each
dedicated to a fixed function. While these chips have
adjustable parameters, they fundamentally cannot be re-
programmed to recognize or modify new header fields.
Fixed-function processing chips have two major disad-
vantages: first, it can take 2–3 years before new protocols

Packet	 processing	 program	 configura2on	 (P4,	 POF)	

Compiler	
Table	 	 configura2on	 Parser	 configura2on	

Parser	

Target	 reconfigurable	 switch	

Packet	 Metadata	

Queues/
Scheduling	

Match+Ac2on	 Tables	

Figure 1: A top-down switch design.

are supported in hardware. For example, the VxLAN
field [21]—a simple encapsulation header for network
virtualization—was not available as a chip feature until
three years after its introduction. Second, if the switch
pipeline stages are dedicated to specific functions but
only a few are needed in a given network, many of the
switch table and processing resources are wasted.

A subtler consequence of fixed-function hardware is
that networking equipment today is designed bottom-up
rather than top-down. The designer of a new router must
find a chip datasheet conforming to her requirements
before squeezing her design bottom-up into a predeter-
mined use of internal resources. By contrast, a top-down
design approach would enable a network engineer to de-
scribe how packets are processed and adjust the sizes of
various forwarding tables, oblivious to the the underly-
ing hardware capabilities (Figure 1). Further, if the engi-
neer changes the switch mid-deployment, she can simply
install the existing program onto the new switch. The
bottom-up design style is also at odds with other areas
of high technology: for example, in graphics, the fastest
DSPs and GPU chips [23, 28] provide primitive oper-
ations for a variety of applications. Fortunately, three
trends suggest the imminent arrival of top-down net-
working design:
1. Software-Defined Networking (SDNs): SDNs [18,
24] are transforming network equipment from a verti-
cally integrated model towards a programmable software
platform where network owners and operators decide
network behavior once deployed.

Compiler	

Table	
configura2on	

Parser	
configura2on	

Program	 Configura2on	
P4	 Program	

Intermediate	 representa2on	

...	

Target	 switch	

Parser	

,	

Figure 2: Compiler input and output.

2. Reconfigurable Chips: Emerging switch chip ar-
chitectures are enabling programmers to reconfigure the
packet processing pipeline at runtime. For example,
the Intel FlexPipe [25], the RMT [8], and the Cav-
ium XPA [4] follow a flexible match+action process-
ing model that maintains performance comparable to
fixed-function chips. Yet to accommodate flexibility, the
switches have complex constraints on their programma-
bility.
3. Packet Processing Languages: Recently, new lan-
guages have been proposed to express packet process-
ing, like Huawei’s Protocol Oblivious Forwarding [3, 27]
and P4 [1, 2, 6]. Both POF and P4 describe how packets
are to be processed abstractly—in terms of match+action
processing—without referencing hardware details. P4
can be thought of as specifying control flow between a
series of logical match+action tables.

With the advent of programmable switches and high-
level switch languages, we are close to programming
networking behavior top-down. However, a top-down
approach is impossible without a compiler to map the
high-level program down to the target switch hardware.
This paper is about the design of such a compiler, which
maps a given program configuration—using an interme-
diate representation called a Table Dependency Graph,
or TDG (Section 2.1)—to a target switch. The com-
piler should create two items: a parser configuration,
which specifies the order of headers in a packet, and
a table configuration, which is a mapping that assigns
the match+action tables to memory in a specific target
switch pipeline (Figure 2). Previous research has shown
how to generate parsing configurations [16]; the second
aspect, table configuration, is the focus of this paper.

To understand the compilation problem, we first need
to understand what a high-level packet processing lan-
guage specifies and how an actual switch constrains fea-
sible table configurations.

1.1 Packet Processing Languages

High-level packet processing languages such as P4 [6]
must describe four things:
Abstract Switch Model: P4 uses the abstract switch

model in Figure 1 with a programmable parser fol-

lowed by a set of match+action tables (in parallel
and/or in series) and a packet buffer.

Headers: P4 declares names for each header field, so
the switch can turn incoming bit fields into typed data
the programmer can reference. Headers are expressed
using a parse graph, which can be compiled into a state
machine using the methods of [16, 19].

Tables: P4 describes the logical tables of a program,
which are match+action tables with a maximum size;
examples are a 48-bit Ethernet address exact match ta-
ble with at most 32,000 entries, or an 8K-entry table
of 256-bit wide ACL matches.

Control Flow: P4 specifies the control flow that dictates
how each packet header is to be processed, read, and
modified. A compiler must map the program while
preserving control flow; we give a more detailed ex-
ample of this requirement in Section 2.1.

1.2 Characteristics of Switches
Once we have a high-level specification in a language,
the compiler must work within the constraints of a target
switch, which include the following:
Table sizes: Hardware switches contain memories that

can be accessed in parallel and whose number and
granularity are constrained.

Header field sizes: The width of the bus carrying the
headers limits the size and number of headers that the
switch can process.

Matching headers: There are constraints on the width,
format, and number of lookup keys to match against
in each match+action stage.

Stage Diversity: A stage might have limited functional-
ity; for example, one stage may be designed for match-
ing IP prefixes, and another for ACL matching.

Concurrency: The biggest constraints often come from
concurrency options. The three recent flexible switch
ASICs (FlexPipe, RMT, XPA) are built from a sequen-
tial pipeline of match+action stages, with concurrency
possible within each stage. A compiler must analyze
the high-level program to find dependencies that limit
concurrency; for example, a data dependency occurs
when a piece of data in a header cannot be processed
until a previous stage has finished modifying it. We
follow the lead of Bosshart, et al. [8] and express de-
pendencies using a TDG (Section 2.1).

1.3 Approach and Contributions
This paper is the first to define and systematically ex-
plore how to build a switch compiler by using abstrac-
tions to hide hardware details while capturing the essence
required for mapping (Sections 2 and 3). Ideally we

ethernet	
dMAC:	 48	
sMAC:	 48	
etherType:	 16	 vlan_tag	

pcp:	 3	
cfi:	 1	
vlan:	 12	
etherType:	 16	

ipv4	
ver+ihl+diff:	 16	
totalLen:	 16	
id+flags+frag:	 32	
Dl:	 8	

std_meta	
ig_port:	 8	
eg_port:	 8	
mcast_idx:	 16	
drop_code:	 8	 <end>

protocol: 8
checksum: 16
dIP: 32
sIP: 32

(a) The parse graph specifies the order of the packet headers (green); the metadata (blue)
is separate. All field names and lengths (in bits) are also specified.

Table name l Match type el nl
MAC learning 1 exact 4000 (2)

Routable 2 exact 64 (3, 4, 5)
Unicast 3 prefix 2000 (5)

Multicast 4 prefix 500 (6)
Switching 5 exact 4000 (7)

IGMP 6 ternary 500 (to CPU)
ACL 7 ternary 1000 (exit)

(b) Each logical table l has a table name, maximum
entry count el, and next table addresses nl.

Exit to CPU MAC	 Learning	 (1)	
f1:	 	 ethernet.sMac,	
	 	 	 	 	 	 vlan_tag.vlan	
a1:	 	 null	

Routable (2)
f2:	 	 ethernet.sMac,	
	 	 	 	 	 	 ethernet.dMac,	
	 	 	 	 	 	 	 	 vlan_tag.vlan	
a2:	 	 null	

Unicast	 Rou@ng	 (3)	
f3: 	 ipv4.dIPasdfsadfas	 	
a3:	 	 ethernet.sMac,	

	 ethernet.dMac,	
	 vlan_tag.vlan	

Switching	 (5)	
f5:	 	 ethernet.dMac,	

	 vlan_tag.vlan	
a5:	 	 std_meta.mcast_index,	

ACL	 (7)	
f7:	 	 <all>	
a7:	 	 std_meta.drop_code	

ucast?

mcast? Mul@cast	 Rou@ng	 (4)	

f4: 	 ipv4.dIPasdfsadfas	 	
a4:	 	 std_meta.mcast_idx	

IGMP	 (5)	
f6: 	 ipv4.dIP,	

	 vlan_tag.vlan,	
	 std_meta.ig_portsadfas	 	

a6:	 	 std_meta.mcast_idx	

Exit
LA

N?

(c) The control flow program. Each table l has match fields fl and modified fields al.

Figure 3: A packet processing program named L2L3 describing a simple L2/L3 IPv4 switch.

would like a switch-dependent front-end preprocessor,
and a switch-independent back-end; we show how to
relegate some switch-specific features to a preproces-
sor. We identify key issues for any switch compiler:
table sizes, program control flow, and switch memory
restrictions. In a sense, we are adapting instruction re-
ordering [20], a standard compilation mechanism, to effi-
ciently configure a packet-processing pipeline. We rein-
terpret traditional control and data dependencies [20] in a
match+action context using a Table Dependency Graph
(TDG).

A second contribution is to compare greedy heuristic
designs to Integer Linear Programming (ILP) ones; ILP
is a more general approach that lets us optimize across
a variety of objective functions (e.g., minimizing latency
or power). We analyze four greedy heuristics and several
ILP solutions on two switch designs, FlexPipe and RMT.
For the smaller FlexPipe architecture, we show that ILP
can often find a solution when greedy fails. For RMT, the
best greedy solutions can require 38% more stages, 42%
more cycles, or 45% more power than ILP. We argue that
with more constrained architectures and more complex
programs (Section 6), ILP approaches will be needed.

A third contribution is exploring the interplay between
ILP and greedy, given ILP’s optimal mappings despite its
longer runtime. For each switch architecture, we design
a tailored greedy algorithm to use when a quick fit suf-
fices. Further, by analyzing the ILP for the “tightest”
constraints, we find we can improve the greedy heuris-
tics. Finally, a sensitivity analysis shows that the most
important chip constraints that limit mapping for our
benchmarks are the degree of parallelism and per-stage
memory.

We proceed as follows. Section 2 defines the map-

ping problem and TDG, Section 3 abstracts FlexPipe and
RMT architectures, Section 4 presents our ILP formula-
tion, and Section 5 describes greedy heuristics. Section
6 presents experimental results, and Section 7 describes
sensitivity analysis to determine critical constraints.

2 Problem Statement
Our objective is to solve the table configuration prob-
lem in Figure 2. We focus on mapping P4 programs
to FlexPipe and RMT, while respecting hardware con-
straints and program control flow. Since the abstract
switch model in Figure 1 does not model realistic con-
straints such as concurrency limits, finite table space, and
finite processing stages, the compiler needs two more
pieces of information. First, the compiler creates a table
dependency graph (TDG) from the P4 program to deduce
opportunities for concurrency, described below. Second,
the compiler must be given the physical constraints of the
target switch; we consider constraints for specific chips
in Section 3.

2.1 Table Dependency Graph

We describe program control flow using an example P4
program called L2L3. Figure 3 describes the program by
showing three of the four items described in Section 1.1:
headers, tables, and control flow. The fourth item, the
abstract switch model, is described in Section 3.

Our L2L3 program supports unicast and multicast
routing, Layer 2 forwarding and learning, IGMP snoop-
ing, and a small Access Control List (ACL) check. Fig-
ure 3a is a parse graph declaring three different header
fields (Ethernet, IPv4, and VLAN) and metadata used

Match dependency
Action dependency

Switching	 ACL	 MAC	
learning	

Successor dependency
Reverse Match dependency

Unicast	
Rou7ng	

IGMP	 Mul7cast	
Rou7ng	 Exit to CPU Routable	

Figure 4: Table dependency graph for the L2L3 program.

during processing. The features and control flow of the
six logical tables in L2L3 are shown in Figure 3b and 3c.

Table l has attributes (fl,el,al,nl) that determine how
a program should be allocated onto a target switch. A
set of match fields fl, from the packet header or meta-
data, are matched against el table entries. For example,
the IPv4 Unicast routing table in L2L3 matches a 32-bit
IPv4 destination address and holds up to 2,000 entries.
In practice, table l may have much less than el entries,
but the programmer provides el as an upper bound. Ta-
bles can have different match types: exact, prefix (longest
prefix match), or ternary (wildcard). If the match type
is ternary or prefix, the set fl also specifies a bit mask.
Based on the match result, the table performs actions on
modified fields al and jumps to one of the tables specified
in the set of next table addresses, nl.

Figure 3c illustrates how header fields are processed
by logical tables in an imperative control flow program.
For example, the Unicast Routing table sets a new des-
tination MAC address and VLAN tag before visiting the
Switching table, which sets the egress port, and so on.
The compiler must ensure that the matched and modi-
fied headers in each table correctly implement the control
flow program.

We define a Table Dependency Graph (TDG) as a di-
rected, acyclic graph (DAG) of the dependencies (edges)
between the N logical tables (vertices) in the control
flow. Dependencies arise between logical tables that lie
on a common path through the control flow, where table
outcomes can affect the same packet.

Figure 4 shows the TDG for our L2L3 program, which
is generated directly from the P4 control flow and table
description in Figure 3. From the next table addresses it
is evident that some tables precede others in an execution
pipeline; more precisely, Table A would precede Table
B in an execution pipeline if there is a chain of tables
l1, l2, . . . , lk from A to B, where l1 ∈ nA, l2 ∈ nl1 , etc., and
B ∈ nlk . If the result of Table A affects the outcome of
Table B, we say that Table B has a dependency on Table
A. In this case, there is an edge from Table A to B in the
table dependency graph.

Different types of dependencies affect both the ar-
rangement of tables in a pipeline and the pipeline la-
tency.We present the three dependencies described in [8]
and introduce a fourth below.

1. Match dependency: Table A modifies a field that

Switch compiler Traditional compiler
Match dependency Read-After-Write
Action dependency Write-After-Write

Successor dependency Control dependence
Reverse-match dependency Write-After-Read

Table 1: Mapping switch compiler dependencies to traditional
compiler dependencies.

a subsequent Table B matches.
2. Action dependency: Table A and B both change

the same field, but the end-result should be that of the
later Table B.

3. Successor dependency: Table A’s match result
determines whether Table B should be executed or not.
More formally, there is a chain of tables l1, . . . , lk from A
to B, where l1 ∈ nA, l2 ∈ nl1 , etc., and B ∈ nlk , such that
every table li , A in this chain is followed by B in each
possible execution path. Additionally, there is a chain of
next table adresses from A that does not go through B.
For example, the Routable table’s outcome determines
whether Multicast Routing and IGMP will be executed.
Thus, both have successor dependencies on Routable.
On the other hand, IGMP does not have a successor de-
pendency on Multicast Routing or vice-versa.

4. Reverse match dependency: Table A matches on
a field that Table B modifies, and Table A must finish
matching before Table B changes the field. This often
occurs as in our example, where source MAC learning is
an item that occurs early on, but the later Unicast table
modifies the source MAC for packet exit.

Note that these dependencies roughly map to control
and data dependencies in traditional compiler literature
[5], where a match on a packet header field (or metadata)
corresponds to a read and an action that updates a packet
header (or metadata) corresponds to a write (Table 1).

While the TDG is strictly a multigraph, as there can
be multiple dependencies between nodes, the mapping
problem only depends on the strictest dependency that
affects pipeline layout; the other dependencies can be re-
moved to leave a graph. In summary, a TDG is a DAG
of N logical tables (vertices) and dependencies (edges),
where table l ∈ {1, . . . ,N} has match fields, maximum
match entries, modified fields, and next table addresses,
denoted by fl,el,al, and nl, respectively.

3 Target Switches
The two backends we use—RMT [8] and Intel’s
FlexPipe [25]—represent real high-performance, pro-
grammable switch ASICs. Both conform to our abstract
forwarding model (Figure 1) by implementing a pipeline
of match+action stages and can run the L2L3 program
in Figure 3. While both switches have different con-
straints, we can define hardware abstractions common
to both chips: a pipeline DAG, memory types, and as-

106 blocks
1K (80b)
SRAM

16 blocks 2K
(160b) TCAM

...

106 blocks
1K (80b)
SRAM

16 blocks 2K
(160b) TCAM

(a) RMT switch as described in [8].

2 blocks
64(48b)
Mapper

12 blocks
1K (36b) FFU

12 blocks
1K (36b) FFU

4 blocks
16K (36b)
BST

4 blocks
16K (72b)
Hash table

(b) Intel FlexPipe switch as described in [25].

RMT

s Mem. Type m bm wm dmName

1-32 SRAM exact 1 106 80b 1K
TCAM ternary 2 16 40b 2K

(c) Memory information for RMT.

FlexPipe

s Mem. Type m bs,m wm dmName
1 Mapper exact 1 1 48b 64

2-3 FFU ternary 2 12 36b 1K
4 BST prefix 3 4 36b 16K

5 Hash exact 4 4 72b 16K
Table

(d) Memory information for FlexPipe.

Figure 5: Switch configurations for RMT and FlexPipe. The tuple (s,m) refers to memory type m (m ∈ {1, ...,K}) in the stage indexed by
s ∈ {1, ...,M}. Each (s,m) has attributes (bs,m,wm,dm), where bs,m is the number of blocks of the m-th memory type, and each of these blocks can
match dm words (the “depth” of each block) of maximum width wm bits.

signment overhead. We describe these abstractions and
switch-specific features, and highlight how our compiler
represents each chip’s constraints.

Pipeline Concurrency: We model the physical pipeline
of each switch using a DAG of stages as shown in Fig-
ures 5a and 5b; a path from the i-th stage to the j-th stage
implies that stage i starts execution before stage j. In the
FlexPipe model (Figure 5b), the second Frame Forward-
ing Unit (FFU) stage and the Binary Search Tree (BST)
stage can execute in parallel because there is no path be-
tween them.
Memory types: Switch designers decide in advance the
allocation of different memory blocks based on programs
they anticipate supporting. We abstract each memory
block as having a memory type that supports various log-
ical match types (Section 2.1). For example, in RMT, the
TCAM allows ternary match type tables, while SRAM
supports exact match only; in FlexPipe, FFU, hash ta-
bles, and BST memory types support ternary, exact, and
prefix match, respectively.

Memory information for RMT and FlexPipe are in Ta-
bles 5c and 5d. We annotate the DAG to show the num-
ber, type and size of the memory blocks in each stage.
Assignment overhead: A table may execute actions or
record statistics based on match results; these actions and
statistics are also stored in the stage they are referenced.
The number of blocks for action and statistics memory,
collectively referred to as assignment overhead, is lin-
early dependent on the amount match memory a table has
in a stage. In RMT, both TCAM and SRAM match mem-
ory store their overhead memory in SRAM; we ignore
action and statistics memory in FlexPipe.
Combining entries: RMT allows a field to efficiently
match against multiple words in the same memory block
at a time, a feature we call word-packing. Different pack-
ing formats allow match entries to be efficiently stored

1K words/
 1 block

3K words/
 2 block

5K words/
 3 block

 (80b)
48b

48b

48b

(a) Word-packing for SRAM blocks
with (wm,dm) = (80b,1000).

IPv6 network prefix
(64b)

IPv4
(32b)

IPv4
(32b)

flag: match on IPv6 or IPv4

(b) Table-sharing.

Figure 6: Block layout features in different switches.

in memory; for example, a packing format of 3 creates a
packing unit that strings together two memory blocks and
allows a 48b MAC address field to match against three
MAC entries simultaneously in a 144b word (Figure 6a).
FlexPipe only supports stringing together the minimum
number of blocks required to match against one word,
but does allow table-sharing in which multiple logical
tables share the same block of SRAM or BST memory,
provided the two tables are not on the same execution
path. Table-sharing is shown in Figure 6b: since routing
tables make decisions on either IPv4 or IPv6 prefixes,
both sets of prefixes can share memory.
Per-stage resources: RMT uses three crossbars per
stage to connect subsets of the packet header vector to the
match and action logic. Matches in SRAM and TCAM,
and actions all require crossbars composed of eight 80b-
wide subunits for a total of 640 bits. A stage can match
on at most 8 tables and modify at most 8 fields. There
appears to be no analogous constraints for FlexPipe.
Latency: Generally, processing will begin in each
pipeline stage as soon as data is ready, allowing for over-
lapping execution. However, logical dependencies re-
strict the overlap (Figure 7). In RMT, a match depen-
dency means no overlap is possible, and the delay be-
tween two stages will be the latency of match and action
in a stage: 12 cycles. Action dependent stages can have

Time	 (cycles)	

match	 ac/on	

12	

Stage	 1	

Stage	 2	 match	 ac/on	

match	 ac/on	 Stage	 1	

Stage	 2	 match	 ac/on	 3

match	 ac/on	 Stage	 1	

Stage	 2	 match	 ac/on	 1

Match	

Ac/on	

Successor,	
Reverse,	 None	

Figure 7: Dependency types and latency delays in RMT. In this
figure, Table B in Stage 2 depends on Table A in Stage 1.

their match phases overlap, and so the minimum delay
is 3 cycles between the stages. Successor and reverse-
match dependencies can share stages, provided that ta-
bles can be run speculatively [8]. Note that even if there
are no dependencies there is a one cycle delay between
successive stages.

While RMT’s architecture requires that match or ac-
tion dependent tables be in strictly separate stages, Flex-
Pipe’s architecture resolves action dependencies at the
end of each stage, and thus only match dependencies re-
quire separate stages. In summary, the compiler models
specific switch designs abstractly using a DAG, multiple
memory blocks per stage, constraints on packing, per-
stage resources and latency characteristics. While we
have described how to model RMT and FlexPipe (the
only two currently published reconfigurable switches),
new switches can be described using the same model if
they use some form of physical match+action pipeline.

4 Integer Linear Programming
To build a compiler, we must map programs (parse
graphs, table declarations and control flow) to target
switches (modeled by a DAG of stages with per-stage re-
sources) while maximizing concurrency and respecting
all switch constraints. Because constraints are integer-
valued (table sizes, crossbar widths, header vectors), it
is natural to use Integer Linear Programming (ILP). If
all constraints are linear constraints on integer variables
and we specify an objective function (e.g., “use the least
number of stages” or “minimize latency”), then fast ILP
solvers (like CPLEX [12]) can find an optimal mapping.

We now explain how to encode switch and program
constraints and specify objective functions. We di-
vide the ILP-based compiler into a switch-specific pre-
processor (for switch-specific resource calculation) and
a switch-dependent compiler. We start with switch-
independent common constraints.

4.1 Common Constraints

The following constraints are common to both switches:

Assignment Constraint: All logical tables must be as-
signed somewhere in the pipeline. For example, if a ta-
ble l has el = 5000 entries, the total number of entries
assigned to that logical table, or Ws,l,m over all memory
types m and stages s, should be at least 5000. Hence, we
require:

∀l :
∑
s,m

Ws,l,m ≥ el. (1)

Capacity Constraint: For each memory type m, the
aggregate memory assignment of table l to stage s, Us,l,m,
must not exceed the physical capacity of that stage, bs,m:

∀s,m :
∑

l

Us,l,m ≤ bs,m. (2)

We define the assignment overhead as λm,l, which de-
notes the necessary number of action or statistics blocks
required for assigning one match block of table l in mem-
ory type m. Thus the aggregate memory assignment is
the sum of match memory blocks µs,l,m and assignment
overhead blocks:

Us,l,m = µs,l,m
(
1 +λl,m

)
.

Dependency Constraint: The solution must respect de-
pendencies between logical tables. We use boolean vari-
able DA,B to indicate whether table B depends on A, and
the start and end stage numbers of any table l are de-
noted by S l and El, respectively. If table B depends on
A’s results, then the first stage of B’s entries, S B, must
occur after the match results of table A are known, which
is at the earliest EA (tables are allowed to span multiple
pipeline stages):

∀DA,B > 0 : EA ≤ S B. (3)

If A must completely finish executing before B begins
(e.g., match dependencies), then the inequality in Equa-
tion 3 becomes strict.

4.2 Objective Functions
A key advantage of ILP is that it can find an optimal so-
lution for an objective function. In the remainder of the
paper we focus our attention on three objective functions.

Pipeline stages: To minimize the number of pipeline
stages a program uses, σ, we ask ILP to minimize:

min σ, (4)

where for all stages s:

If
∑
l,m

Us,l,m > 0 : σ ≥ s.

Latency: We can alternatively pick an objective func-
tion to minimize the total pipeline latency, which is more
involved. Consider RMT, in which match and action de-
pendencies both affect when a pipeline stage can start

(whereas successor and reverse-match dependencies do
not affect when a stage starts). If a table in stage s has a
match or action dependency on a table in stage s′, then
s′ cannot start until 12 or 3 clock cycles, respectively,
after s. Building on how we expressed dependencies in
Equation 3, we assign stage s a start time, ts, where ts is
strictly increasing with s. Now consider two tables A and
B, and assume B has a match dependency (i.e. 12 cycle
wait) on table A. EA is the last stage A resides in, and S B
is the first stage B resides in. We constrain S B as follows:

tEA + 12 ≤ tS B .

We write the same constraints for all pairs of tables with
action dependencies (3 cycle wait). Then we minimize
the start time of the last stage, stage M:

min tM . (5)

Power: Our third objective function minimizes power
consumption by minimizing the number of active mem-
ory blocks, and where possible uses SRAM instead of
TCAM. The objective function is therefore as follows:

min
∑

m

gm

(∑
s,l

Us,l,m

)
, (6)

where gm(·) returns the power consumed for memory
type m.

4.3 Switch-Specific Constraints
Our ILP model requires switch-specific constraints, and
we push as many details as possible to our preprocessor.

RMT: We start with RMT’s ability to pack memory
words together to create wider matches. Recall from Sec-
tion 3 that a packing format p packs together p words in
a single wide match; Bl,m,p specifies the number of mem-
ory type m blocks required for packing format p of table
l. While Bl,m,p is precomputed by the preprocessor from
the widths of the table entries and memory blocks, the
ILP solver decides the number of packing units Ps,l,m,p
for each stage. We can thus find the number of match
memory blocks µs,l,m and number assigned entries Ws,l,m
for each stage:

µs,l,m =

pmax∑
p=1

Ps,l,m,pBl,m,p.

Ws,l,m =

pmax∑
p=1

Ps,l,m,p(p ·dm),

where p ·dm is the number of table l’s entries that can fit
in a single packing unit of format p in memory type m.

Per-Stage Resource Constraints: We must incorpo-
rate RMT-specific constraints such as the input action
and match crossbars. The preprocessor can compute the
number of input and action subunits needed for a logical

b: 1 b: 2 b: 3 b: 4

ord:	 3	 (sl	 1);	 ord:	 2	 (sl	 2)	
(20	 rows)	

ord:	 1	 (1	 row)	
ord:	 2	
(5	 rows)	

ord:	 1	
(3	 rows)	

ord:	 1	
(26	 rows)	

row 1
row 2

row 6

Figure 8: FlexPipe table sharing in detail. The pink table occupies
the first two memory blocks, but different sets of tables share the first
two memory blocks.

table as a function of the width of the fields on which it
matches or modifies, respectively.

FlexPipe: FlexPipe can share memory blocks at a finer
granularity than RMT, and so we need to preprocess the
constraints differently for FlexPipe.

To support configurations as in Figure 8, we need to
know which rows within a set of blocks are assigned to
each logical table. This is because multiple tables can
share a block, and different blocks associated with the
same table can have very different arrangement of tables,
such as blocks 1 and 2 assigned to the pink table.

Note that this issue does not arise in RMT; all memory
blocks that contain a logical table will be uniform, and a
solution can be rearranged to group together all memory
blocks of a particular table assignment in a stage. We
thus index the memory blocks b ∈ 1, . . . ,bs,m, where bs,m
is the maximum number of blocks of type m in stage s.

The solver decides how many logical table entries to
assign to each block in each stage. For the remainder
of this discussion, we differentiate between logical table
entries and physical memory block entries by referring
to the latter as rows, where row 1 and row em are the first
and last rows, respectively, of a block of memory type m.

For table l assigned to start in the bth block of mem-
ory type m, we use the variable r̂l,m,b to denote the start-
ing row, and the variable rl,m,b to denote the number of
consecutive rows that follow. 1

To make sure rows do not overlap within a block, we
constrain their placement by introducing the notion of
order. Order is defined by the variable θ ∈ {1, . . . , θmax},
where θmax is the maximum number of logical tables that
can share a given memory block. In Figure 8, the light
blue assignment has order θ = 1, because it has the earli-
est row assignment. We define two additional variables,
ρ̂m,b,θ and ρm,b,θ, the start row and the number of rows of
table with order θ, and we prevent overlaps by constrain-
ing the assignment as follows.

If θ-th order is assigned:

ρ̂m,b,θ−1 +ρm,b,θ ≤ ρ̂m,b,θ
1Note that if a second table, l′, has entries in an adjacent

block b′, but the entries are wide and overflow into block b,
r̂l′,m,b = 0 because the starting row for l′ was not assigned in
this block; similarly, rl,m,b is irrelevant.

S
R

A
M

 TC
A

M

(a) FFL: Tables are placed in order of level. This configuration takes
five stages and wastes all of the TCAMs in the second stage.

S
R

A
M

TC

A
M

(b) FFLS: The first purple table with a large ternary table following it
is placed first, even though the blue table has more match dependencies
following it. This configuration uses only four stages.

Figure 9: Multiple-metric heuristics. A toy RMT example where a
table with a single, dependent large ternary table must be placed before
a table with a longer dependency chain.

To calculate the assignment constraint (Equation 1), the
total number of words assigned to table l in stage s is:

Ws,l,m =

bs,m∑
b=1

rl,m,b.

where rl,m,b denotes the number of rows assigned for
table l in all orders θ in block b of memory type m.

While the capacity constraint in Equation 2 is per
stage, in FlexPipe we must also implement a capacity
constraint per block. We restrict the number of rows we
can assign to a block by checking the last row of the last
order, θmax:

ρ̂m,b,θmax +ρm,b,θmax ≤ dm.

Dependency Constraints: Fortunately, the dependency
analysis is similar to RMT in Section 4.3, with the ad-
ditional feature that only match dependencies require a
strict inequality; action, successor, and reverse-match de-
pendencies can be resolved in the same stage.

Objectives: Since FlexPipe has a short pipeline, we
minimize the number of blocks used across all stages.

5 Greedy Heuristics
Since a full-blown optimal ILP algorithm takes a long
time to run, we also explored four simpler greedy heuris-
tics for our compiler: First Fit by Level (FFL), First Fit
Decreasing (FFD), First Fit by Level and Size (FFLS),
and Most Constrained First (MCF). All four greedy
heuristics work as follows: First, sort the logical tables
according to a metric. For each logical table in sorted
order, pick the first set of memory blocks in the first
pipeline stage the table can fit in without violating any
capacity constraints, dependencies, or switch-specific re-
sources. If it cannot fit, the heuristic finds the next avail-
able memory blocks, in the same stage or a subsequent
stage. Like ILP, we leave switch-specific resource calcu-
lation like crossbar units and packing formats to a pre-
processor. A heuristic terminates when all tables have
been assigned or when it runs out of resources.

5.1 Ordering tables

The quality of the mapping depends heavily on the sort
order. Three sorting metrics seem to matter most in our
experiments, described in more detail below.

Dependency: Tables that come early in a long depen-
dency chain should be placed first because we need at
least as many stages left as there are match/action depen-
dencies. We thus define the level of a table to be the num-
ber of match+action dependencies in the longest path of
the TDG from the table to the end.

Word width: In RMT, tables with wide match or ac-
tion words use up a large fraction of the fixed resources
(action/input crossbars) and should be prioritized; they
may not have room if smaller tables are assigned first. In
FlexPipe, tables with larger match word width should be
assigned first because there is less memory per stage.

Memory Types: While blocks with memory types like
TCAM, BST, and FFU can also fit exact-match tables,
exact memory like SRAM is generally more abundant
than flexible memory due to switch costs. Thus in Flex-
Pipe, heuristics should prioritize the assignment of more
restrictive tables, or tables that can only go in ternary
or prefix memories; otherwise, assigning exact match ta-
bles to flexible memories first can quickly lead to mem-
ory shortage. In RMT, restrictive tables go into TCAM,
available in every stage. But large TCAM tables in a long
dependency chain push back tables that follow them. So
we should prioritize tables that imply high TCAM usage
in their dependency chain.

Single-metric heuristics: Two of our greedy heuristics
sort on a single metric: FFL is inspired by bin packing
with dependencies [15] and sorts on table level, where
tables at the head of long dependency chains are placed
earlier. FFD is based on the First Fit Decreasing Heuris-
tic for bin packing [15]. In our case, we prioritize tables
that have wider action or match words and consequently
use more action or input crossbar subunits. This heuristic
should work well when fixed switch resources—and not
program table sizes—are the limiting factor.

Multi-metric heuristics: Some programs fit well if we
consider only one metric: if there are plenty of resources
at each stage, we need only worry about long dependency
chains. Our next two heuristics sort on multiple metrics.
Sometimes being greedy on just one metric might not
work, as shown in Figure 9: here, our first multi-metric
heuristic FFLS incorporates dependencies and TCAM
usage, where tables with larger TCAM tables in their de-
pendency chains are assigned earlier.

Our other multi-metric heuristic, MCF, is motivated
by FlexPipe’s smaller pipeline with more varied mem-
ory types. We pick the “most constrained” table first:
a table restricted to a particular memory type and with a

FFD

FFL

Optimal

Figure 10: Greedy performing much worse than ILP (RMT). In
this toy example, the blue and purple tables form separate match de-
pendency chains. The initial blue table in the optimal mapping is nar-
rower and has a lower level than the purple table, counterintuitive to
both FFD and FFL metrics.

exact
exact
ternary exact exact

(a) Toy example program. The ternary green table has the most restric-
tive memory type, while the exact blue table is least restrictive. The
violet/pink tables form a match dependency chain.

ternary	 prefix	 exact	

(b) MCF solution (infeasible). The ternary stage is initially filled with
the higher priority green and pink tables, leaving no room for the wider
blue table.

ternary	 prefix	 exact	

(c) Optimal solution. The pink table is split across ternary blocks, leav-
ing enough room for the blue table.

Figure 11: Greedy performing much worse than ILP (FlexPipe).

high level should have higher priority. Ties are broken by
placing the table with wider match words first. FFL and
FFD which ignore the memory type do not work well for
FlexPipe, which does not have uniform memory layout
per stage like RMT; for example, ternary match tables
can only go in stages 2 or 3 in FlexPipe.

Variations: Each of the basic four heuristics has two
variants: by default, an exact match table spills into
TCAMs if it runs out of SRAMs in a stage. Our first
variant prevents the spillage to preserve the TCAMs for
ternary tables. Second, by default, when we reserve
space for a TCAM table, we do not reserve space in
SRAM to hold the associated action data, which means
we may run out of SRAM and not be able to use the
TCAM. Our second variant sets aside SRAM for action
memory from yet-to-be allocated ternary tables; in our
experiments we fix the amount to be 16 SRAMs.

There can be cases where the best combination of met-
rics is unclear, as in Figure 10 for RMT and Figure 11 for
FlexPipe. Our experiments in Section 6 seek the right
combination of metrics for an efficient greedy compiler.

6 Experiments
We tested our algorithms by compiling the four bench-
mark programs listed in Table 2 for the RMT and Flex-

Name Switch N Dependencies
Match Action Other

L2L3 RMT 24 23 2 10-Complex
L2L3 RMT 16 4 0 15

-Simple FlexPipe 13 12 0 4
L2L3 RMT 19 6 1 16
-Mtag FlexPipe 11 9 1 3
L3DC RMT 13 7 3 1

Table 2: Logical program benchmarks for RMT and Flexpipe.
N is the number of tables.

Pipe switches. The benchmarks are in Table 2: L2L3-
Simple, a simple L2/L3 program with large tables; L2L3-
Mtag, which is L2L3-Simple plus support for the mTag
toy example described in [7]; L2L3-Complex, a complex
L2/L3 program for an enterprise DC aggregation router
with large host routing tables, and L3DC, which is a pro-
gram for Layer 3 switching in a smaller enterprise DC
switch. Differently sized, smaller variations of the L2L3-
Simple and L2L3-Mtag programs are used for FlexPipe.
L2L3-Complex and L3DC cannot run on Flexpipe be-
cause the longest dependency chain for each program
needs 9 and 6 stages respectively, exceeding FlexPipe’s
5-stage pipeline.
ILP: We used three ILP objective functions for RMT:
number of stages (ILP-Stages), pipeline latency (ILP-
Latency), and power consumption (ILP-Power). For
FlexPipe, since we struggle to fit the program, we simply
looked for a feasible solution that fit the switch. All of
our ILP experiments were run using IBM’s ILP solver,
CPLEX. 2

Greedy heuristics: For each RMT program, we ran all
four greedy heuristics (FFD, FFL, FFLS, MCF). We also
ran the variant that set aside 16 SRAM blocks for ternary
action memory (labeled as FFD-16, etc.) and a com-
bination of the two variants to also avoid spilling exact
match tables into TCAM (labeled as FFD-exact16, etc.).
For each FlexPipe program, we simply ran the greedy
heuristic MCF. The other three heuristics do not combine
enough metrics to fit either of our FlexPipe benchmarks.

All of our experiments were run on an Amazon AWS
EC2 c3.4xlarge instance with 16 processor cores and 30
GB of memory. For FlexPipe, we generated 20 and 10
versions of the L2L3-Simple and L2L3-Mtag programs,
respectively, with varying table sizes and checked how
many greedy and ILP mappings fit the switch (Table 3).
For RMT, we compiled every program 10 times for each
of the greedy heuristics and the ILP objective functions

2CPLEX has a gap tolerance parameter, which sets the ac-
ceptable gap between the best integer objective and the current
solution’s objective. For ILP-Stage, we required zero-gap tol-
erance. For ILP-Latency and ILP-Power, we set the gap toler-
ance to be within 70% and 5%, respectively, of the best integer
value; we found that lower gaps highly increased runtime with
little improvement in objective value.

Solver L2L3-Simple L2L3-Mtag
% solved % solved

MCF 75 60
ILP 75 80

Table 3: Benchmark results for 5-stage FlexPipe.

Solver L2L3-Complex
St. Lat. Pwr RT.

FFD 22 135 4.98 0.25
FFD-16 21 135 5.51 0.27
FFD-exact16 21 135 4.62 0.27
FFL 19 131 5.61 0.25
FFL-16 19 131 6.09 0.27
FFL-exact16 17 132 4.61 0.24
FFLS 19 130 5.66 0.33
FFLS-16 19 130 6.42 0.35
FFLS-exact16 17 131 4.66 0.32
MCF 20 132 4.67 0.26
MCF-16 19 132 6.43 0.27
MCF-exact16 18 132 4.67 0.25
ILP-Latency 32 104 7.78 233.84
ILP-Stages 16 131 6.66 12.13
ILP-Power 32 131 4.44 147.10

Table 4: Benchmark results for RMT for L2L3-Complex. All
greedy heuristics and variants are shown (St: number of stages occu-
pied, Lat.: Latency [cycles], Pwr.: Power [Watts], RT.: Time to run
solver [secs]).

and report the medians of the number of stages used,
pipeline latency, and power consumed for each algo-
rithm. We show in detail L2L3-Complex results in Table
4. To facilitate presentation, for all other programs we
display results for ILP and the ‘-exact16’ greedy variant
only (Table 5), since this variant generally tended to have
better stage and power usage than other greedy heuris-
tics.

7 Analysis of Results
We analyze Tables 3, 4 and 5 for major findings. A
salient observation is that the MCF heuristic for Flex-
Pipe fits 16 out of the 20 versions of L2L3Simple. For
some programs where the heuristic could not fit, it was
difficult to manually analyze the incomplete solution for
feasibility. However, ILP can both detect infeasible pro-
grams and find a fitting when feasible (assuming match
tables are reasonably large,3 e.g., occupy at least 5% of a
hash table memory block.)

Another important observation for reconfigurable
chips where one can optimize for different objectives, is
that the best greedy heuristic can perform 25% worse on
the objectives than ILP; for example, the optimal 104 cy-
cle latency for ILP in the second column of Table 4 is
far better than the best latency of 130 cycles by FFLS. A
detailed comparison follows.

3The minimum table size constraint helps us scale the ILP
to handle FlexPipe, where a table can be assigned any number
of rows in each memory block. Since the size of logical tables
and memory blocks are at least on the order of hundreds, it
seems reasonable to impose a minimum match table size of at
least a hundred in these memory blocks.

7.1 ILP vs Greedy

The following observations can be made after closely
comparing ILP and greedy solutions in Figure 12.
1. Global versus local optimization: For the L2L3-
Complex use case (Figure 12a), even the best greedy
heuristic FFL-exact16 takes 17 stages, while ILP takes
only 16 stages. Figures 12c and 12d show FFL-16 and
ILP solutions, respectively. ILP breaks up tables over
stages to pack them more efficiently, whereas greedy
tries to assign as many words as possible in each stage
per table, eventually wasting some SRAMs in some
stages and using up more stages overall

In switch chips with shorter pipelines than RMT’s, this
could be the difference between fitting and not fitting. If
all features in a program are necessary, then infeasibil-
ity is not an option. Unlike register allocation, there is
no option to “spill to memory”; on the other hand, the
longer runtime for ILP may be acceptable when adding
a new router feature. Therefore it seems very likely that
programmers will resort to optimal algorithms, such as
ILP, when they really need to squeeze a program in.
2. Greedy poor for pipeline latency: Our greedy
heuristics minimize the stages required to fit the pro-
gram, and are good at minimizing power—the best
greedy is only 4% worse than optimal (for L2L3-
Complex, FFL-exact16 consumes 4.61W, versus ILP’s
4.44W); technically, this is true only because the ‘-exact’
variant avoids using power hungry TCAMs. But greedy
heuristics are much worse for pipeline latency; minimiz-
ing latency with greedy algorithms will require improved
heuristics.

7.2 Comparing greedy heuristics

1. Prioritize dependencies, not table sizes: In L2L3-
Mtag, both FFL and FFLS assign the exact-match tables
in the first stage, but differ in how they assign ternary
tables. FFLS prioritizes the larger ACL table over the
IPv6-Prefix and IPv6-Fwd tables, which are early tables
in the long red dependency chain in Figure 13a. As a
result, the IPv6-Prefix and IPv6-Fwd tables cannot start
until stages 16 and 17, and FFLS ends up using two more
stages than FFL. Though FFLS prioritizes large TCAM
tables and avoids the problem discussed in Figure 9, it is
not sophisticated enough to recognize other opportunities
for sharing stages between dependency chains.
2. Sorting metrics matter: FFD results show that in-
correct sorting order can be expensive (22 stages versus
the optimal 16 for L2L3-Complex). We predict that FFD
will only be useful for use cases with many wide logical
tables or more limited per-stage switch resources, neither
of which was a limiting factor in our experiments.
3. Set aside SRAM for TCAM actions: The ‘-16’ vari-

Solver L2L3-simple L2L3-Mtag L3DC
St. Lat. Pwr RT. St. Lat. Pwr RT. St. Lat. Pwr RT.

FFD-exact16 21 64 7.54 0.18 22 75 7.65 0.21 7 88 2.34 0.08
FFL-exact16 19 55 7.55 0.19 19 66 7.66 0.21 7 88 2.34 0.08
FFLS-exact16 20 64 7.88 0.23 21 75 8.10 0.27 7 88 2.34 0.12
MCF-exact16 19 55 7.54 0.18 19 66 7.65 0.21 7 88 2.34 0.09
ILP-Latency 32 51 9.18 2.22 32 53 9.65 3.62 32 62 3.21 23.16
ILP-Stages 19 55 7.52 2.57 19 72 9.62 3.52 7 88 2.46 1.88
ILP-Power 32 62 7.55 2.27 32 71 7.63 2.53 9 86 2.34 1.87

Table 5: Benchmark results for 32-stage RMT for L2L3-simple, L2L3-Mtag, and L3DC. See Table 4 for units.

ation of our greedy heuristics estimates the number of
SRAMs needed for ternary tables (for their action mem-
ory) in each stage and blocks them off when initially as-
signing SRAMs to exact match tables. Our experiments
show that this local optimization usually avoids having
to move a ternary table to a new stage because it doesn’t
have enough SRAMs for action memory.

7.3 Sensitivity Experiments

In this section, we analyze ILP solutions by ignoring and
relaxing various constraints in order to improve the run-
ning time of ILP and the optimality of greedy heuris-
tics. We run these ILP experiments for our most com-
plicated use case (L2L3 Complex) on the RMT chip, for
two different objectives: minimum stages and minimum
pipeline latency. For reference, the original ILP yields
solution 16 stages in 12.13s and 104 cycles in 233.84s,
respectively, for the two objectives.

To improve ILP runtime, we measure how long the
ILP solver takes while ignoring or relaxing each con-
straint, which is a proxy for how hard it is to fit programs
in the switch. This help us identify constraints that are
currently “bottlenecks” in runtime for the ILP solver and
also helps us understand how future switches can be de-
signed to expedite ILP-based compilation.

We identify candidate metrics for greedy heuristics to
optimize a given objective by ignoring constraints and
identifying which have a significant impact on the quality
of the solution. Our experiments also help identify the
critical resources needed in the chip for typical programs,
so chipmakers can design for better performance.

Sensitivity Results for ILP runtime: First, sizing
particular resources can speed up IBM’s ILP solver,
CPLEX; for example, increasing the width of SRAM
blocks by 37.5% (from 80b to 110b) reduces ILP runtime
from 12.13s to 7.1s when minimizing stages. ILP run
time is reduced considerably if action memory is not al-
located, and this leads to a simple way to accelerate ILP:
We first ran a greedy solution to estimate action memory
needed per stage which is then set aside. We then ran the
ILP without fitting the action memory, and finally added
the action memory at the end. For minimizing pipeline
latency, this reduced the ILP runtime from 233.84 sec-

Ipv6-
Ecmp

IPv6-
Mcast

EG-
ACL EG-Phy-

Meta IG-
Agg-
Intf

IG-
Dmac

IPv4-
Mcast

IPv4-
Nexthop

IPv6-
Nexthop

IG-
Props

IG-
Router
-Mac

Ipv4-
Ecmp

IG-
Smac

Ipv4-
Ucast-
LPM Ipv4-

Ucast-
Host

Ipv6-
Ucast-
Host

Ipv6-
Ucast-
LPM

IG_ACL2

IG_Bcast
_Storm

Ipv4_
Urpf

Ipv6_
Urpf

IG_ACL1 EG_Props
IG_
Phy_
Meta

(a) TDG for L2L3-Complex. Solid and dashed arrows indicate
match/action and successor dependencies, respectively, while solid and
dashed blocks are exact and ternary tables, respectively.

Ipv6_Mcast

Ipv4_Mcast

Ipv4_Ucast_LPM

Ipv6_Ucast_LPM

(b) Number of TCAMs required to fit the wide match words of ternary
IP routing tables in L2L3Complex with packing factor 1.

(c) FFL-16 solution (19 stages). FFL-16 uses five 3-wide packing
units to assign IPv4-Mcast in stages 7 to 9, leaving one TCAM per
stage that cannot be used by any other ternary table. Overall, FFL-16
wastes a total of 6 TCAMs between stages 3 and 10.

(d) ILP solution (16 stages). ILP utilizes all TCAMs in stages 4, 7,
8, and 11 by sharing the TCAMs between IPv4-Mcast (four 3-wide
packing units) and IPv6-Mcast (one 4-wide packing unit).

Figure 12: FFL-16 and ILP solutions for L2L3-Complex. In as-
signing packing units to the ternary IP routing tables, FFL-16 locally
maximizes the number of words per stage whereas ILP optimizes over
a set of stages. Each stage has 106 SRAMs (top row) and 16 TCAMs
(bottom row) and is colored according to the amount of match memory
assigned to each logical table in the program TDG; all action memory
is colored in black.

NextHop

ACL
(10 st)

Ipv6-Fwd

Ipv4-Fwd (5 st)

Smac-Vlan

Ipv6-Prefix
Check-Ipv6 Check- uCast

ipv4

Routable
Dmac-
Vlan Eg-Mtag

Vrf

Mtag

UrpfV4

UrpfV6

Igmp

IPv4-Xcast

IPv6-Xcast Source-check

(a) TDG for L2L3-Mtag. Red arrows mark a long dependency chain.

(b) FFLS solution (21 stages). FFLS places the ACL and IPv4-Fwd
tables in stages 1 through 15, leaving no room for the smaller IPv6-
Prefix and IPv6-Fwd tables until stages 16 and 17.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

(c) FFL solution (19 stages). FFL prioritizes the IPv6-Prefix and IPv6-
Fwd tables and fits them in stages 1 and 2, allowing earlier assignment
of Nexthop and other dependent tables. As a result, FFL needs two
stages less than FFLS.

Figure 13: FFLS and FFL solutions for L2L3-Mtag. FFL prioritizes
dependencies over table sizes and uses two fewer stages than FFLS.

onds to 66.29 seconds on average, without compromis-
ing our objective.

Sensitivity Results for optimality of greedy heuristics:
We discovered that the dependency constraint for ILP has
the largest impact on the minimum stages objective. If
we remove dependencies from the TDGs, we can reduce
the number of stages used from 16 to 13 and pipeline la-
tency by 2 cycles. This explains why greedy heuristics
focusing on the dependency metric (i.e., FFL and FFLS)
do particularly well. Ignoring other constraints (like re-
source constraints) makes no difference to the number
of stages used or latency. In addition, relaxing various
resource constraints showed that some resources impact
fitting more than others. For example, doubling the num-
ber of TCAM blocks per stage reduced the number of
stages needed from 16 to 14. But doubling the number
(or width) of crossbars made no difference. This explains
why our FFD greedy heuristic (which focuses on non-
limiting resources in the RMT switch) performs worse
than other algorithms.

Lessons for chipmakers: Our results above indicate
that chipmakers can improve turnaround for optimal ILP
compilers by carefully selecting memory width. More-
over, if flexible memory is a rare resource, then increas-
ing a non-limiting resource like crossbar complexity will

not improve performance.

8 Related Work
Compiling packet programs to reconfigurable switches
differs from compiling to FPGAs [26], other spatial
architectures such as PLUG [14] or to NPUs [13].
We focus on packing match+action tables into memo-
ries in pipelined stages while satisfying dependencies.
Nowatzki, et al. [22] develops an ILP scheduler for a spa-
tial architecture that maps instructions entailed by pro-
gram blocks to hardware, by allocating computational
units for instructions and routing data between units. The
corresponding problems for reconfigurable switches—
assigning action units and routing data among the packet
header, memories and action units—are less challenging
once we have a table placement (and not in the scope
of this paper.) NPUs such as the IXP network processor
architecture [17] have multithreaded packet processing
engines that can be pipelined. Approaches like that of
Dai, et al. [13] map a sequential packet processing ap-
plication into pipelined stages. However the processing
engines have a large shared memory; thus NPU compil-
ers do not need to address the problem of packing logical
tables into physical memories.

9 Conclusion
We define the problem of mapping logical tables in
packet processing programs. We evaluate greedy heuris-
tics and ILP approaches for mapping logical tables on
realistic benchmarks. While fitting tables is the main
criterion, we also compute how well solvers minimize
pipeline latency on the long RMT pipeline. We find
that for RMT, there are realistic configurations where
greedy approaches can fail to fit and need up to 38%
more memory resources on the same benchmark. Three
situations when ILP outperforms greedy are when there
are multiple conflicting metrics, multiple memory types
and complicated objectives. We believe future packet
programs will get more complicated with more con-
trol flows, more different size tables, more dependencies
and more complex objectives, arguing for an ILP-based
approach. Further, sensitivity analysis of critical ILP
constraints provides insight into designing fast tailored
greedy approaches for particular targets and programs,
marrying compilation speed to optimality.

Acknowledgements:
We thank Pat Bosshart and Dan Daly for many hours

spent helping us understand RMT and Flexpipe. Many
thanks also to Ravindra Sunkad and Changhoon Kim
for providing us with detailed use cases. This material
is based upon work supported by the National Science
Foundation Graduate Research Fellowship Program un-
der Grant No. DGE-114747.

References
[1] P4 language spec version 1.0.0-rc2. http://www.p4.
org/spec/p4-latest.pdf. Accessed: 2014-09-22.

[2] P4 website. http://www.p4.org/. Accessed: 2014-09-
22.

[3] Protocol oblivious forwarding (pof) website. http://
www.poforwarding.org/. Accessed: 2014-09-22.

[4] Xpliant packet architecture (xpa) press release.
http://www.cavium.com/newsevents-Cavium\
\-and-XPliant-Introduce-a-Fully-Programmable\
\-Switch-Silicon-Family.html. Accessed: 2014-
09-22.

[5] Appel, A. W. Modern compiler implementation in C.
Cambridge university press, 1997.

[6] Bosshart, P., Daly, D., Gibb, G., Izzard, M., McK-
eown, N., Rexford, J., Schlesinger, C., Talayco, D.,
Vahdat, A., Varghese, G., and Walker, D. P4: Pro-
gramming protocol-independent packet processors. SIG-
COMM Comput. Commun. Rev. 44, 3 (July 2014), 87–95.

[7] Bosshart, P., Daly, D., Izzard, M., McKeown, N., Rex-
ford, J., Talayco, D., Vahdat, A., Varghese, G., and
Walker, D. Programming protocol-independent packet
processors. CoRR abs/1312.1719 (2013).

[8] Bosshart, P., Gibb, G., Kim, H.-S., Varghese, G., McK-
eown, N., Izzard, M., Mujica, F., and Horowitz, M.
Forwarding metamorphosis: Fast programmable match-
action processing in hardware for SDN. In Proceedings
of the ACM SIGCOMM 2013 conference on SIGCOMM
(2013), ACM, pp. 99–110.

[9] Broadcom Corporation. Broadcom BCM56850
StrataXGS R© Trident II Switching Technology. Broad-
com, 2013.

[10] Cisco Systems. Deploying Control Plane Policing. Cisco
White Paper, 2005.

[11] Clark, D. The design philosophy of the darpa internet
protocols. In Proceedings of SIGCOMM 1988 (Cam-
bridge, MA, Aug. 1988).

[12] CPLEX, I. I. 12.4, 2013.
[13] Dai, J., Huang, B., Li, L., andHarrison, L. Automatically

partitioning packet processing applications for pipelined
architectures. In ACM SIGPLAN Notices (2005), vol. 40,
ACM, pp. 237–248.

[14] De Carli, L., Pan, Y., Kumar, A., Estan, C., and Sankar-
alingam, K. Plug: flexible lookup modules for rapid de-
ployment of new protocols in high-speed routers. In ACM
SIGCOMM Computer Communication Review (2009),
vol. 39, ACM, pp. 207–218.

[15] Garey, M. R., Graham, R. L., Johnson, D. S., and Yao,
A. C.-C. Resource constrained scheduling as generalized
bin packing. Journal of Combinatorial Theory, Series A
21, 3 (1976), 257–298.

[16] Gibb, G., Varghese, G., Horowitz, M., andMcKeown, N.
Design principles for packet parsers. In Architectures for
Networking and Communications Systems (ANCS), 2013
ACM/IEEE Symposium on (2013), IEEE, pp. 13–24.

[17] Intel Corporation. Intel R© Processors in Industrial Con-
trol and Automation Applications. Intel White Paper,
2004.

[18] Jain, S., Kumar, A., Mandal, S., Ong, J., Poutievski, L.,
Singh, A., Venkata, S., Wanderer, J., Zhou, J., Zhu, M.,
et al. B4: Experience with a globally-deployed software

defined WAN. In Proceedings of the ACM SIGCOMM
2013 conference on SIGCOMM (2013), ACM, pp. 3–14.

[19] Kozanitis, C., Huber, J., Singh, S., and Varghese, G.
Leaping multiple headers in a single bound: wire-speed
parsing using the kangaroo system. In INFOCOM, 2010
Proceedings IEEE (2010), IEEE, pp. 1–9.

[20] Lam, M., Sethi, R., Ullman, J., and Aho, A. Compilers:
Principles, techniques, and tools, 2006.

[21] Mahalingam, D., Dutt, D., Duda, K., Agarwal, P.,
Kreeger, L., Sridhar, T., Bursell, M., and Wright, C.
Vxlan: A framework for overlaying virtualized Layer 2
networks over Layer 3 networks. Internet-Draft draft-
mahalingam-dutt-dcops-vxlan-00, IETF, 2011.

[22] Nowatzki, T., Sartin-Tarm, M., De Carli, L., Sankar-
alingam, K., Estan, C., and Robatmili, B. A general
constraint-centric scheduling framework for spatial archi-
tectures. ACM SIGPLAN Notices 48, 6 (2013), 495–506.

[23] NVIDIA Corporation. NVIDIA’s Next Generation
CUDATM Compute Architecture: FermiTM. NVIDIA
White Paper, 2009.

[24] Open Networking Foundation. Software-Defined Net-
working: The new norm for networks. Open Networking
Foundation White Paper, 2012.

[25] Ozdag, R. Intel R© Ethernet Switch FM6000 Series-
Software Defined Networking. Intel Corporation (2012),
8.

[26] Rinta-Aho, T., Nikander, P., Sahasrabuddhe, S. D., and
Kempf, J. Click-to-netfpga toolchain.

[27] Song, H. Protocol-oblivious forwarding: Unleash the
power of SDN through a future-proof forwarding plane.
In Proceedings of the second ACM SIGCOMM work-
shop on Hot topics in software defined networking (2013),
ACM, pp. 127–132.

[28] Xilinx, Inc. DSP: Designing for Optimal Results. Xilinx,
Inc., 2005.

