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Abstract

The gap between CPU and networking speeds has motivated
the development of SmartNICs for NF (network functions)
offloading. However, offloading performance is predicated
upon intricate knowledge about SmartNIC hardware and
careful hand-tuning of the ported programs. Today, develop-
ers cannot easily reason about the offloading performance
or the effectiveness of different porting strategies without
resorting to a trial-and-error approach.

Clara is an automated tool that improves the productivity
of this workflow by generating offloading insights. Our tool
can a) analyze a legacy NF in its unported form, predicting
its performance characteristics on a SmartNIC (e.g., compute
vs. memory intensity); and b) explore and suggest porting
strategies for the given NF to achieve higher performance. To
achieve these goals, Clara uses program analysis techniques
to extract NF features, and combines them with machine
learning techniques to handle opaque SmartNIC details. Our
evaluation using Click NF programs on a Netronome Smart-
NIC shows that Clara achieves high accuracy in its analysis,
and that its suggested porting strategies lead to significant
performance improvements.

CCS Concepts: - Computing methodologies — Machine
learning; - Networks — Network performance model-
ing.

Keywords: Network function, SmartNIC, Machine learning

1 Introduction

High-speed networks are the backbone of datacenters, and
their data rates are consistently increasing over the years [17,
30]. As a result, server CPUs spend more and more cycles
on packet processing, and the consumed resources are no
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longer available to revenue-generating tenant VMs. The gap
between CPU and networking speeds will further widen in
the post-Moore era [28, 36]. This has motivated the develop-
ment of SmartNICs [3, 8, 9, 11] for near-network processing.

Unlike traditional NICs with hardwired offloading mod-
ules (e.g., TSO/LRO/checksum), SmartNICs have program-
mable SoC cores, specialized packet 10 engines, and various
domain-specific accelerators. Researchers have leveraged
SmartNICs as an offloading platform, and developed a range
of network applications [42, 45, 47, 58, 59]. SmartNIC offload-
ing enables server CPUs to perform more application-level
work. Moreover, SmartNIC SoC cores are also more energy-
efficient, driving down the total cost of ownership (TCO).

However, as a computing platform, SoC SmartNICs repre-
sent a significant departure from the familiar programming
model and performance characteristics of x86 servers. This
is especially true for “baremetal” designs [11-13, 33, 46] that
are specifically optimized for packet processing tasks. For
instance, these platforms are shipped with a lightweight run-
time/firmware without OS or full 1ibc support, they may
customize their ISAs for packet operations, and they may
expose a much constrained programming model (e.g., a sub-
set of C). Netronome SmartNICs are a popular hardware
of this kind [11, 52]. Emerging platforms like the Fungible
data processing units [12] and Pensando distributed service
cards [13] also share many similarities. On such platforms,
NF performance is predicated upon the intricate interplay
across many factors: the compute versus memory profiles of
NF programs, the use of accelerators, hardware architectures
and compiler optimizations, as well as the target workloads.
This performance opacity has led to a cumbersome develop-
ment process for NF offloading.

In order to understand and improve offloading perfor-
mance, today’s developers perform manual analyses and tun-
ing [47, 58]. At the heart of this workflow is a cross-platform
porting process. The developer needs to first rewrite the x86
code against SmartNIC toolchains, which are often closed-
source and vendor-specific (e.g., the compiler and runtime).
Further, she needs to perform hardware benchmarks on a
representative workload, and re-optimize the ported pro-
gram iteratively. If her assumptions about the workloads,
architectural details, compiler optimizations, or the NFs are
amiss, multiple rounds of hand-tuning would be required. Re-
searchers and developers would significantly benefit from an



automated workflow for analyzing ported NF performance
and identifying effective performance tuning strategies. In
this paper, we call such information offloading insights.

Clara is an automated tool that generates offloading in-
sights for SmartNIC NFs. As the first step, Clara directly
analyzes an unported NF program, and predicts its key per-
formance parameters—the numbers of compute instructions
and memory accesses—when offloaded to a SmartNIC. Using
such information as a starting point, Clara then automatically
explores a plethora of possible optimizations for offloading. It
suggests effective porting strategies to improve performance.
This includes opportunities for using accelerators, multicore
scaleout analysis, NF state placement strategies, memory
access optimizations, and NF colocation analysis.

Clara achieves these goals by augmenting program analy-
sis techniques with machine learning (ML) prediction. For
performance estimation, Clara transforms the NF programs
to a uniform LLVM IR (intermediate representation), and an-
alyzes them with ML to infer how closed-source SmartNIC
compilers might perform instruction selection and optimiza-
tions on the IR. To suggest porting strategies, Clara performs
a training phase that searches through the program tuning
space to understand the performance effects. It then uses the
learned cost model to suggest NF- and workload-specific op-
timizations despite opacity in the SmartNIC compiler, hard-
ware, and runtime details. As a combined effect, Clara re-
lieves NF developers from the burden of having to reason
through layers of complexity for performance optimizations.
Equipped with Clara’s offloading insights, developers only
need to focus on getting the ported code functionally correct.
We make the following contributions:

e Clara is the first tool to generate automated offloading
insights for network functions on SmartNICs.

e It develops novel techniques to analyze unported NF
programs, predict cross-platform performance param-
eters, and suggest effective program porting strategies
to improve performance.

e We prototype Clara (code available at [4]) and apply
it to Click NFs on a Netronome SmartNIC, generating
accurate and effective offloading insights.

2 Motivation

Reasoning about network function performance is already a
challenging task even for traditional x86 platforms [41, 49].
SmartNIC-offloaded NFs present further barriers—we need
to reason about cross-platform performance characteristics,
and different porting strategies usually result in different
performance gains. A myriad of factors come into play.
Proprietary architectures and toolchains. SmartNIC
architectures are significantly different from the familiar x86
platform, and they are further managed by vendor-specific
toolchains; both are proprietary in nature [3, 8, 9, 11, 43].
Therefore, an accurate understanding of hardware details or
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Figure 1. Performance variability of five network functions
on a Netronome SmartNIC. For each NF, we benchmark two
to four different versions with the same core logic. Network
address translation (NAT) variants use checksum accelera-
tors optionally. Deep packet inspection (DPI) variants handle
different packet sizes. Firewall (FW) variants store flow state
in different memory locations and have varying flow distri-
butions. Longest prefix match (LPM) has different numbers
of match/action rules and optionally uses the flow cache.
Heavy hitter detection (HH) has varying packet rates. All
NF latency are normalized against the fastest version.

the compiler internals is hard to come by. SmartNIC devel-
opers are limited by what they can gather from hardware
“databooks”. These documents showcase SmartNIC features
in brief but do not contain full details about the design, a
vague guide at best. In addition, the proprietary compiler
may perform instruction selection or optimizations based on
cost models and hardware details unavailable to developers.

Cross-platform porting and tuning. The developer also
lacks access to reliable porting guidelines to improve offload-
ing performance. On x86 platforms, developers can fine-tune
their programs, even at assembly level, based on community-
accrued experiences and best practices. In contrast, Smart-
NIC developers face a higher barrier due to the paucity of
community expertise. They have to resort to a trial-and-error
approach to experiment with different porting strategies.
Program tuning also needs to account for the complex mem-
ory hierarchies, specialized ISAs and accelerators, and other
types of architectural heterogeneity of SmartNICs. Moreover,
the same program tuning strategy will have different effects
depending on the NF programs and workloads.

Consider some concrete examples on the Netronome Ag-
ilio SmartNIC. The latency of LPM (longest prefix match)
functions could vary by orders of magnitude depending on
whether the program uses the “flow cache”—an accelerated
mechanism for flow matches. Implementations that use the
flow cache significantly outperform those that use regular
match processing for cache hits. Header checksums require
2000+ cycles on the general-purpose cores, but only 300 cy-
cles on ingress accelerators. Offloading performance also
depends on the traffic profile, such as the number of con-
current flows, packet types, and packet sizes. For instance,



class MiniNAT {
HashMap<struct int_key, struct flow> m;

define void @pkt_handler (i32 %p) {
%1 = call %struct.ip* @ip_header

%14 = load i32, i32* %13, align 4
ret %class.packet* %5}

;/'c')id pkt_handler (Packet *pkt) {
ip_hdr *ip = pkt->ip_header();

key. src_ip = ip->dst_addr;
struct flow f = m.find (&key);
control flow graph

ip->dst_addr = f. int_ip;

| @ framework API
checksum_update(ip); N : : E;:}——f(—)ﬁf,
| ——=—_ > fool
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Figure 2. The roadmap of Clara and the key techniques. (a) Clara takes in a legacy NF in its unported form (e.g., Click
programs). (b) Clara transforms the NF into a low-level Intermediate Representation (IR) using program analysis. (c) Clara uses
a combination of program analysis and machine learning techniques to generate several types of offloading insights.

TCP SYN packets may require flow state setup, and check-
sum or DPI operations would take different amounts of time
depending on the packet sizes. Figure 1 further showcases
a set of benchmarks for five NFs on Netronome Agilio. We
benchmark each NF with 2-4 different porting strategies or
workloads. Depending on the use of accelerators, memory lo-
cations, flow table sizes, and traffic profiles, the performance
can vary up to 13.8X.

As we can see, the cross-platform porting process can
be full of surprises if developers’ assumptions about hard-
ware, workloads, or NF programs are slightly off. Automated
support for generating offloading insights will significantly
benefit today’s SmartNIC developers.

Clara: Automated offloading insights. Clara is a tool
that automates much of this work by generating offloading
insights for cross-porting network functions to SmartNICs.
As shown in Figure 2, Clara analyzes an unported NF stati-
cally, even if it cannot directly run on the target SmartNIC,
to predict its key performance parameters once cross-ported.
Concretely, Clara estimates the number of compute instruc-
tions and the number of memory accesses, which are critical
parameters for NF performance analysis [41, 49]. Further-
more, Clara suggests effective porting strategies to improve
offloading performance in an NF- and workload-specific man-
ner. Achieving these goals requires tackling two technical
challenges. First, Clara needs to perform predictive analysis
of a host-based NF without having to cross-port the code. Sec-
ond, it needs to explore the program tuning space to identify
effective porting strategies despite hardware and compiler
opacity. Clara’s roadmap is to use program analysis tech-
niques as a starting point, transforming NF programs in a
uniform low-level IR to extract code features. It then relies on
machine learning techniques to infer blackbox compiler be-
haviors and construct accurate cost models of the underlying
hardware. Clara enables a variety of use cases.

e Cross-platform performance prediction. Existing tools
for NF performance analysis characterize the num-
bers of compute instructions and memory accesses,
but they do so for already-working x86 programs [41].

Clara enables similar analyses across platforms, with-
out requiring the NF programs to be ported first.

Section 3 details this step. Beyond this characterization, Clara
explores and suggests a range of porting strategies to in-
crease performance, which we elaborate on in Section 4.

o Identifying accelerator usage. Significant performance
gains are possible with SmartNIC ASIC accelerators
(e.g., LPM, CRC). Clara extracts program features from
the input NFs and identifies the corresponding algo-
rithms that can benefit from hardware acceleration.

e Multicore scale-out analysis. SmartNICs are multicore
platforms that parallelize packet processing. Assigning
more cores to an NF may increase throughput, but only
up to a certain point, because packet processing can
be bottlenecked elsewhere on the NIC architecture
(e.g., memory subsystems). Clara can suggest close-to-
optimal core counts for different NFs.

o NF state placement. NFs contain stateful data structures
of varying sizes (e.g., flow tables, ACLs). Clara exploits
the SmartNIC memory hierarchy to identify effective
state placements to increase performance.

e Memory access coalescing. To further reduce memory
access latency, Clara analyzes the access patterns of
stateful variables and suggests variable allocation and
packing strategies, as well as memory coalescing sizes.

o NF colocation analysis. Packet processing often requires
the use of multiple NFs. Some NFs may be friendly for
colocation on the NIC, but others may result in high
contention. Clara performs pairwise ranking of coloca-
tion strategies to minimize performance interference.

Clara significantly reduces manual labor for NF develop-
ers, and its offloading insights lead to greater performance.
We showcase the power of Clara by applying it to Netronome,
a popular baremetal NIC [24, 34, 52] with specialized non-
coherent RISC cores, a lightweight runtime, programmable
in restricted C dialects (Micro-C). Emerging platforms like
the Fungible DPUs [12] and the Pensando DSCs [13] share



1: function PREDICTOFFLOADINGPERF(prog, nic)

2 //Program preparation

3: llir «— LLvMBYTECODE(prog)

4: cfg «— GETCrG(llir); api_set «— GETAPI(llir);
5 nf_blocks = GETCoDEBLOCK(cfg);

6: //Approximate compilation via LSTM

7: for block € nf blocks do

8: llvim_seq « LrvmSEQ(block)

9: instr_seq «— LSTM(llvm_seq, nic)
10: Insights.add(type=compute, block, instr_seq.compute)
11: Insights.add(type=memory, block, instr_seq.memory)
12: Framework API analysis via reverse porting
13: for api € api_set do
14: api_prof «— REVERSEPORTPERF(api, nic)
15: Insights.add(type=api, api, api_perf)

16: return Insights

Figure 3. The algorithm for approximate analysis of un-
ported NFs to predict its ported performance parameters.

similar characteristics, all representing a drastic departure
from general-purpose x86 platforms.

3 Predicting Offloading Performance

The first class of offloading insights center around predicting
NF performance parameters on the SmartNIC. To obtain such
information, Clara performs predictive analysis by extracting
NF features using program analysis and inferring compiler
behaviors via learning. First, Clara converts a legacy NF to a
uniform LLVM [44] Intermediate Representation (IR), and
constructs its control flow graph (CFG). Clara then predicts
what the compiler might generate, at the instruction level,
without knowing the exact hardware details, instruction se-
mantics, cost, or compiler optimizations. This is achieved
by training a machine learning model that mimics compiler
behaviors. Clara also handles host and SmartNIC NF frame-
work differences (e.g., Click API calls vs. Netronome built-in
libraries) by a reverse porting process to achieve high fidelity
in its analysis. Figure 3 summarizes the algorithm.

3.1 Program preparation

Clara first transforms an input NF program into a uniform
format in LLVM intermediate representation (IR). The LLVM
IR is in static single assignment (SSA) form, a simpler and
more unified syntax that is easier to analyze compared to
higher-level languages like C/C++. To ensure that the IR
stays as close to the original NF logic as possible, Clara
disables most LLVM optimizations when generating the IR
representation of the NF program. Clara also extracts the
control flow graph (CFG) of the NF program: nodes are basic
code blocks without branches or loops, and edges represent
branching or loop conditions.

class MiniNAT {
HashMap<struct int_key, struct flow> int_map;
void simple_action(Packet *pkt) {
/I'if packet comes in from internal port
ip_hdr *ip = pkt->ip_header();
tcp_hdr *tcp = pkt->tcp_header();
u16 hdr_size = (ip->ip_hl + tcp->th_off) << 2;
if (hdr_size < ip->ip_len) {
struct int_key key;
key. src_ip = ip->dst_addr;
key. dst_ip = ip->src_addr;
struct flow f = int_map.find(&key);
if (f = NULL){
ip->dst_addr =f. int_ip;
tcp->dst_port = f. int_port;
pkt->send(config_port);
} // else if flow does not exist
}
}
%

Figure 4. A simplified Click element (NAT).

‘ipfhdr *ip = pkt->ip_header(); ‘ ,""‘/01 = load struct.ip*, ...

/%2 =1shr %1, 4, .
! %3 = zext i8 %2, 32, ...

‘tcp_hdr *tcp = pkt->tcp7header();‘

%4 = load struct.tcp, ...
%5 = Ishr %4, 4, ...

%6 = zext i8 %5, i32, ...
"".,‘ %7 = add i32 %3, %6, ...
."‘.‘ %8 =shli32 %7, 2, ...

‘hdr,size = (ip->ip_hl + tep->th_off) << 2;[

if (hdr_size < ip->ip_len ,‘

key. src_ip = ip->dst_addr;
key. dst_ip = ip->src_addr;

- “1_ store = %8, @hdr_size
‘slruct flow f = \anap.fmd(&key);‘ -

#w l:l Compute instructions

Memory instructions

l:l NF framework API
Core NF logic

ip->dst_addr =f. int_ip;
tcp->dst_port = f. int_port;

‘ pkt->send(config_port); ‘

Figure 5. The program preparation process.

Figure 4 shows an simplified Click element as an exam-
ple of Clara input. The Click framework is a popular choice
for NF prototyping, and many projects have chosen to base
their designs upon this framework [26, 32, 49, 71]; Clara
adopts the same assumption. Figure 5 further illustrates the
Clara analysis on the NAT element. Clara annotates each
LLVM instruction in a static pass, separating compute in-
structions (e.g., add), memory accesses (e.g., load), and NF
framework API calls that need to be reverse ported (e.g., call
@ip_header). It further distinguishes two different types of
accesses: those to stateless NF variables, such as function-
local stack variables that are temporary for each packet, and
those to stateful NF variables that represent global data struc-
tures that persist across packets. Subroutines in the NF that
do not depend on the host framework are directly inlined.

3.2 Predicting cross-platform performance

Clara then performs predictive analysis on the NF perfor-
mance parameters on the SmartNIC, using the LLVM IR
obtained from the step above. It further divides its analyses
into two parts: one for stateful variable accesses (i.e., loads
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Figure 6. The instruction prediction machine learning
model. The LSTM recurrently takes in LLVM instruction
sequence encodings, and outputs a hidden state which rep-
resents the extracted information; The information is then
fed into a Fully Connected (FC) layer for regression—i.e.,
predicting the number of instructions.

and stores to global variables in memory), and another for
stateless computation (i.e., compute instructions, or accesses
to function-local variables). As SmartNICs come with sim-
pler microarchitectures (e.g., for memory reordering and
prefetching), we find that stateful memory accesses have a
clear correspondence to the load/store instructions at the
IR level. Simply counting the number of memory instruc-
tions already leads to an accuracy of 96.4%-100% in practice.
Stateless instructions, however, go through more layers of
optimization: the compiler performs instruction selection or
peephole optimizations to rewrite compute instructions; it
also performs advanced register allocations for local vari-
ables so that stack operations may not result in any mem-
ory accesses. As these optimizations are dependent on the
closed-source hardware execution model, constructing ana-
lytical techniques to infer such optimizations based on LLVM
instructions is challenging. Instead, Clara mimics compiler
behaviors via learning to analyze what might be produced for
stateless instructions. By doing so, Clara estimates the num-
bers of compute instructions versus memory accesses, which
are two key parameters determining NF performance [41].

Our choice of ML techniques is inspired by the recent
successes of NLP (natural language processing) techniques,
e.g., for sentiment analysis and text classification, for which
analogies exist. Natural language processing is powered by
sequence prediction—e.g., word mappings from source to tar-
get languages are based on best fits, and collections of words
may appear together as phrases. In our problem, LLVM IR is
the source language, the SmartNIC assembly is the target;
each instruction is viewed as a word, and each code block as a
sentence. Clara builds upon these analogies and applies neu-
ral language translation to predict the SmartNIC instructions
from LLVM input. However, there are two unique challenges
Clara addresses.

Data synthesis. NLP techniques require a large amount
of document corpus from which patterns can be learned, but
in our case SmartNIC programs do not exist in abundance

Metric Clara | Baseline
Jensen-Shannon divergence | 0.0303 | 0.1010
Rényi divergence 0.1202 | 0.4061
Bhattacharyya distance 0.0354 | 0.1263
Cosine distance 0.0267 0.1164
Euclidean distance 0.0611 0.1383
Variational distance 0.3070 0.6713

Table 1. The Clara data synthesis engine generates repre-
sentative Click programs. The metrics measure the distance
between the instruction distributions for real-world vs. syn-
thesized Click programs as compiled by LLVM.

due to the recency of such platforms. Therefore, preexisting
LLVM/assembly program pairs are not easy to obtain. To
address this, Clara borrows insight from data synthesis [25],
a technique that the ML community uses to enhance train-
ing data by automatically synthesizing data pairs—which in
our context are host NFs and their SmartNIC equivalents.
Generating random yet representative programs is an active
research topic on its own, and we build upon the progress
made by the PL community in this regard.

Clara customizes YarpGen [48], a state-of-the-art tool that
generates C/C++ programs by first randomly picking some
ASTs (abstract syntax trees) and fleshing them out into source
code. The AST generation strategy is further guided by the
statistical properties of the target program corpus—e.g., Click
elements have different syntax distribution from other pro-
grams. Our tool first analyzes existing Click elements to
obtain representative AST distributions, and then feeds such
properties to the program generator. Furthermore, Clara
modifies YarpGen so that a) the emitted programs are en-
capsulated in C++ classes that inherit the ‘public Element’
class, and b) that the program statements manipulate packet
headers, payload, and metadata as defined in the ‘Packet’ and
‘WritablePacket’ Click classes. As an additional constraint,
Clara only targets packet operations that have correspond-
ing support in the SmartNIC. Finally, the data pairs are then
compiled by host and the SmartNIC compiler, respectively,
resulting in LLVM instructions and SmartNIC assembly code.
We have added and modified 1400 lines of code to YarpGen
for this customization.

Table 1 shows that our synthesizer generates represen-
tative Click programs. We have compiled all synthesized
programs using LLVM and collected the instruction distribu-
tion, and compare it against the distribution obtained from
real-world Click programs. Using common similarity metrics
that measure the quality of synthesized data [63], we found
that our synthesizer achieves high fidelity. We also show a
baseline synthesizer that does not take into account Click’s
AST distribution. The synthesized distribution is notably
different from that of real-world Click programs.

Vocabulary compaction. A natural language has a well-
defined vocabulary, but an instruction with the same opcode



could be applied to an unbounded number of operands—
e.g., different program variable names or constants could
lead to an almost-infinite vocabulary. Clara compacts the
vocabulary by abstracting away concrete variable names and
substituting an operand with its type (e.g., ‘add int const’ in-
stead of ‘add x 2’), with the exception of well-defined header
field names. This reduces the vocabulary to a few hundred
distinct “words”, representing a much smaller vocabulary
than most natural languages. This compacted vocabulary
enables Clara to apply a basic, one-hot encoding to the in-
structions, which essentially treats every word as a unique
feature, while still achieving high accuracy. In contrast, NLP
techniques often need to reduce the number of features by
producing “word embedding” (i.e., associating words with
their contexts), as the vocabulary is significantly larger.

With these enhancements, Clara trains a Long-short Term
Memory (LSTM) [38], a recurrent neural network that is
specialized for sequence prediction and used for language
translation tasks. The output of LSTM is further fed into a
set of fully connected (FC) layers that predicts the number
of compute and memory instructions that the input program
would compile to. During training, our loss function mea-
sures the differences between the predicted number and the
ground truth. The training aims to learn the neural network
weights that minimize such error. Once the training conver-
gences, Clara uses the LSTM+FC model to perform inference
to analyze a given NF program.

3.3 Handing NF framework API

The above analyses apply to LLVM instructions compiled
from the NF body and its subroutines (by inlining the code),
but NF framework API calls are handled separately—their im-
plementations are different in nature across host and Smart-
NIC platforms. Clara must account for these framework dif-
ferences to achieve a high-fidelity analysis.

As identified in a recent work, Gallium [71], the Click
framework contains two classes of API calls: stateless header
manipulation functions (e.g., ‘ip_header’, ‘tcp_header’), and
stateful data structures (most commonly, ‘HashMap’ and
‘Vector’). The first class of API calls rely on Linux code to
parse packet headers (e.g., ‘struct sk_buff’), but SmartNIC
versions would rely on their own packet handling functions
(e.g., ‘nbi_meta_pkt_info’). The second class includes stateful
data structures. Click data structures (e.g., HashMap) elasti-
cally scale at runtime via entry insertions and deletions; but
on baremetal NICs, data structure sizes must be pre-specified
as they lack support for runtime memory allocation. The
algorithms for walking the data structures are also differ-
ent: a ‘HashMap.find()’ call in Click uses linear probing to
resolve hash collisions, but the same API in Netronome uses
a fixed set of buckets as dynamic memory allocation is pro-
hibited. As another example, the “Vector.delete()’ Click call
shrinks the data structure; but in Netronome, deletion calls
only mark the entries as invalid. Instead of inlining code

from the host framework, Clara substitute the framework
API calls with what would faithfully represent the SmartNIC
implementations, using an idea that we call reverse porting.

Reverse porting. We derive an additional set of Click
elements that represent SmartNIC-style implementations of
the same functions (e.g., fixed slots instead of linear prob-
ing). This is achieved by a reverse port of these SmartNIC
libraries. We draw inspirations from the line of work in
transpilation [2, 6, 20, 66]. Transpilers, unlike compilers that
transform programs into a lower-level representation, trans-
late from one source language to another. This is particularly
useful for converting programs in arcane languages (e.g.,
Fortran) to easier languages (e.g., Python) where developer
skills are readily available [7, 20]. We note on the analogy:
SmartNIC programs are more restricted and arcane than
C++. Transpilers follow a standard approach that applies
manually-crafted substitution rules to program tokens (e.g.,
Fortran ‘integer’ is converted to ‘int’ in Python, ‘logical’ to
‘bool’, and ‘dimension(0:n-1)’ to ‘array’); occasional errors
are fixed manually to produce valid code [20]. We have fol-
lowed a similar approach in Clara.

An important property this provides is the symmetric code
structures in the reverse-ported code, as we simply take the
AST (abstract syntax tree) of the source program and per-
form line-by-line translation following the same control flow.
By ensuring that the newly derived Click elements follow
the same control flow behaviors with the SmartNIC libraries,
the same traffic workload will trigger similar processing be-
haviors in the reverse-ported code. This is especially critical
for stateful data structures, because NF state maintenance re-
quires complex branching and loops. Asymmetric code paths
would lead to different execution and performance charac-
teristics across platforms. To analyze the performance of the
reverse-ported Click elements, Clara uses the machine code
as compiled from the SmartNIC compiler directly instead of
using learning-based inference.

4 Identifying Porting Strategies

Leveraging the numbers of compute instructions and mem-
ory accesses obtained above, Clara further suggests another
class of offloading insights, which identify effective porting
strategies in an NF- and workload-specific manner. The port-
ing strategies cover accelerator usage, multicore scale-out
factor analysis, NF state placement, memory access optimiza-
tions, and NF colocation suggestions.

4.1 Algorithm identification

Clara automatically suggests SmartNIC acceleration oppor-
tunities. Certain packet-processing algorithms (e.g., CRC
checksum, longest prefix match) that are procedurally imple-
mented in the host NF will benefit from specialized ASIC ac-
celerators in the SmartNIC. Clara identifies such code blocks
and suggests rewriting strategies.
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Figure 7. Clara extracts LLVM sequences as features, and
classifies NF components to identify accelerator opportuni-
ties when porting the NF.

Recognizing opportunities for accelerator offloading, how-
ever, presents a technical challenge—the same functionality
can be implemented differently by different developers, some-
times in idiosyncratic manners. Consider CRC (cyclic redun-
dancy check) as an example, which computes a checksum
over input data by padding, chunking, and looping through
the chunks to perform XOR operations. A range of implemen-
tation strategies exist, and they differ in padding strategies,
endianness considerations regarding bit and byte orders,
choices in memorizing lookup tables—not to mention that
CRC algorithms are further parameterized by the choice
of CRC polynomials and checksum widths (e.g., CRC16 vs.
CRC32). Similarly, a longest prefix match algorithm may
use range or Patricia tries alike. Clara’s analysis must con-
sider the diversity of implementation choices for the same
algorithm. Our observation is that each such algorithm has
its inherent logical workflow, which exhibits distinct fea-
tures under the ML lens despite implementation differences.
As such, Clara uses learning to perform “pattern matches”
against well-known accelerator algorithms in SmartNICs.

This is a classification task, where the learning process
aims to identify classifiers—or separating curves in a feature
hyperplane—that divide positive examples (e.g., CRC func-
tions) from negative ones (i.e., non-CRC functions). In the
inference phase, a new problem instance is compared against
known instances for binary classification. Concretely, for the
training process, Clara curates algorithm samples for com-
mon accelerators such as CRC hash functions and longest
prefix matches. The dataset contains 600+ Click NF elements,
and also 9000+ standalone programs crawled from online
repositories, some of which implement these algorithms in
different contexts (e.g., CRCs are common for error detec-
tion in non-NF programs as well). This is a one-time effort
that does not need to be repeated unless there are new, un-
captured accelerator algorithms. The curated dataset is also
incrementally expandable to incorporate new accelerators
without relabeling the existing corpus.

We use support vector machines (SVM), which is a well-
studied technique for ML classification [35]. It takes in train-
ing data points and their manually assigned labels, and learns
classifiers based on program features. Code features are ex-
tracted using the Sequential Pattern Extraction (SPE) algo-
rithm [29], where each feature is a subsequence of LLVM
instructions and a feature vector is obtained for each data
point. Feature extraction optimizes for the following goals:
(1) an identifying feature should occur in many programs
with accelerator usage opportunities—a property known as
high support; (2) such a feature almost never appear in non-
accelerator programs—known as high confidence. We also
augment this with manually extracted features—for instance,
LPM algorithms have distinct pointer chasing behaviors,
moving from one address to a child address in a bounded
loop. By identifying and combining multiple features for
each accelerator algorithm, we achieve low false positive
and negative rates. The classification phase assigns a label to
a new data point based on its feature vector representation.
In our case, the label is one of the accelerators, or simply
‘none’ if no such algorithm has been detected. Clara iter-
ates through all known accelerators, and uses the trained
classifiers to label a given NF’s code block.

4.2 Multicore scale-out analysis

SmartNICs use multicore parallelism to improve packet pro-
cessing performance. For instance, Netronome SmartNICs
come with a large number of wimpy cores (e.g., 60x 1.2GHz
cores), and packets are processed in run-to-completion mode.
Increasing the core count for an NF generally leads to higher
throughput, but beyond a certain point, the throughput
would plateau due to contention at the memory subsystem.
Such contention will also cause the packet processing la-
tency to continue to increase with more cores. Moreover,
depending on the level of memory/compute intensity, NF
programs will bottleneck at different core counts.

Clara enables multicore scale-out factor analysis by pre-
dicting the optimal number of cores for an NF program and
traffic workload. Its goal is to navigate the latency/through-
put tradeoffs at different operating points, and to identify the
“knees” of the latency curves [56]. To handle platform opac-
ity, we take an ML-based approach as inspired by TVM [23],
which trains cost models despite the vendor-specificity of
accelerators (e.g., GPUs and TPUs), and infers effective op-
timizations for a given tensor program. By separating the
‘algorithm’ (i.e., program logic) from its ‘schedule’ (i.e., strate-
gies of execution), TVM-like approaches search through the
schedule space to identify effective optimizations.

Clara operates analogously. First, it synthesizes a set of
training programs, which cover a wide range of arithmetic
intensity (i.e., compute instructions vs. memory accesses to
different regions) and program sizes. In the training phase,
Clara tries different ‘schedules’ (i.e., the number of cores)
for each program. In this automated pipeline, programs are



synthesized and deployed to the SmartNIC for performance
testing under different traffic workloads (e.g., flow size distri-
butions, packet sizes). By observing the performance impacts
with different core counts, Clara trains a regression model
based upon GBDT [22] to predict the best core counts for
different NFs under a given workload.

4.3 NF state placement

Stateful NFs contain global data structures (e.g., hashmaps
or vectors that maintain cross-packet state), and packet pro-
cessing requires flow- or IP-level state lookups and updates.
Unlike x86 systems, where all state is maintained in DRAM
and the cache subsystem is hardware-managed, SmartNIC
platforms have a more complex hierarchy. Netronome Smart-
NICs, for instance, have cluster local scratch (CLS), cluster
target memory (CTM), internal memory (IMEM), and ex-
ternal memory (EMEM), with increasing sizes and access
latencies. Some caches are hardware-managed, but there are
also software-managed scratches. Furthermore, without OS
or full 1ibc support, stateful NFs cannot easily rely on fa-
miliar malloc or brk calls to allocate memory dynamically.
Similar restrictions apply to deallocation calls. An important
offloading decision is where to allocate memory for each
stateful data structure. Clara generates offloading insights
on effective placement strategies.

Clara analyzes the data structure sizes in the NF programs
in conjunction with a workload-specific profile (i.e., a pcap
trace, similar as in host NF analysis projects [41]). To obtain
access frequencies, Clara runs the Click NFs, augmented with
reverse-ported elements with identical control flows, on the
host machine with the specified workload. It then computes
a placement strategy by formulating an ILP (integer linear
programming) problem that minimizes the overall access
latencies to all data structures. Consider an NF with k stateful
data structures, where s;,i € [0..k] denotes its size and f;
its access frequency. Clara places it to one of the t memory
locations, where j € [0..t] represents the j-th level of memory
hierarchy, L; its access latency, and C; its maximum capacity.
A set of binary variables p;; indicates whether or not the
i-th data structure should be placed to j-th memory location.
The objective function of the ILP is to minimize the overall
access latency, or min(); ; Lj X p;j X f;), while satisfying the
following constraints:

¢ k
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where the first set of constraints specifies that each data
structure must be placed at some memory location, and the
second set specifies that the data structure sizes should not
exceed the overall memory capacity.

4.4 Memory access coalescing

Another type of memory optimizations that Clara enables is
memory access coalescing. This reduces the number of mem-
ory accesses to global variables by packing certain variables
close together and by tuning access sizes. On host platforms,
entire cache lines (typically 64-byte in size) are brought from
or evicted to memory upon accesses. So for such systems,
when allocating a set of variables (e.g., a C struct), memory-
based optimizations include packing related variables in the
same cache lines to reduce round trips to memory, as well
as reduce false sharing by carefully determining allocation
addresses. However, SmartNICs present more challenges. Ac-
cesses to a memory hierarchy may not occur at 64-byte sizes
unless there is a similar cache subsystem, and managing
variables in scratchpads is entirely up to software. Clara an-
alyzes which variables are frequently accessed together, and
it suggests variable allocation strategies to pack such fields
close to each other. Further, Clara suggests memory access
sizes based on the packing decisions, so that entire packs of
variables are read and written together to minimize memory
latency. As a concrete example, consider the following code
snippet for TCP processing:

// index flow table
tcp->th_sport = sport; tcp->th_dport = dport;

// generate ack
if (tcp—>th_ack == iss + 1 && state == 0) { .. }

Clara optimizes for such access patterns by suggesting that
‘sport’ and ‘dport’ be allocated adjacent to each other in the
SmartNIC program. Similarly, it suggests packing ‘iss’ and
‘state’ variables together, which are used for generating TCP
acknowledgment packets.

Specifically, Clara clusters global variables into different
packs based on access frequencies collected from the host
platforms. For a target network trace, Clara generates an
access vector for each such variable v. Suppose there are k
code blocks, Clara would compute an access vector of that
size for v in the following manner. First, Clara counts the
number of accesses to v from the i-th code block, ¢;, i € [1..k].
It then normalizes c; by the total number of accesses to v, and
computes p; = cl-/Zf:1 c;. The resulting vector [py,- -, pk]
would encode the access patterns of v. The Clara clustering
algorithm suggests that variables with similar access vectors
should be allocated adjacent to each other, and that they
should be fetched using coalesced accesses. The sizes of the
coalesced accesses are set to match the size of the variable
pack. This is achieved by a traditional K-means algorithm.

4.5 NF colocation analysis

In many scenarios, developers need multiple NFs for packet
processing. Care must be taken when colocating NFs to the
same SmartNIC—if the colocated programs are not “friendly”



to each other, they will experience significant performance
degradation. A recent project [49] has shown that on x86
platforms, NF colocation can cause a variable amount of in-
terference depending on the NFs. Clara generates offloading
insights on effective colocation strategies when there are
multiple candidate NFs to choose from.

Specifically, Clara performs pairwise ranking [22] to deter-
mine which NFs are friendly to each other. Ranking tasks are
by nature different from traditional regression or classifica-
tion. We rely on a state-of-the-art framework, XGBoost [22],
and its LambdaMART ranking algorithm for this task. In the
training phase, Clara randomly selects training NFs to be
colocated on the SmartNIC. By default, each NF is given the
same amount of SmartNIC resources, although this can be
configured differently by the user. As NF interference primar-
ily stems from contention at the memory subsystems [49],
Clara extracts features including: a) arithmetic intensity of
each NF, b) the number of compute instructions for each
NF, and c) the ratio between colocated NFs’ arithmetic in-
tensities. By sampling many data pairs and minimizing the
pairwise loss during training, Clara learns an ML model for
ranking the friendliness for colocation. Concretely, this is
measured by the performance degradation when NFs are
colocated: the collective colocation throughputs normalized
by their non-colocation peak throughputs. In the analysis
phase, Clara iterates through all NF pairs under considera-
tion. It extracts the features as stated above, and uses the ML
model to predict how friendly the NF pair will be if they are
colocated. Such ranking helps developers to make informed
decisions in effective colocation strategies.

5 Evaluation

In this section, we present a comprehensive evaluation to
measure the accuracy of Clara’s analyses and the perfor-
mance improvements after applying the Clara insights.

5.1 Prototype and setup

We have implemented a prototype of Clara using around
7400 lines of code in Python and C++, consisting of three
components: a) a program analysis engine that relies on
LLVM to generate LLVM IR and control flow graphs, as well
as for program analysis; b) a machine learning engine that
uses Scikit-learn and Tensorflow libraries for predictions and
offloading insights; and c) a set of utility tools for supporting
functions, such as data synthesis and constraint solving.
Setup. All our experiments have been conducted on a
Ubuntu 18.04 server with six Intel Xeon E5-2643 Quad-core
3.40 GHz CPUs, 128 GB RAM, and 1TB hard disk, which is
equipped with a 40Gbps Netronome Agilio CX SmartNIC.
The traffic workloads are generated from trafgen [16], a
multithreaded benchmarking tool for packet generation. The
timing measurements are obtained via the ingress and egress
timestamps on the SmartNIC platform. To evaluate Clara, we

Click elements | LoC | Instr. | State | Mem | API | Insights
anonipaddr 93 312 X 0 7 oe
tepack 68 142 X 2 12 oe
udpipencap 87 185 X 9 15 oe
forcetcp 126 | 303 X 3 10 oe
tcpresp 124 | 452 X 2 23 oe
tcpgen 108 | 418 v 25 22 [e] X3
aggcounter 95 151 v 13 3 [e] X3
timefilter 153 | 302 v 22 11 [e] X3
cmsketch 92 276 v 5 6 L0000
wepdecap 104 | 332 v 5 16 | an@e0
iplookup 95 314 v 23 18 | ar@e0
iprewriter 166 331 v 18 25 A040
ipclassifier 372 | 1860 v 40 55 A040
DNSProxy 974 | 2438 v 44 97 A040OD
Mazu-NAT 1266 | 4127 v 102 148 | c@¢o®
UDPCount 478 | 992 v 39 45 | ceeo®
WebGen 469 | 1221 v 62 52 | cesod

Table 2. The Click programs that we have evaluated, their
corresponding LoC, statefulness, the compiled LLVM com-
pute and memory instructions, Click library calls, and the
types of offloading insights generated by Clara. Circle: cross-
platform prediction; triangle: algorithm identification; solid
triangle: reverse porting; solid circle: scale-out factor analy-
sis; diamond: data structure placement; solid diamond: vari-
able reordering and access coalescing; crossed circle: colo-
cation. Solid triangle: Elements dominated by Click data
structures, where we apply reverse porting to handle frame-
work differences instead of prediction. The original Click
programs are written for the x86 platform, and we have
manually ported them to the NIC for evaluation.

have used both synthesized NF programs from our toolchain,
as well as a set of real-world Click NFs as summarized in
Table 2. These Click programs are originally written for x86
platforms. To evaluate their performance on the SmartNIC,
we have manually ported them to Netronome in Micro-C.

Porting. We have used three porting strategies: a) naive
porting, which follows the original logic of the Click NFs
faithfully; b) Clara porting, which applies the offloading in-
sights to the porting process; and c) expert emulation, which
simulates manual tuning by sweeping relevant parameters
for a particular porting decision, and picks the optimal con-
figuration as identified by this exhaustive search. We have
also described the classes of offloading insights that apply to
each NF in Table 2, as they vary from program to program.
The naive porting strategy further serves as ground truths to
evaluate Clara’s prediction accuracy. We use the Netronome
compiler (NFCC) to generate SmartNIC machine code from
the ported NFs.

Methodology. To evaluate the accuracy of Clara’s differ-
ent components, we compare against alternative ML tech-
niques that are commonly used for similar tasks. This in-
cludes traditional ML solutions (e.g., kNN, SVM, GBDT, DT),
neural networks (e.g., DNN, CNN), and an AutoML solution,
TPOT [14, 53]. AutoML solutions are designed to search
through different ML pipelines and hyperparameters, with
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Figure 8. Clara outperforms DNN, CNN and AutoML in instruction prediction.
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Figure 9. Clara achieves high precision and recall rates for
algorithm identification, and is on par with AutoML.

the goal of reducing manual burden in designing and se-
lecting ML models. To evaluate the effectiveness of Clara’s
offloading insights, we benchmark across different porting
strategies. For workload-specific analysis, the training and
testing are performed on the same workloads, similar as ex-
isting work [49]. A workload specification includes packet
sizes, the number of flows, and the IP address distribution.

5.2 Cross-platform prediction

We start by evaluating the accuracy of cross-platform pre-
diction. We primarily evaluate the LSTM+FC model in Clara,
which predicts the number of instructions for code that is
not reverse ported. As discussed earlier, memory accesses
are counted from the number of load/store instructions,
and this achieves an accuracy of 96.4%+ for the tested NFs.
The LSTM+FC model has converged during training, and
achieves similar accuracy on training and testing sets. This
indicates that Clara does not overfit narrowly to the seen
samples.

Since Clara uses NLP-inspired techniques, we compare its
accuracy against other commonly used neural networks (e.g.,
DNN and CNN) for sentiment analysis and sentence classi-
fication tasks [51, 60]. Accuracy is measured by comparing
predicted number of compute instructions with the number
of instructions in Netronome machine code (by compiling
the ported programs using NFCC) on a per-code block basis.
The weighted mean-absolute percentage error (WMAPE)
of Clara after the training converges is 10.74%. It achieves
6.0%-22.3% across all tested Click NFs. This outperforms
all other tested baselines, because Clara specifically takes
into account the code sequence information in its prediction,
incorporating contextual dependency of the instructions. Fig-
ure 8 shows the accuracy of Clara on a set of representative
NFs against other baselines.

Our comparison against the AutoML solution shows simi-
lar results. We have trained TPOT using the same datasets as
Clara, and the best ML solution it suggested is an ML pipeline
with a random forest regression model. As shown in Fig-
ure 8, AutoML does deliver high performance and performs
roughly on par with CNN and DNN when aggregated across
NFs. After training converges, TPOT achieves an WMAPE
of 12.43% on the training set. It achieves WMAPE values
ranging from 11.9%-30.3% for real-world NFs. Clara, on the
other hand, achieves better performance than TPOT as it is
custom designed for the task at hand.

5.3 Algorithm identification

Next, we evaluate the effectiveness of algorithm identifica-
tion, using precision (TP/TP+FP) and recall (TP/TP+FN) rates
as the key metrics. We compare against commonly used ML
models for structured data (e.g., kNN, DNN, DT, GDBT) and
AutoML. On Netronome, there are acceleration engines for
LPM (longest-prefix match), CRC, and other crypto algo-
rithms (e.g., AES, MD5), although typical NFs do not involve
cryptographic algorithms. Figure 9 shows that Clara achieves
a precision of 96.6% and recall of 83.3% for these accelerators.
The AutoML solution has identified a KNN model with differ-
ent parameters compared to our baseline. We have found that,
for this classification task, other models and AutoML have
on-par performance, because the accelerator algorithms have
very distinct features. Our analysis of the features shows that
they intuitively reflect a human understanding of the natures
of the algorithms. For instance, a distinctive feature for CRC
functions is the high density of bitwise operations, such as
xor, and, and or, as well as bitshifts shl that iterates over
data chunks for checksum computation.

As concrete examples, Clara identifies opportunities to
use the LPM accelerator in the ‘radixiplookup’ element (part
of the ‘iplookup’ NF, which performs IP lookup), and CRC
acceleration opportunities in elements like ‘rc4’ (part of the
‘wepdecap’ NF, which is a wifi packet decapsulation pro-
gram). Figure 10(a) further illustrates that Clara effectively
separates positive and negative data points, where the X and
Y axes represent the two most important feature dimensions
extracted via Principal Component Analysis (PCA).

We proceed to evaluate the effectiveness of the Clara algo-
rithm identification insights with sample NFs. Figure 10(b)
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Figure 10. Clara identifies acceleration opportunities accurately, and its suggestions lead to performance improvements.
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Figure 11. Clara achieves high accuracy in suggesting the number of cores to use for each NF. The optimal core counts lead to
significantly higher performance than naively using all cores. Vertical lines highlight Clara’s predictions.

shows the benefits of porting the ‘count-min sketch’ NF and
the ‘wepdecap’ NF to use CRC accelerators, and Figure 10(c)
shows the benefits of porting the ‘iplookup’ NF to use LPM
accelerators. As we can see, applying the Clara insights im-
proves the peak throughput of CRC-based NFs by up to 1.6,
and it decreases the latency by up to 25%, compared to the
naive porting that procedurally translate the NF code to
the SmartNIC. Similarly, for the ‘iplookup’ NF, which Clara
identified as containing opportunities for LPM acceleration,
applying such porting strategies increases throughput and
decreases latency by roughly one order of magnitude. These
results show that Clara’s offloading insights are helpful for
improving ported performance.

5.4 Multicore scale-out analysis

Next, we evaluate the effectiveness of Clara in performing
multicore scale-out factor analysis in Figure 11. For all NFs,
small data structures (e.g., counters) are located in SRAM-
based IMEM, and larger ones (e.g., flow-level state) in DRAM-
based EMEM with a small SRAM cache. We compare against
the ML models that have been used in similar contexts [49]
and AutoML, and the results are shown in Figure 11(a). As
we can see, the GBDT model in Clara achieves the highest
accuracy in this prediction, outperforming other baselines.
It also outperforms AutoML, which also identifies GBRDT

as the most effective model but with different parameters.
Figure 11(b) further shows the accuracy of Clara predictions
for the most complex Click NFs. On the 60-core Netronomoe
NIC, the suggested core counts deviate from the optimal
configurations (as obtained by exhaustive benchmarking
with all possible configurations) by 1%-6% across NFs. This
means that developers can leverage Clara to quickly identify
effective multicore configurations for their NFs.

Figures 11(c)-(d) show the throughput/latency ratio curves
for different NFs and workloads at different core counts, as
well as the suggested configurations by Clara. As we can
see, the performance benefits increase at the beginning of
the curves, as assigning more cores to these NFs improves
throughput with minimum latency increase. However, all
curves peak after a certain point, beyond which more cores
will simply result in more contention. Moreover, different
NFs peak at different core counts, and different workloads
also have different optimal configurations. For larger flow
sizes, the performance peaks earlier with respect to core
counts, as packets mostly produce cache hits. Packet process-
ing therefore utilizes computing engines more effectively.
On the other hand, for smaller flows, there are more cache
misses, so the cores are not as effectively used. As a result,
performance tends to peak later with more cores. Compared
to naively using all cores, the peak performance as achieved
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Figure 13. Clara’s memory access optimizations work well.

by the optimal core counts is up to 71.1% higher across the
tested NFs. Figures 11(e)-(f) further present the latency and
throughput figures for two representative NFs, Mazu-NAT
and Webgen, in detail. It also highlights Clara’s predictions,
which are close to the optimal operating points.

5.5 NF state placement

Next, we evaluate the effectiveness of Clara to identify NF
state placement strategies to improve performance. As dis-
cussed before, Clara analyzes the access frequencies of dif-
ferent data structures on the host platform with a given
network trace. It then formulates an ILP constraint solving
problem to determine how to place stateful data structures
in different memory hierarchies. The baseline solution does
not programmatically manipulate state placement, and all
data structures are allocated in EMEM.

As shown in Figure 12(a), on average, Clara’s placement
strategies reduce memory access latency by 33%, and they
improve throughput by 89% as compared to the baseline.
As a concrete example, in ‘'UDPCount’, small but frequently
accessed data structures, such as the ipclassifier and the
counter, are allocated in IMEM rather than EMEM. This
leads to improved performance over the naive port. The ILP
problem size scales with the number of data structures in a
particular NF, which is typically small. ILP solving finishes
within a few seconds in all cases.

5.6 Memory access coalescing

Next, we evaluate how well Clara can suggest stateful vari-
able packing and access coalescing insights. Figure 13 shows
the performance results before and after applying the Clara
insights to four Click elements that make extensive use of
global variables. We use the number of cores required to
saturate the bandwidth as the performance metric. Effective

packing leads to fewer memory access stalls, so full band-
width can be achieved with fewer cores. As concrete exam-
ples of Clara output, for the ‘tcpgen’ NF, one of the clusters
suggested by Clara contains source and destination ports;
another cluster contains variables for the ACK-processing
code paths (e.g., tcp_state, send_next and recv_next); on the
other hand, other variables (e.g., ‘good_pkt’ and ‘bad_pkt’)
are allocated far away from each other as they are never
accessed together. Overall, Clara identified five clusters of
stateful variables which are not allocated adjacently in the
original Click NF. Applying Clara’s suggestions to differ-
ent NFs reduces NF latency by 42%-68%, and this leads to a
reduction of core counts by 25%-55%.

5.7 NF colocation

Next, we evaluate the effectiveness of Clara’s colocation anal-
ysis. Unlike well-studied regression or classification tasks,
ranking problems are still under active study, and AutoML so-
lutions currently do not support ranking tasks [1, 15]. There-
fore, we focus on analyzing the prediction accuracy of Clara
and the NF colocation performance. We have trained four
models with different ranking objectives: a) total throughput
loss, b) average throughput loss, c) total latency loss, and d)
average latency loss. Specifically, a) measures the aggregate
colocation throughput and normalizes it by the sum of all
individual NF throughputs when they exclusively use the
SmartNIC; b) measures the relative throughput loss sepa-
rately for each NF and averages them. The loss objectives for
latency are analogous. After the training converges, we test
Clara models on random groups of 1000 synthesized NFs. As
shown in Figure 14(a), Clara with the total throughput loss as
training objective performs the best, achieving an accuracy
of 70+% when suggesting the best (top-1) colocation strategy,
and a top-3 ranking accuracy of 85+%.

Further, we show the results on four real-world NFs, for
which Clara performs ranking across six pairs of colocation
strategies. Clara has correctly ranked all top-3 choices for
these NFs. Figure 14(b) shows the throughput degradation
due to NF colocation. For each pair, the left bar shows the
colocation throughputs (one color for each NF) and the right
bar shows the throughputs for exclusive SmartNIC use. As
we can see, the top suggestions from Clara have smaller
throughput degradation as compared to colocating NFs with
lower ranking scores. The throughput degradation varies
up to 15% across six colocation strategies. Figure 14(c) fur-
ther shows the latency results, where the darker regions
of each bar denote the latency increase due to colocation
for that NF. For this experment, Clara’s ranking objective
is based on throughput, but as NF contention also results
in latency penalty, we see that Clara’s suggested strategies
are also better for latency metrics. Overall, applying Clara’s
insights helps developers to identify friendly NF programs
for colocated deployments.
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Figure 14. Clara achieves 70+% accuracy in suggesting the best colocation strategy, and 85+% for suggesting the top three.
NF1: Mazu-NAT, NF2: DNSProxy, NF3: UDPCount, NF4: Webgen.

30

60
50
40
30
20
10
0

Clara.Th. . Exp.Th. Clara.Lat. — Exp.Lat.

Throughput (Mpps)
=
Latency (us)

MazuNAT DNSProxy WebGen UDPCount

Ported Click NFs
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Figure 16. Clara is competitive with ‘expert’ implementa-
tions for memory access coalescing.

5.8 Expert emulation

Next, we explore how well Clara performs against ‘expert’
implementations. Instead of following the original NF pro-
gram logic faithfully, an expert programmer that is familiar
with SmartNIC details may employ manual tuning to iden-
tify the best strategy. Ideally, we could benchmark against
preexisting expert ports for comparison, but as SmartNICs
are an emerging platform, high-quality SmartNIC ports of
Click NFs are scarce. As such, we emulate expert tuning by
exhaustively sweeping relevant parameters for a particular
porting decision to identify the optimal configuration. As
the scale-out analysis already tests against all core config-
urations, and the NF colocation also measures all possible
colocation strategies, these evaluations are already represen-
tative of what an expert might achieve. Thus, we focus on
NF state placement and memory coalescing use cases.

For NF state placement, we perform an exhaustive search
over all possible placement strategies on a per data struc-
ture granularity—for each data structure, we try placing it
in any memory location that can accommodate its size. For
the tested NFs, we find that Clara performs slightly worse
but is still on-par with this exhaustive search. As shown
in Figure 15, across all cases, Clara’s latency is up to 9.7%
higher and its throughput is up to 7.6% lower than what is

achievable with an exhaustive search. As a concrete example,
in ‘UDPCount’, the optimal placement as identified by an
exhaustive search is to place certain state in EMEM rather
than IMEM, whereas Clara suggests that all state be placed in
IMEM as its size is small. Interestingly, this is because spread-
ing state across two memory regions in this case increases
the aggregate bandwidth. Moreover, even if state is placed
in DRAM-based EMEM, it is small enough to always fit into
its SRAM-based cache. Such information is not captured by
Clara’s ILP formulation.

For memory coalescing, we emulate expert tuning by an
exhaustive search over the relative position of the most fre-
quently visited variables—the total number of variables is
too large for an exhaustive analysis. Specifically, we identify
variables that are used in the top-3 most frequently trig-
gered code blocks, pack such variables together, and try all
possible positions amongst them. As shown in Figure 16,
this strategy delivers a small advantage over Clara, although
Clara remains competitive on the tested NFs. We found that
this is because Clara’s optimization focuses on identifying
clusters and packing variables within clusters, and this has
to use some cutoff threshold to determine some suitable
inter-cluster distance. Once cluster boundaries have been
determined, clusters of variables are placed independently
of each other. On the other hand, exhaustive tuning further
takes into account the performance effect due to the relative
position of clusters themselves. Some variables, even if they
are in different clusters, may still be close to each other if
their clusters are packed together.

Overall, this set of experiments demonstrates that the
Clara insights are competitive with what an expert might
achieve in manual tuning and optimization.

6 Discussion

Other SmartNICs. SmartNIC platforms come in great diver-
sity, but broadly they fall into two categories: a) SoC-based
platforms enclose embedded cores for packet processing, and
b) FPGA-based platforms are reconfigurable at the gate level
for finer-grained programmability. The techniques in Clara
target SoC-based platforms with an explicit ISA design. This
is because it relies on the LLVM IR of NF programs and the
corresponding ISA instructions on the SmartNICs for train-
ing and prediction. The current Clara prototype is based on



Netronome Agilio, and other SoC-based SmartNICs include
Nvidia BlueField, Marvell LiquidIO, and Broadcom Stingray.
In addition, emerging platforms like Pensando DSCs [13]
and Fungible DPUs [12] also have ISA-based cores. An inter-
esting exercise would be to evaluate Clara on a wider range
of SoC-based platforms. On the other hand, Xilinx Alveo and
other FPGA-based platforms would require a different set of
techniques for performance analysis as they do not expose
an ISA for their processing engines.

NF frameworks. Click is a popular NF framework, but al-
ternatives also exist [54, 55, 69]. For instance, NetBricks [55]
is a type-safe framework for Rust-based network functions.
eBPF [5] and P4 [10] are also becoming popular for NF proto-
typing. To handle these frameworks, Clara needs to be aug-
mented to analyze their framework-specific APL It also needs
to perform ML training on NF programs written against these
frameworks and their corresponding SmartNIC ports. Smart-
NIC offloading is also gaining popularity beyond network
functions [24, 47]. For these programs, Clara training also
needs to be enhanced with representative programs in these
contexts.

Experience with ML models. Machine learning has seen
many applications in computer systems, but often, ML tech-
niques require domain-specific customization to perform
well [31]. In Clara, the performance prediction requires de-
veloping a customized data synthesis engine and techniques
for compacting the vocabulary. Our prior experience of ap-
plying LSTM without vocabulary compaction shows much
lower performance. Moreover, although deep learning algo-
rithms often show superior performance, more interpretable
models [27] may enable new NF tuning and optimization
opportunities, as the developers can easily digest the predic-
tion results. For NF developers, SmartNIC platforms contain
opaque details that analytical methods cannot easily capture.
For SmartNIC vendors, platform specifications are available,
but analyzing unported NFs still presents challenges (e.g.,
performance analysis and tuning) that are best solved with
learning techniques.

Partial offloading. Clara analyzes NF offloading scenarios
where the entire programs runs on the SmartNIC. Alterna-
tively, a partial offloading scenario might split the NF pro-
gram between host CPUs and SmartNICs [52, 58]. In order
to handle such scenarios, Clara would also need to reason
about the communication between SmartNICs and the host,
and borrow from work in host performance analysis [41, 49].

7 Related Work

Performance profiling and prediction. Existing tools for
performance profiling or prediction analyze programs for
GPUs [39, 40, 64], FPGAs [67], mobile SoCs [37], and spe-
cialized hardware accelerators [18, 65]. Clara is particularly
related to tools that predict cross-platform performance [19,
21,50, 68, 70], which primarily focus on GPU programs. Clara
considers an emerging class of hardware, SmartNICs, and

it specifically focuses on NF performance. Our preliminary
workshop paper calls out the need for SmartNIC perfor-
mance prediction [61], but this current work goes beyond
performance prediction. It additionally generates offloading
insights that lead to significant performance improvements.
NF performance. NF performance analysis is an important
topic. BOLT [41] analyzes the compute and memory profiles
of x86 network functions and predicts their latency charac-
teristics. CASTAN [57] performs worst-case execution time
analysis for NFs. SLOMO [49] predicts NF interference using
ML on x86 hardware performance counters. In comparison,
Clara focuses on ported performance on the SmartNIC plat-
form and provides program tuning suggestions.
Automated performance tuning. Clara is inspired by re-
cent work that performs automated performance tuning by
exploring the optimization space in a program- and workload-
specific manner. TVM [23] is a tensor program compiler that
can generate efficient code for ML accelerators, such as GPUs
and TPUs. It handles the architectural and runtime opacity
of such accelerators by using machine learning to construct
device-specific cost models. TVM inherits the concept of
“separating the algorithm from the schedule”, which was first
pioneered in Halide [62], a language and compiler for sten-
cil computations. Clara borrows similar insights. However,
TVM and Halide expect the input programs to be working
code written against their frameworks. In comparison, Clara
focuses on performance tuning suggestions for programs
that are yet to be cross-ported.

8 Conclusion

SmartNICs have become a popular offloading platform for
network functions (NFs). Existing work has demonstrated
the benefits for NF offloading, but the performance charac-
teristics of offloaded programs are opaque prior to porting,
and offloading strategies are difficult to reason about. To-
day, developers need to first cross-port NFs to the SmartNIC,
perform workload-specific benchmarks, and then iteratively
tune the ported programs to achieve higher performance.
Clara enables automated offloading insights by analyzing an
unported legacy NF using a combination of program anal-
ysis and machine learning techniques. It generates several
types of offloading insights for the developer. Our evaluation
shows that Clara achieves high prediction accuracy in its
analyses, outperforming alternative baseline techniques, and
that its offloading insights lead to higher ported performance.
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