
CS 856: Programmable Networks

Mina Tahmasbi Arashloo
Winter 2024

Lecture 9: Applications to Transport,
Network QoS, and In-Network Computing

Part 1: Transport and
Network Quality of Servcie (QoS)

Networks are shared infrastructure

H1

H2

H3

H4

Networks are shared infrastructure

H1

H2

H4

Traffic from multiple "flows" share

● The link to the network
● The memory and computational

resources of the host

H3

Networks are shared infrastructure

H1

H2

H4

Traffic from multiple "flows" share

● The link to the network
● The memory and computational

resources of the host

You can think of a flow in the broad sense of
the term – a set of packets that are treated
together as a group for network processing
purposes:

● A TCP flow
● Packets originating from the same VM
● All the DNS packets from the same IP

address.
● …

H3

Networks are shared infrastructure

H1

H2

H4

Flows between all end points share
the network links, and memory and
computational resources of network
devices.

H3

Networks are shared infrastructure

H1

H2

H4

H3

IP only provides best-effort packet delivery

Networks are shared infrastructure

H1

H2

H4

H3

IP only provides best-effort packet delivery

● Packets can get lost
● No performance (e.g., throughput, latency,

jitter) bounds for a flow or classes of flows
● No notion of fairness
● …

Networks are shared infrastructure

H1

H2

H4

H3

IP only provides best-effort packet delivery

● Packets can get lost
● No performance (e.g., throughput, latency,

jitter) bounds for a flow or classes of flows
● No notion of fairness
● …

Doesn't have a notion of (or care about) flows

Networks are shared infrastructure

H1

H2

H4

H3

IP only provides best-effort packet delivery

● Packets can get lost
● No performance (e.g., throughput, latency,

jitter) bounds for a flow or classes of flows
● No notion of fairness
● …

Doesn't have a notion of (or care about) flows

Networks are shared infrastructure

IP only provides best-effort packet delivery

H1

H2

H4

H3

Networks are shared infrastructure

IP only provides best-effort packet delivery

There are other mechanisms to control/customize how different
flows share network resources.

H1

H2

H4

H3

Networks are shared infrastructure

H1

H2

H4

H3

IP only provides best-effort packet delivery

There are other mechanisms to control/customize how different
flows share network resources.

● end-to-end congestion control
● packet scheduling
● active queue management
● …

Networks are shared infrastructure

H1

H2

H4

H3

IP only provides best-effort packet delivery

There are other mechanisms to control/customize how different
flows share network resources.

● end-to-end congestion control
● packet scheduling
● active queue management
● …

End-to-End Congestion Control

For every flow, at the sender

● Send some packets out.

● Use some signals to detect congestion in the network:

○ packets getting lost
○ packets taking longer to get to the receiver
○ network/receiver telling you it is congested
○ …

● Adjust sending rate accordingly.

End-to-End Congestion Control

H1

H2

H4

H3

Sends packets 1
to 10 to H4

End-to-End Congestion Control

H1

H2

H4

H3

Sends packets 1
to 10 to H4

Also sends
traffic to H4

End-to-End Congestion Control

H1

H2

H4

H3

Sends packets 1
to 10 to H4

Also sends
traffic to H4

Congestion!

Packets start to get delayed.

Some may be dropped when
the queue fills up.

End-to-End Congestion Control

H1

H2

H4

H3

Receives packets 1-10 from H1.

Sends acknowledgements for received
packets to sender.

End-to-End Congestion Control

H1

H2

H4

H3

Receives acknowledgements for packets 1-10.

Notices packets 8-10 took longer to get
acknowledged.

Maybe there is a minor congestion?

Next time, only sends 7 packets out.

End-to-End Congestion Control

H1

H2

H4

H3

The queue hasn't drained and
more packets are coming in…

Packets 15 and 16 are dropped.

End-to-End Congestion Control

H1

H2

H4

H3

When it doesn't receive acks for packets 15
and 16, decides there is severe congestion
going on.

Only sends 2 packets out next time.

End-to-End Congestion Control

H1

H2

H4

H3

When the queue starts building up, the switch
can signal the end-points to slow down.

We will walk through some examples later.

How does it affect resource sharing?

● The congestion-control algorithm decides when and how much to change
the pace for each flow

● It affects how different flows in the network interact with each other at
bottlenecks.

● E.g., the flows that back off quickly and to larger extents can end up with
a lower share of the bottleneck bandwidth.

Networks are shared infrastructure

H1

H2

H4

H3

IP only provides best-effort packet delivery

There are other mechanisms to control/customize how different
flows share network resources.

● end-to-end congestion control
● packet scheduling
● active queue management
● …

End point

Packet Scheduling

Queues are an integral part of networks

Application

Network Stack

NIC

…

Switch

…

Switching
Fabric

…

…

Packet Scheduling

H1

H2

H4

H3

Packet schedulers decide how to line up
packets in queues and who gets to go next.

When there is contention, they can affect how
common resources are shared among
competing traffic.

Packet Scheduling

● The simplest "scheduler" is First In First Out (FIFO)

○ Packets are queued up in the order they arrive and exit in the same order

● There are many other, more complex, schedulers

○ A single priority queue (a packet's priority is decided on enqueue)
○ A set of FIFOs, each with its own priority
○ A set of FIFOs, serviced in round robin fashion
○ A FIFO, but packets can only be dequeued at a specific rate
○ A hierarchy of schedulers
○ …

Networks are shared infrastructure

H1

H2

H4

H3

IP only provides best-effort packet delivery

There are other mechanisms to control/customize how different
flows share network resources.

● end-to-end congestion control
● packet scheduling
● active queue management
● …

Active Queue Management (AQM)

● AQM algorithms manage the occupancy of a single queue

● They try to drop/mark packets before the queue is full

○ To keep the queue occupancy, and therefore, latency, within desirable
bounds.

● Different algorithms have different ways of deciding when to start
dropping/marking, whether to drop or mark, and which packets to
drop/mark.

Networks are shared infrastructure

H1

H2

H4

H3

IP only provides best-effort packet delivery

There are other mechanisms to control/customize how different
flows share network resources.

● end-to-end congestion control
● packet scheduling
● active queue management
● …

Traditional networks mostly rely on end-to-end congestion control

● keeping the functionality in the network quite simple

○ No explicit signals or a simple fixed set of signals for end-to-end congestion
control algorithms

○ A few FIFO queues and a few schedulers (e.g., priorities, DRR, etc.)
○ No AQM or a simple fixed set of AQM algorithms

● Why?

○ end-to-end principle
○ Keeping network devices simple and fast

A little help from the network can go a long way

H1

H2

H4

H3

These hosts don't know their
traffic is going to collide.

But a little help from the network can go a long way

H1

H2

H4

H3

These hosts don't know their
traffic is going to collide.

The switch knows a lot more about the
contention

● It is where the contention is happening
● It sees the queue building up
● It knows which flows are contending
● …

But a little help from the network can go a long way

● In traditional networks, the sender has to infer what is happening at the
switch from indirect signals (delays, loss, marked packets).

● Why not have the the switch provide the information more directly and
explicitly to senders?

● Why not have the switch play a more active role in handling contention
with more sophisticated scheduling and AQM algorithms?

Nevertheless, resistance to changing network hardware to
accommodate extra help
● Some researchers showed the benefits, but needed change to the switch

hardware

● Conflicted with the goal of keeping the functionality in the network simple
and general

And we may be forced to do more in the network anyway

● End-to-end congestion control relies on sending packets out, getting
signals, and adjusting it sending strategy.

● It works best when flows can take a couple of round-trip-times (RTTs) to
complete

○ They can send packets for a few rounds, and get an accurate picture of the
available network capacity.

● However, this may not happen in certain networks

And we may be forced to do more in the network anyway

● For example, in data centers:

○ Link speeds are increasing

○ Flows are getting shorter

● Flows can take fewer RTTs (even just one or two) to complete.

● Not enough time for the end-to-end congestion control algorithms to
"figure out" the right rate.

How has network programmability helped?

● Customizing the signals to e2e congestion control, scheduling, AQM, etc.
to the each network and the requirements of its applications.

● Motivating new signaling, scheduling, AQM, etc. techniques

○ Implement it in a programmable switch
○ show it can run at line rate
○ show it provides significant benefits
○ so you can convince vendors to include it in their switches

How has network programmability helped?

● Better signals for congestion control algorithms

○ e.g., use INT to add information about queue lengths to the packets (HPCC,
SIGCOMM 2019)

● More complex (and flexible) packet scheduling

○ e.g., fair queuing is hard to implement at line-rate but you can implement and
approximation on programmable switches (AFQ, NSDI'18).

○ a programmable hardware architecture for packet scheduling, so we can
configure the switch for different scheduling algorithms (PIFO, SIGCOMM'16)

How has network programmability helped?

● Targeted fine-grained measurements

○ can help provide better signals to congestion control algorithms

○ can help create more effective AQM schemes

○ e.g., if we could detect which flow(s) contribute most to the queue build up, we
can mark/drop those packets in our AQM scheme (Conquest, CoNEXT'19)

● Uses INT to provide more accurate signals to congestion control
algorithms

● Demonstrates the benefit in low-latency high-bandwidth RDMA networks.

Paper 1: HPCC: High Precision Congestion Control

● Fair queuing ensure all flows sharing a link get a fair share of the
bandwidth

○ providing the illusion that each flow has its own separate queue with a
"round-robin" service across queues

● It has been deemed too complex to implement in switches.

● This paper shows that an approximate version can be implemented in
programmable switches.

Paper 2: Approximating Fair Queueing on Reconfigurable
Switches

Additional Resources

● Back-pressure Flow Control (BFC) (NSDI'22)

● Programmable packet scheduling at line-rate (SIGCOMM'16)

● Loom: Flexible and Efficient NIC Packet Scheduling (NSDI'19)

● Fine-Grained Queue Measurement in the Data Plane (CoNEXT'19)

● ABM: Active Buffer Management in Datacenters (SIGCOMM'22)

Part 2: In-Network Computing

So far: using network programmability to improve the network

● Trying out new algorithms/protocols
● Customizing packet processing to the specific needs of a network
● Helping with network verification
● Flexible and fine-grained monitoring
● In-network support for quality of service and transport-layer algorithms
● …

Using network programmability to accelerate applications?

● With programmable parsing, we can specify
what we want to parse from the packet.

● Why stop after the transport-layer headers?

● We can look into the data that networked
applications put into packets.

HTTP Header

TCP

Ethernet

IP

Contents of a
webpage

"Data"

Using network programmability to accelerate applications?

● A programmable network device has limited
computational resources and capabilities.

● But it can still do basic arithmetic operations

● and keep track of some information across
packets.

HTTP Header

TCP

Ethernet

IP

Contents of a
webpage

"Data"

In-Network Computing

Offloading part of the application processing (i.e., compute)
to the network

Example 1: In-network caching

● Online services rely quite heavily on distributed key-value stores.

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Example 1: In-network caching

● Online services rely quite heavily on distributed key-value stores.

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Example 1: In-network caching

● Online services rely quite heavily on distributed key-value stores.

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Example 1: In-network caching

● Online services rely quite heavily on distributed key-value stores.

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Issues multiple
requests to the
key-value stores that
store user information,
post information, etc.

Example 1: In-network caching

● Online services rely quite heavily on distributed key-value stores.

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Issues multiple
requests to the
key-value stores that
store user information,
post information, etc.

Example 1: In-network caching

● Key-value stores can get millions if not billions of requests every second.

● To handle such load, there are usually several storage servers, each
taking care of part of the key-value store.

● Requests are load-balanced across storage servers.

● Problem?

○ Hot items change all the time
○ This can create load imbalance.
○ That is, one server (or a subset of them) can get overwhelmed and not be

able to answer queries fast enough for good user quality of experience.

Example 1: In-network caching

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Issues multiple
requests to the
key-value stores that
store user information,
post information, etc.

Example 1: In-network caching

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Issues multiple
requests to the
key-value stores that
store user information,
post information, etc.

All the requests are going
through the top of rack switch!

Can we store (i.e., cache)
some of the "hot items" there?

💡

Example 1: In-network caching

● NetCache (SOSP'17) proposes to do just that!

Example 1: In-network caching

● NetCache (SOSP'17) proposes to do just that!

Regular switch functionality

Maintains "hot" items

Gather statistics about the queries.

so the controller can update the
cache as query patterns change.

Example 1: In-network caching

● NetCache (SOSP'17) proposes to do just that!

with a programmable parser, NetCache
can define its own header.

Example 1: In-network caching

● NetCache (SOSP'17) proposes to do just that!

Applications are provided with a library
that translates their requests to packets
with NetCache headers.

with a programmable parser, NetCache
can define its own header.

Example 1: In-network caching

● NetCache (SOSP'17) proposes to do just that!

Example 2: In-network consensus

● What is consensus?

● You have a distributed set of participants .
○ e.g., servers keeping track of the store inventory

● You want all of them to agree on some values.
○ e.g., the total number of available trash cans to buy

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 2

a = 2

a = 2

a = 2

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 2

a = 2

a = 2

a = 2

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

Change a to 3

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 2

a = 2

a = 2

a = 2

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

Change a to 3

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 3

a = 3

a = 3

a = 3

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 3

a = 3

a = 3

a = 3

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

done!

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 3

a = 3

a = 3

a = 3

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

Paxos is a very famous and complex
protocol that governs these
communications to ensure consensus.

Example 2: In-network consensus

● Consensus is hard to implement efficiently.

○ Lots of communication to provide strong consistency.

● As such, it is typically only used for services that critically need such
consistency.

● e.g., lock manager, configuration management, group membership

● Many distributed services depend on the above "coordination" services.

● And are bottlenecked by them…

Example 2: In-network consensus

Network

a = 2

a = 2

a = 2

a = 2Consensus is communication heavy

the actual computations done on
each participant is quite simple.

Change a to 3

Example 2: In-network consensus

Network

a = 2

a = 2

a = 2

a = 2Consensus is communication heavy

the actual computations done on
each participant is quite simple.

Change a to 3

Can we implement it in the network?

💡

Example 2: In-network consensus

a = 2

Change a to 3

a = 2

a = 2

Example 2: In-network consensus

a = 2

Change a to 3

a = 2

a = 2

Switches keep all copies of the values.

Switches serve read and write requests.

Switches run the consensus (or
coordination, or agreement) protocol.

Example 2: In-network consensus

a = 2

Change a to 3

a = 2

a = 2

Switches keep all copies of the values.

Switches serve read and write requests.

Switches run the consensus (or
coordination, or agreement) protocol.

Benefits?

● Switches are faster than servers
● Communication between each pair of

servers requires the traversal of multiple
switches (multiple RTTs)

● Switches are "closer" to each other, so
this can be done even in sub-RTT

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

Network

Parameter Server

Workers

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

Network

Parameter Server

Workers

a1

a2

a3

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

Network

Parameter Server

Workers

a1

a2

a3

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

Network

Parameter Server

Workers

a1

a2

a3a' = a1 + a2 + a3

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

Network

Parameter Server

Workers

a1

a2

a3a' = a1 + a2 + a3

a'

a'

a'

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

● This happens in every of the several iterations.

Network

Parameter Server

Workers

a1

a2

a3a' = a1 + a2 + a3

a'

a'

a'

Example 3: Accelerating ML Training

Network

Parameter Server

Workers

a1

a2

a3a' = a1 + a2 + a3

a'

a'

a'

Lots of communication
between the parameter
server and workers.

Simple computation on
the parameter server

Example 3: Accelerating ML Training

Network

Parameter Server

Workers

a1

a2

a3a' = a1 + a2 + a3

a'

a'

a'

Lots of communication
between the parameter
server and workers.

Simple computation on
the parameter server

Familiar pattern?

💡Implement the parameter server in network switches

● The switch can keep track of the sum (aggregate) in a register.

● As packets come from the workers, it can retrieve values from packets
and update the sum.

● Once the switch receives values from all workers, it can send the sum
back to the workers.

● Benefits? Same as before
○ Higher throughput and lower communication latency

Example 3: Accelerating ML Training

Challenges of in-network computing

● What if the information we need from the applications spans multiple
packets?

○ e.g., in Netcache, what if the value for a key-value pair doesn't fit into one
packet?

● It is difficult to reconstruct a stream in the switch

○ reconstruct = put together packet contents from multiple packets

Challenges of in-network computing

● Application logic is typically stateful.

● Switches have limited memory, and only allow limited access to it

● Application logic can be more complex than network processing

● Switches have limited computational capabilities.

Challenges of in-network computing

● You can see these constraints play out in current applications of
in-network computing

○ NetCache caches hot items with small-ish values.
○ Coordination services don't store a lot of data
○ same as ML training parameter aggregation
○ In all cases, computation is quite simple.

● There have been proposals for switches with computational resources
and capabilities that are more suited for application acceleration
○ e.g., Trio, or Tofino + FPGA

● What should the API be for the applications?

● Suppose you are writing a distributed/networked application.

● How should you specify which part should be "offloaded" and executed in
the network?

Challenges of in-network computing

● There is a higher abstraction bar here for programming abstractions.

● If someone is implementing a new network protocol, you can assume
they have networking knowledge.

● We don't want application developers to have to learn all the details about
network processing (packets, headers, protocols, etc.) to be able to
accelerate their application.

● There are recent proposals that try to extend familiar programming
abstractions like connections and RPCs for this purpose.

Challenges of in-network computing

● Provides a framework for accelerating ML training by performing the
aggregation in the network.

● Address many challenges of doing so at large scale:

○ Multiple training jobs running simultaneously.

○ Aggregation across multiple racks, i.e., over multiple switches, when workers
and parameter servers are scattered across multiple racks.

○ Handling packet loss and congestion control

○ …

Paper: ATP: In-network Aggregation for Multi-tenant Learning

Additional Resources

● When Should The Network Be The Computer? (HotOS'19)

● In-network caching: NetCache

● In-network consensus: NetChain, NetLock, P4xos.

● ML acceleration: ATP, Trio

● Programming interfaces/abstractions: NetRPC, NCL, Bertha

