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Logistics

● Project progress report is due Sunday, March 10th

○ Two pages

○ Briefly describe the motivation and problem statement

○ Briefly describe the related work, including any new ones you have found 
since the proposal

○ Describe what you have achieved so far

○ Describe what you plan to do for the rest of the term

● Assignment 2 will be released next week and is optional (extra credit)
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Formal Verification

Proving or disproving

the correctness of a (software or hardware) system

with respect to a certain formal specification or property

using formal methods of mathematics

e.g., Traffic light controller

Safety properties:
nothing bad happens

e.g., traffic light should not be 
simultaneously green in both direction

Liveness properties:
something good eventually happens

e.g., If there is a car on the road, the light 
will eventually turn green



Formal Verification

Proving or disproving

the correctness of a (software or hardware) system

with respect to a certain formal specification or property

using formal methods of mathematics

Broadly applicable!

● Hardware design
● Software
● Distributed systems
● Computer Networks
● Aviation
● Neural Networks
● …
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How do we go about verifying a system?

Actual system

Mathematical model of 
the system

Formal 
specification/properties

Actual Requirements

Formal Verification

Proof that the property 
does or does not hold in 

the system model 

In general: Undecidable

We have to find ways to make it 
work for certain (kinds of) models 
and certain (kinds of) properties



A (very) simple example

The following example is adapted from Aarti Gupta's Fall'15 course 
on "Automated Reasoning about Software" at Princeton University



bool x;
int y = 8;
int z = 0; 
int w = 0;
if (x) 
   z = y - 1
else 
   w = y + 1

assert(z == 5 
|| w == 9)

A (very) simple example 
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bool x;
int y = 8;
int z = 0; 
int w = 0;
if (x) 
   z = y - 1
else 
   w = y + 1

assert(z == 5 
|| w == 9)

Mathematical model (in 
logic) of the program

Formal property

￢of the property

SMT Solver

What is an SMT Solver?



Satisfiability Modulo Theories (SMT)

● Let's look at the boolean satisfiability problem (SAT) first.



The (Boolean) Satisfiability Problem (SAT)

● Suppose you have a boolean formula

○ e.g., (a ⋁ b)⋀(￢b ⋁ c)

● You can assign true or false to each variable

● Is there an assignment that will make the entire formula evaluate to true?

● This is the SAT problem

● In general, it is NP complete

○ Unless P = NP, it can't be solved in polynomial time



The (Boolean) Satisfiability Problem (SAT)

● The SAT problem, in general, is NP complete

○ Unless P = NP, it can't be solved in polynomial time

● Still, in the formal methods community, there has been a significant 
progress in tools that can, in many cases, solve this problem quite quickly 
for large formulas.



Satisfiability Modulo Theories (SMT)

● The same satisfiability problem, but for more complex (first-order-logic) 
formulas

○ integer variables, real variables, …
○ arrays, bit vectors, lists, strings, …
○ functions such as equality, addition, subtraction, …

● Harder problem

○ can be NP-hard or undecidable depending on the "theory"

● but we have found ways to make it work by finding algorithms for 
analyzing certain families of formulas ("theories").
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bool x;
int y = 8;
int z = 0; 
int w = 0;
if (x) 
   z = y - 1
else 
   w = y + 1

assert(z == 5 
|| w == 9)

Mathematical model (in 
logic) of the program

Formal property

￢of the property

SMT Solver

Would any assignment to the 
variables x, y, z, and w make the 
following formula evaluate to true 
(Is it satisfiable) ? 

model ⋀ ￢property

Yes! 
x = true, y = 8, 
z = 7, w = 0 
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|| w == 9)
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SMT Solver

model ⋀ ￢property 
evaluates to true for x = true, 
y = 8, z = 7, w = 0

model evaluates to true → these 
are a valid set of values for the 
variables at the assertion location

property evaluates to false → 
the assertion fails
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model ⋀ ￢property 
evaluates to true for x = true, 
y = 8, z = 7, w = 0

Proves that the property does not 
hold with a counter-example 
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Let's change this to 7
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Actual program

Actual requirements

bool x;
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int z = 0; 
int w = 0;
if (x) 
   z = y - 1
else 
   w = y + 1

assert(z == 7 
|| w == 9)
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Actual program
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bool x;
int y = 8;
int z = 0; 
int w = 0;
if (x) 
   z = y - 1
else 
   w = y + 1

assert(z == 7 
|| w == 9)

Mathematical model (in 
logic) of the program

Formal property

￢of the property

SMT Solver

model ⋀ ￢property is not 
satisfiable! 

Generates proof that there are no 
assignments to variables such that 
model evaluates to true and 
property evaluates to false.

We have proven that the program 
satisfies the property.
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What we haven't talked about (and won't) in this lecture …

● Kripke structures
● Temporal logic
● model checking
● symbolic execution
● Binary Decision Diagrams (BDD)
● Synthesis
● …

Generating a "program" that satisfies a high-level 
formal specification

● Program synthesis
● Invariant synthesis
● compiler optimizations
● …

Many use cases networking to generate:

● packet processing code for programmable data 
planes

● configurations and configuration updates
● control-plane repairs
● …



Why use formal verification in networking?

● Networks are growing increasingly complex.

○ They can have hundreds or thousands of interacting components
○ The functionality running in each component is getting more complex
○ configurations files can grow as large as thousands of lines

● Networks are becoming a critical infrastructure

○ Bugs can take down the network or reduce its performance.
○ Network problems can affect thousands if not millions of people

● We need to catch bugs (or prove lack thereof) proactively before going 
into production



Formal verification in networking

● Started with verifying the forwarding properties of the data plane and 
control plane.

● Now expanding into 
more complex 
functionalities and 
properties

○ DNS, network 
performance, …

Figure taken from netverify.fun
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performance, …
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Example - Anteater (SIGCOMM'11)

● Models the forwarding rule on the data plane as boolean formulas

● Uses a SAT solver to verify invariants about the network behavior

● The invariants are mostly related to forwarding

○ Reachability
○ Absence of forwarding loops
○ Absence of blackholes
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Example - Anteater (SIGCOMM'11)

Model each bit in the packet as a 
boolean variable. 

● The rules only use destination IP, so 
we only model the 32 bits in the 
destination IP address.

P(x, y): boolean formula describing 
which packets can go from x to y. 
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Example - Anteater (SIGCOMM'11)

P(x, y): boolean formula describing 
which packets can go from x to y. 

P(A, a) = dst ip =24 10.1.1.0

P(A, B) = dst ip =24 10.1.2.0     
        ⋁ dst ip =24 10.1.3.0

dst ip =w prefix

is a shorthand for

⋀ 32-w ≤ i ≤ 32 (dst ip[i] = 
prefix[i]) 



Example - Anteater (SIGCOMM'11)

P(x, y): boolean formula describing 
which packets can go from x to y. 

P(B,A) = dst ip =24 10.1.1.0

P(B, b) = dst ip =24 10.1.2.0

P(B, C) = dst ip =24 10.1.3.0 
        ⋀ dst ip ≠25 10.1.3.128



Example - Anteater (SIGCOMM'11)

P(x, y): boolean formula describing 
which packets can go from x to y. 

P(C, B) = dst ip =24 10.1.1.0 
        ⋁ dst ip =24 10.1.2.0

P(C, c) = dst ip =24 10.1.3.0



Example - Anteater (SIGCOMM'11)

● Can A reach C?

● Anteater uses a simple graph algorithm to construct the boolean formula 
that describe all the packets that can reach C from A using P(x, y)

● That formula is P(A, B)⋀ P(B, C)

● The formula is given to a SAT solver to check if any assignment to the 
boolean variables, i.e., any destination IP address, exists that can go from 
A to C

● If no, no packets can reach C from A



Example - Anteater (SIGCOMM'11)

● This was just a simple example

● Anteater shows how to use a similar approach to check for absence of 
loops and black holes, among other properties.



Reasoning about network forwarding behavior

● Anteater models network behavior as SAT formulas and uses a SAT 
solver for their analysis.

● Since then, there has been several other proposals for other ways for 
both modeling and analysis



Reasoning about network forwarding behavior

● Since then, there has been several other proposals for other ways for 
both modeling and analysis

● Header Space Analysis (HSA) (NSDI'12) 
○ models sets of K-bit packets as subspaces in a K-dimensional space 
○ uses set operations for analysis

● Veriflow (NSDI'13) 

○ uses a trie to find equivalence classes (ECs) of packets
○ models the forwarding behavior of ECs using a forwarding graph
○ analyzes the network behavior using graph algorithms

● There has been a lot more! (see netverify.fun for a survey)



Formal methods in networking

● Data-plane verification

○ Model and analyze the forwarding rules on the data plane
○ Anteater, HSA, Veriflow, …

● Control-plane verification

○ Model and analyze the control-plane protocols that configure the data plane

● Stateful and programmable data planes



Formal methods in networking

● Analyzing DNS

○ Is there a query under our domain that is sent for resolution to a name server, 
not under our domain?

● Analyzing performance

○ Is there an input traffic pattern under which the network provides high 
latency?



Formal methods in networking industry

● Large cloud providers are integrating formal methods into their network 
operations

○ Microsoft, Amazon, Google, Alibaba, …
○ "Be sure before shipping – the need for safety in clouds" - Dave Maltz 

keynote in the netverify'21 workshop organized by Microsoft and Google

● Several startup companies

○ Forward Networks, Veriflow, Intentionet, …



How does this all relate to programmable networks?

● Automated testing and verification did not start with and is not limited to 
programmable networks. 

● But, programming abstractions for a single device or collection of devices 
provides extra opportunities. 

○ We can reuse so much of the existing knowledge, expertise, and tools for 
program verification in the formal methods and PL community

○ In our "network" programs, we already have accurate well-defined 
specifications of network functionality.

○ We can verify the compilers (or their output) to provide end-to-end verified 
tool chains  

○ …



What's next?

● So far, we have convinced ourselves that using formal methods in 
networking is both essential and possible

● Now, we need to make it usable in a more widespread manner in 
real-world networks.

● What is missing?



What's next?

● Scale

○ Formal methods tools don't scale well :)
○ There is evidence that they can scale to large network for certain networks 

and certain properties with lots of optimizations
○ One way forward is "modular" verification, where we verify smaller subsets of 

the network independently and then combine the results.
○ So, there is hope but also still a long way to go

● Functionalities and properties beyond forwarding

○ network functions, network performance, …
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Facilitating creation of 
models that are accurate 
yet tractable for analysis



What's next?

Actual system

Mathematical model of 
the system

Formal 
specification/properties

Actual Requirements

Formal Verification

Proof that the property 
does or does not hold in 

the system model 

"Human-friendly" ways 
to interact with 

formal-methods based 
tools



● A tool for verifying properties about P4 programs

○ General safety properties, e.g., avoiding read/writes to invalid headers
○ Program-specific properties specified using assert statements

● Has to work around the fact that the some data-plane rules come from the 
control plane and are only known at run-time 

Paper 1: p4v: Practical Verification for Programmable Data Planes



● Describes the tools used in Microsoft Azure's network for verifying ACLs 
and forwarding rules

● To scale, they use domain-specific insights to simplify the analysis

○ Structural properties of the topology
○ Decompose what they want to validate into checks on local devices
○ …

Paper 2: Validating Datacenters At Scale 



Additional Resources

● netverify.fun

○ History and survey of verification tools
○ Articles from experts about what's new in the area

● Network verification and synthesis course from University of Washington

● Papers on analyzing DNS and performance, among others


