IIIIIIIIIIII

CS 856: Programmable Networks

Lecture 6: Applications to Traditional
Networks

Mina Tahmasbi Arashloo
Winter 2024



Logistics

e Happy Reading Week!

o Nothing due next week &
e Next set of reviews are due Monday, Feb 26, at 11:59pm.
e Assignment 1 is due Monday, Feb 26, 11:59pm.

e Project progress report is due March 10th



"Programming" traditional networks

e You don't have direct programmatic control over devices, just
configuration interfaces, just for a handful of protocols



"Programming" traditional networks

e You don't have direct programmatic control over devices, just
configuration interfaces, just for a handful of protocols

Control Plane

=

Data Plane




"Programming" traditional networks

e You don't have direct programmatic control over devices, just
configuration interfaces, just for a handful of protocols

=

Control Plane

Data Plane

e Exposes a fixed-function pipeline.

e Unless you were who built the chip, you
couldn't change which headers are parsed,
which tables match on which fields, and in
what order they are executed.




"Programming" traditional networks

e You don't have direct programmatic control over devices, just
configuration interfaces, just for a handful of protocols

=

Control Plane <

A (closed-source) OS and a set of apps that
comes with the devices.

Can only configure the already-implemented
protocols through a limited and
not-so-easy-to-use interface.

Data Plane

Exposes a fixed-function pipeline.

Unless you were who built the chip, you
couldn't change which headers are parsed,
which tables match on which fields, and in
what order they are executed.




A VERY simple example (from Batfish, NSDI'15)

10.0.0.0/24 /\
C

il
c2
P
2.2.2.0/24
1
3.3.3.0/24 N P

[[-==mmmmm - Configuration of n1----------

1 ospf interface int1_2 metric 1

2 ospf interface int1_3 metric 1

3 prefix-list PL_C 2.2.2.0/24 3.3.3.0/24
4 bgp neighbor c2 AS C apply PL_C

1 ospf interface int2_1 metric 1

2 ospf interface int2_3 metric 1

3 ospf-passive interface int2_5ip 10.0.0.0/24
4 ospf redistribute connected metric 10

5 prefix-list PL_C 2.2.2.0/24

6 bgp neighbor c1 AS C apply PL_C

1 ospf interface int3_1 metric 1

2 ospf interface int3_2 metric 1

3 ospf interface int3_4 metric 1

4 ospf redistribute static metric 10

5 bgp neighbor p1 AS P Accept ALL
6 static route 10.0.0.0/24 drop, log



A VERY simple example (from Batfish, NSDI'15)

10.0.0.0/24 /\
C

cl
c2

2.2.2.0/24
3.3.3.0/24

Now imagine managing a network this way

e for thousands of devices

e when every vendor has its own configuration

interface
e when configuration files can grow to
thousands of lines

e when operators can tweak the configuration
by running ad-hoc commands using a CLI

[]-=mm - Configuration of n1----------

1 ospf interface int1_2 metric 1

2 ospf interface int1_3 metric 1

3 prefix-list PL_C 2.2.2.0/24 3.3.3.0/24
4 bgp neighbor c2 AS C apply PL_C

1 ospf interface int2_1 metric 1

2 ospf interface int2_3 metric 1

3 ospf-passive interface int2_5ip 10.0.0.0/24
4 ospf redistribute connected metric 10

5 prefix-list PL_C 2.2.2.0/24

6 bgp neighbor c1 AS C apply PL_C

1 ospf interface int3_1 metric 1

2 ospf interface int3_2 metric 1

3 ospf interface int3_4 metric 1

4 ospf redistribute static metric 10

5 bgp neighbor p1 AS P Accept ALL
6 static route 10.0.0.0/24 drop, log



Abstraction and automation in traditional networks

e Even without full programmability, we need abstraction and automation in
traditional networks.

e Work on automated management tools predates SDN.

e But it has been affected by the focus on high-level well-defined
abstractions in the research on SDN and programmable networks.

e We will discuss some examples today:

o Automated configuration generation
o Well-defined/formal specifications of protocols and device functionality

o Automated validation



Automated Configuration
Generation



Automated Configuration Generation

Programs in a Domain-Specific
Language (DSL) for, say, routing ‘
policies

Compiler #1

Vendor-neutral ) |

- <

abstract configuration file(s) v
Compiler #2

Vendor-specific |

configuration file(s)

= =
——



Automated Configuration Generation

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as

= =
——

Programs in a Domain-Specific <7 back-up if the primary paths fail.
Language (DSL) for, say, routing ‘
policies
Compiler #1
Vendor-neutral ) |
- <
abstract configuration file(s) v
Compiler #2
Vendor-specific |
configuration file(s)




Automated Configuration Generation

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Think of this as
something like P4

= =
——

Programs in a Domain-Specific <7
Language (DSL) for, say, routing ‘
policies

Compiler #1

Vendor-neutral ) |

- <

L—1 abstract configuration file(s) v
Compiler #2

Vendor-specific |

configuration file(s)




Automated Configuration Generation

An example of this
approach is Propane
(SIGCOMM'16)

Programs in a Domain-Specific
Language (DSL) for, say, routing
policies

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Vendor-neutral

Think of this as
something like P4

L—1 abstract configuration file(s)

.

Compiler #1
|

Vendor-specific
configuration file(s)

i
Compiler #2

= =
——




Well-defined specifications



Traditional networks: Not-so-well-defined specifications

Control Plane

8

Data Plane

e The software stack for the data plane
(a.k.a the switch OS)

e Runs protocols like OSPF, BGP, etc

e Configures the data-plane accordingly




Traditional networks: Not-so-well-defined specifications

Control Plane

The software stack for the data plane
(a.k.a the switch OS)

Runs protocols like OSPF, BGP, etc
Configures the data-plane accordingly

t /.

Data Plane

Come from different vendors

Can have different capabilities and
internals, and expose different
configuration APIs.




Traditional networks: Not-so-well-defined specifications

Informal specifications in English

e Ambiguous
e difficult to maintain a complete
updated version

Control Plane

=

Data Plane




Traditional networks: Not-so-well-defined specifications

Informal specifications in English

e Ambiguous

e difficult to maintain a complete
updated version

Control Plane

T—

Data Plane

Without proper abstractions, you may not
be able to reuse much of the switch
software stack across different data planes




Towards well-defined/formal specifications

e Switch Abstraction Interface (SAl)

o "a collection of C-style interfaces" for common functionality in traditional
fixed-function switches/routers (e.g., destination-based forwarding, VLAN,
ACL, etc.)

e Software for Open Networking in the Cloud (SONIC)
o Open source network operating system based on Linux built on SAl
e Use P4 to specify (as opposed to program) the data-plane functionality

o e.g., make SAlI more well-defined by writing the interfaces and specifying the
pipeline order in P4.



Towards well-defined/formal specifications

e Even in traditional networks, you may still want to configure some
functionality (e.g., ACLs) from a centralized "controller".

e Using unified abstractions in individual devices makes that a lot easier.

e E.g., using P4, specifically,
we can use existing control

Centralized Controller

interfaces and platforms like Control Plane \
P4 Runtime

=

Data Plane




Automated Validation



Automated Validation

Configuration files 1

=9 =9
\d\@/hﬂ




Automated Validation

the network to satisfy

Properties we would like W

Configuration files 1

=9 =9
v\@/v




Automated Validation

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Properties we would like | =

the network to satisfy

Configuration files 1

=9 =9
v\@/v




Automated Validation

Properties we would like
the network to satisfy

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

=

Configuration files

l

»| Verifier/Validator

=
&

=



Automated Validation

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Properties we would like | =

the network to satisfy

Configuration files

l

—» Verifier/Validator

=
&

}

v The property holds under all inputs to the network
x A counter-example where the property is violated.




Automated Validation

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Properties we would like | =

the network to satisfy

Configuration files

l

=
&

—| Test generation

}

Test cases (e.g., packet traces) to exercise
individual switches or end-to-end network paths for
desired properties.




How does abstraction help?

e Automated testing and verification did not start with and is not limited to
programmable networks.

o We will have a dedicated lecture on network verification next time.

e But, there is a rich literature on program verification and testing in the
formal methods and PL community.

e With programming abstraction for a single device or collection of devices,
we can reuse so much of that knowledge and expertise, as well as
existing tools, and customize them to the networking domain.



Discussion

e Do any of
o automated configuration generation
o well-defined specifications
o automated validation

come up in your research area? In what settings?



Papers for "this week"



Paper 1: Central control over distributed routing

Remember the "indirect control" example from lecture 1?

How can we get H1 to use the
bottom path?

—

- H1
L

®)

Q

H2

H3




Paper 1: Central control over distributed routing

Remember the "indirect control" example from lecture 1?

Change the link weights

——

H1

H2

H3




Paper 1: Central control over distributed routing

Remember the "indirect control" example from lecture 1?

Change the link weights

——

L\

H1

H2

H3




Paper 1: Central control over distributed routing

Remember the "indirect control" example from lecture 1?

Change the link weights

——

L\

H1

H3




Paper 1: Central control over distributed routing

e Remember the "indirect control" example from lecture 1?

e This paper proposes Fibbing, an approach to make that easier using
abstraction and automation

e Fibbing allows operators to specify their desired network paths.

e It then introduces fake nodes and links into the distributed routing
protocol, in a way that the computed paths over the augmented topology
are the desired specified paths.

e Best paper award, SIGCOMM 2015



Paper 2: Don’'t Mind the Gap: Bridging Network-wide Objectives
and Device-level Configurations
e Automated configuration generation for BGP

e Operators can specify network-wide routing objectives using Propane's
domain-specific language

e The Propane compiler generates vendor-neutral abstract BGP
configurations that satisfy those objectives.

e Best paper award, SIGCOMM 2016



Additional Resources

e SwitchV (SIGCOMM 2022)

o Google's use of P4 for specifying the behavior of fixed-function switches and
the resulting verification/testing framework.

e P4 Integrated Network Stack (PINS) website



