
CS 856: Programmable Networks

Mina Tahmasbi Arashloo
Winter 2024

Lecture 6: Applications to Traditional
Networks

Logistics

● Happy Reading Week!

○ Nothing due next week 🎉
● Next set of reviews are due Monday, Feb 26, at 11:59pm.

● Assignment 1 is due Monday, Feb 26, 11:59pm.

● Project progress report is due March 10th

"Programming" traditional networks

● You don't have direct programmatic control over devices, just
configuration interfaces, just for a handful of protocols

"Programming" traditional networks

● You don't have direct programmatic control over devices, just
configuration interfaces, just for a handful of protocols

Control Plane

Data Plane

"Programming" traditional networks

● You don't have direct programmatic control over devices, just
configuration interfaces, just for a handful of protocols

Control Plane

Data Plane ● Exposes a fixed-function pipeline.
● Unless you were who built the chip, you

couldn't change which headers are parsed,
which tables match on which fields, and in
what order they are executed.

"Programming" traditional networks

● You don't have direct programmatic control over devices, just
configuration interfaces, just for a handful of protocols

Control Plane

Data Plane ● Exposes a fixed-function pipeline.
● Unless you were who built the chip, you

couldn't change which headers are parsed,
which tables match on which fields, and in
what order they are executed.

● A (closed-source) OS and a set of apps that
comes with the devices.

● Can only configure the already-implemented
protocols through a limited and
not-so-easy-to-use interface.

A VERY simple example (from Batfish, NSDI'15)
//----------Configuration of n1----------
1 ospf interface int1_2 metric 1
2 ospf interface int1_3 metric 1
3 prefix-list PL_C 2.2.2.0/24 3.3.3.0/24
4 bgp neighbor c2 AS C apply PL_C
//----------Configuration of n2----------
1 ospf interface int2_1 metric 1
2 ospf interface int2_3 metric 1
3 ospf-passive interface int2_5 ip 10.0.0.0/24
4 ospf redistribute connected metric 10
5 prefix-list PL_C 2.2.2.0/24
6 bgp neighbor c1 AS C apply PL_C
//----------Configuration of n3----------
1 ospf interface int3_1 metric 1
2 ospf interface int3_2 metric 1
3 ospf interface int3_4 metric 1
4 ospf redistribute static metric 10
5 bgp neighbor p1 AS P Accept ALL
6 static route 10.0.0.0/24 drop, log

A VERY simple example (from Batfish, NSDI'15)
//----------Configuration of n1----------
1 ospf interface int1_2 metric 1
2 ospf interface int1_3 metric 1
3 prefix-list PL_C 2.2.2.0/24 3.3.3.0/24
4 bgp neighbor c2 AS C apply PL_C
//----------Configuration of n2----------
1 ospf interface int2_1 metric 1
2 ospf interface int2_3 metric 1
3 ospf-passive interface int2_5 ip 10.0.0.0/24
4 ospf redistribute connected metric 10
5 prefix-list PL_C 2.2.2.0/24
6 bgp neighbor c1 AS C apply PL_C
//----------Configuration of n3----------
1 ospf interface int3_1 metric 1
2 ospf interface int3_2 metric 1
3 ospf interface int3_4 metric 1
4 ospf redistribute static metric 10
5 bgp neighbor p1 AS P Accept ALL
6 static route 10.0.0.0/24 drop, log

Now imagine managing a network this way

● for thousands of devices
● when every vendor has its own configuration

interface
● when configuration files can grow to

thousands of lines
● when operators can tweak the configuration

by running ad-hoc commands using a CLI

Abstraction and automation in traditional networks

● Even without full programmability, we need abstraction and automation in
traditional networks.

● Work on automated management tools predates SDN.

● But it has been affected by the focus on high-level well-defined
abstractions in the research on SDN and programmable networks.

● We will discuss some examples today:

○ Automated configuration generation
○ Well-defined/formal specifications of protocols and device functionality
○ Automated validation

Automated Configuration
Generation

Automated Configuration Generation

Programs in a Domain-Specific
Language (DSL) for, say, routing

policies
Compiler #1

Vendor-neutral
abstract configuration file(s)

Compiler #2

Vendor-specific
configuration file(s)

Automated Configuration Generation

Programs in a Domain-Specific
Language (DSL) for, say, routing

policies
Compiler #1

Vendor-neutral
abstract configuration file(s)

Compiler #2

Vendor-specific
configuration file(s)

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Automated Configuration Generation

Programs in a Domain-Specific
Language (DSL) for, say, routing

policies
Compiler #1

Vendor-neutral
abstract configuration file(s)

Compiler #2

Vendor-specific
configuration file(s)

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Think of this as
something like P4

Automated Configuration Generation

Programs in a Domain-Specific
Language (DSL) for, say, routing

policies
Compiler #1

Vendor-neutral
abstract configuration file(s)

Compiler #2

Vendor-specific
configuration file(s)

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Think of this as
something like P4

An example of this
approach is Propane
(SIGCOMM'16)

Well-defined specifications

Traditional networks: Not-so-well-defined specifications

Control Plane

Data Plane

● The software stack for the data plane
(a.k.a the switch OS)

● Runs protocols like OSPF, BGP, etc
● Configures the data-plane accordingly

Traditional networks: Not-so-well-defined specifications

Control Plane

Data Plane

● Come from different vendors
● Can have different capabilities and

internals, and expose different
configuration APIs.

● The software stack for the data plane
(a.k.a the switch OS)

● Runs protocols like OSPF, BGP, etc
● Configures the data-plane accordingly

Traditional networks: Not-so-well-defined specifications

Control Plane

Data Plane

Informal specifications in English

● Ambiguous
● difficult to maintain a complete

updated version

Traditional networks: Not-so-well-defined specifications

Control Plane

Data Plane

Informal specifications in English

● Ambiguous
● difficult to maintain a complete

updated version

Without proper abstractions, you may not
be able to reuse much of the switch
software stack across different data planes

Towards well-defined/formal specifications

● Switch Abstraction Interface (SAI)

○ "a collection of C-style interfaces" for common functionality in traditional
fixed-function switches/routers (e.g., destination-based forwarding, VLAN,
ACL, etc.)

● Software for Open Networking in the Cloud (SONiC)

○ Open source network operating system based on Linux built on SAI

● Use P4 to specify (as opposed to program) the data-plane functionality

○ e.g., make SAI more well-defined by writing the interfaces and specifying the
pipeline order in P4.

Towards well-defined/formal specifications

● Even in traditional networks, you may still want to configure some
functionality (e.g., ACLs) from a centralized "controller".

● Using unified abstractions in individual devices makes that a lot easier.

Control Plane

Data Plane

Centralized Controller● E.g., using P4, specifically,
we can use existing control
interfaces and platforms like
P4 Runtime

Automated Validation

Automated Validation

Configuration files

Automated Validation

Properties we would like
the network to satisfy

Configuration files

Automated Validation

Properties we would like
the network to satisfy

Configuration files

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Automated Validation

Properties we would like
the network to satisfy

Configuration files

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Verifier/Validator

Automated Validation

Properties we would like
the network to satisfy

Configuration files

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Verifier/Validator

✔ The property holds under all inputs to the network
⤫ A counter-example where the property is violated.

Test cases (e.g., packet traces) to exercise
individual switches or end-to-end network paths for
desired properties.

Automated Validation

Properties we would like
the network to satisfy

Configuration files

e.g., traffic from A to B should
always take the shortest path, or
link L1 should only be used as
back-up if the primary paths fail.

Test generation

How does abstraction help?

● Automated testing and verification did not start with and is not limited to
programmable networks.

○ We will have a dedicated lecture on network verification next time.

● But, there is a rich literature on program verification and testing in the
formal methods and PL community.

● With programming abstraction for a single device or collection of devices,
we can reuse so much of that knowledge and expertise, as well as
existing tools, and customize them to the networking domain.

Discussion

● Do any of
○ automated configuration generation
○ well-defined specifications
○ automated validation

 come up in your research area? In what settings?

Papers for "this week"

Paper 1: Central control over distributed routing

● Remember the "indirect control" example from lecture 1?

H1

H2

H3

S1 S2

S3

S4

S5

1 1 1

2 1🤔
How can we get H1 to use the
bottom path?

Paper 1: Central control over distributed routing

● Remember the "indirect control" example from lecture 1?

H1

H2

H3

S1 S2

S3

S4

S5

1 1 1

2 1💡
Change the link weights

Paper 1: Central control over distributed routing

● Remember the "indirect control" example from lecture 1?

H1

H2

H3

S1 S2

S3

S4

S5

1 2 1

1 1💡
Change the link weights

Paper 1: Central control over distributed routing

● Remember the "indirect control" example from lecture 1?

H1

H2

H3

S1 S2

S3

S4

S5

1 2 1

1 1💡
Change the link weights

● Remember the "indirect control" example from lecture 1?

● This paper proposes Fibbing, an approach to make that easier using
abstraction and automation

● Fibbing allows operators to specify their desired network paths.

● It then introduces fake nodes and links into the distributed routing
protocol, in a way that the computed paths over the augmented topology
are the desired specified paths.

● Best paper award, SIGCOMM 2015

Paper 1: Central control over distributed routing

● Automated configuration generation for BGP

● Operators can specify network-wide routing objectives using Propane's
domain-specific language

● The Propane compiler generates vendor-neutral abstract BGP
configurations that satisfy those objectives.

● Best paper award, SIGCOMM 2016

Paper 2: Don’t Mind the Gap: Bridging Network-wide Objectives
and Device-level Configurations

Additional Resources

● SwitchV (SIGCOMM 2022)

○ Google's use of P4 for specifying the behavior of fixed-function switches and
the resulting verification/testing framework.

● P4 Integrated Network Stack (PINS) website

