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Logistics

● Happy Reading Week!

○ Nothing due next week 🎉
● Next set of reviews are due Monday, Feb 26, at 11:59pm.

● Assignment 1 is due Monday, Feb 26, 11:59pm.

● Project progress report is due March 10th 
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configuration interfaces, just for a handful of protocols
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● You don't have direct programmatic control over devices, just 
configuration interfaces, just for a handful of protocols

Control Plane

Data Plane ● Exposes a fixed-function pipeline.
● Unless you were who built the chip, you 

couldn't change which headers are parsed, 
which tables match on which fields, and in 
what order they are executed.

● A (closed-source) OS and a set of apps that 
comes with the devices.

● Can only configure the already-implemented 
protocols through a limited and 
not-so-easy-to-use interface.



A VERY simple example (from Batfish, NSDI'15)
//----------Configuration of n1----------
1 ospf interface int1_2 metric 1
2 ospf interface int1_3 metric 1
3 prefix-list PL_C 2.2.2.0/24 3.3.3.0/24
4 bgp neighbor c2 AS C apply PL_C
//----------Configuration of n2----------
1 ospf interface int2_1 metric 1
2 ospf interface int2_3 metric 1
3 ospf-passive interface int2_5 ip 10.0.0.0/24
4 ospf redistribute connected metric 10
5 prefix-list PL_C 2.2.2.0/24
6 bgp neighbor c1 AS C apply PL_C
//----------Configuration of n3----------
1 ospf interface int3_1 metric 1
2 ospf interface int3_2 metric 1
3 ospf interface int3_4 metric 1
4 ospf redistribute static metric 10
5 bgp neighbor p1 AS P Accept ALL
6 static route 10.0.0.0/24 drop, log
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Now imagine managing a network this way

● for thousands of devices
● when every vendor has its own configuration 

interface
● when configuration files can grow to 

thousands of lines
● when operators can tweak the configuration 

by running ad-hoc commands using a CLI



Abstraction and automation in traditional networks

● Even without full programmability, we need abstraction and automation in 
traditional networks.

● Work on automated management tools predates SDN.

● But it has been affected by the focus on high-level well-defined 
abstractions in the research on SDN and programmable networks.

● We will discuss some examples today:

○ Automated configuration generation
○ Well-defined/formal specifications of protocols and device functionality
○ Automated validation



Automated Configuration 
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Programs in a Domain-Specific 
Language (DSL) for, say, routing 

policies
Compiler #1

Vendor-neutral 
abstract configuration file(s)

Compiler #2

Vendor-specific 
configuration file(s)

e.g., traffic from A to B should 
always take the shortest path, or 
link L1 should only be used as 
back-up if the primary paths fail.

Think of this as 
something like P4

An example of this 
approach is Propane 
(SIGCOMM'16)



Well-defined specifications
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Traditional networks: Not-so-well-defined specifications

Control Plane

Data Plane

Informal specifications in English

● Ambiguous
● difficult to maintain a complete 

updated version

Without proper abstractions, you may not 
be able to reuse much of the switch 
software stack across different data planes



Towards well-defined/formal specifications

● Switch Abstraction Interface (SAI)

○ "a collection of C-style interfaces" for common functionality in traditional 
fixed-function switches/routers (e.g., destination-based forwarding, VLAN, 
ACL, etc.)

● Software for Open Networking in the Cloud (SONiC)

○ Open source network operating system based on Linux built on SAI

● Use P4 to specify (as opposed to program) the data-plane functionality

○ e.g., make SAI more well-defined by writing the interfaces and specifying the 
pipeline order in P4. 



Towards well-defined/formal specifications

● Even in traditional networks, you may still want to configure some 
functionality (e.g., ACLs) from a centralized "controller". 

● Using unified abstractions in individual devices makes that a lot easier. 

Control Plane

Data Plane

Centralized Controller● E.g., using P4, specifically, 
we can use existing control 
interfaces and platforms like 
P4 Runtime
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Automated Validation

Properties we would like 
the network to satisfy

Configuration files

e.g., traffic from A to B should 
always take the shortest path, or 
link L1 should only be used as 
back-up if the primary paths fail.

Verifier/Validator

✔ The property holds under all inputs to the network
⤫ A counter-example where the property is violated.



Test cases (e.g., packet traces) to exercise 
individual switches or end-to-end network paths for 
desired properties.

Automated Validation

Properties we would like 
the network to satisfy

Configuration files

e.g., traffic from A to B should 
always take the shortest path, or 
link L1 should only be used as 
back-up if the primary paths fail.

Test generation



How does abstraction help?

● Automated testing and verification did not start with and is not limited to 
programmable networks. 

○ We will have a dedicated lecture on network verification next time.

● But, there is a rich literature on program verification and testing in the 
formal methods and PL community. 

● With programming abstraction for a single device or collection of devices, 
we can reuse so much of that knowledge and expertise, as well as 
existing tools, and customize them to the networking domain. 



Discussion

● Do any of
○ automated configuration generation
○ well-defined specifications
○ automated validation

        come up in your research area? In what settings?



Papers for "this week"



Paper 1: Central control over distributed routing 

● Remember the "indirect control" example from lecture 1? 

H1

H2

H3

S1 S2

S3

S4

S5

1 1 1

2 1🤔
How can we get H1 to use the 
bottom path?
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● Remember the "indirect control" example from lecture 1?

● This paper proposes Fibbing, an approach to make that easier using 
abstraction and automation

● Fibbing allows operators to specify their desired network paths. 

● It then introduces fake nodes and links into the distributed routing 
protocol, in a way that the computed paths over the augmented topology 
are the desired specified paths.

● Best paper award, SIGCOMM 2015

Paper 1: Central control over distributed routing 



● Automated configuration generation for BGP

● Operators can specify network-wide routing objectives using Propane's 
domain-specific language

● The Propane compiler generates vendor-neutral abstract BGP 
configurations that satisfy those objectives.

● Best paper award, SIGCOMM 2016

Paper 2: Don’t Mind the Gap: Bridging Network-wide Objectives 
and Device-level Configurations



Additional Resources

● SwitchV (SIGCOMM 2022)

○ Google's use of P4 for specifying the behavior of fixed-function switches and 
the resulting verification/testing framework. 

● P4 Integrated Network Stack (PINS) website


