
CS 856: Programmable Networks

Mina Tahmasbi Arashloo
Winter 2024

Lecture 5: Programming Software
Network Stacks

Logistics

● Reviews are due Monday, Feb 12, at 5pm.

● Assignment 1 is due Monday, Feb 26th.

End-Point network stack

Data Link

Network

Application

Transport

Physical

NIC

CPU

End-Point network stack

On transmit (egress):

● The host CPU generates packets
on application request

● Packets are sent to the NIC over
PCIe

● The NIC transforms packets to
bits and sends them over the link

Data Link

Network

Application

Transport

Physical

NIC

CPU

End-Point network stack

On receive (ingress)

● The NIC turns bits into packets

● Packets are sent to the host over
PCIe

● The host CPU processes packets
and delivers them to applications

Data Link

Network

Application

Transport

Physical

NIC

CPU

End-Point network stack

On receive (ingress)

● The NIC turns bits into packets

● Packets are sent to the host over
PCIe

● The host CPU processes packets
and delivers them to applications

Data Link

Network

Application

Transport

Physical

NIC

CPU

Last week

This week

Host Networking

● Changing/customizing end-point packet processing was always
technically possible.

○ Unlike network switches/routers
○ because it's software
○ no need to go convince a switch vendor to change their hardware/switch OS

● But that doesn't mean it's easy.

● Even without programmable NICs, packet processing on end-hosts has
grown into a diverse and complex ecosystem.

Kernel Packet Processing

The (Linux) kernel network stack (simplified)

Data Link

Network

Application

Transport

Physical

NIC

Host
Uses system calls to create sockets, write
data to them to send to another end-point,
read the received data.

The (Linux) kernel network stack (simplified)

Data Link

Network

Application

Transport

Physical

NIC

Host Breaks up the socket data into segments,
adds the transport layer header

e.g., TCP and UDP

The (Linux) kernel network stack (simplified)

Data Link

Network

Application

Transport

Physical

NIC

Host

Turns segments into packets and adds the
network layer header.

e.g., IP

The (Linux) kernel network stack (simplified)

Data Link

Network

Application

Transport

Physical

NIC

Host

Turns packets into frames, adds data link
header (and maybe trailer)

e.g., Ethernet

The (Linux) kernel network stack (simplified)

Data Link

Network

Application

Transport

Physical

NIC

Host

… …
Packets travel between the NIC and the
host through transmit (TX) and receive
(RX) queues.

one or more
TX queues

one or more
RX queues

The (Linux) kernel network stack (simplified)

Data Link

Network

Application

Transport

Physical

NIC

Host

… …
The kernel has scheduling primitives that
can be used to influence which
packets/flows are prioritized over others.

one or more
TX queues

one or more
RX queues

The (Linux) kernel network stack (slightly more realistic)

● The previous slides presented a simplified view

● The reality looks a bit different

● The following figure is a high-level (🙂) diagram of a packet's journey
through the Linux kernel.

* From "Packet journey through Linux kernel"

Modifying the kernel is challenging

● Understanding and optimizing the linux kernel network stack is not an
easy feat.

● Let alone modifying it to implement new functionality.

● Even if you figure out where to make changes without breaking anything
else, the actual implementation can get challenging

○ "computing the cube root function […] requires using a table lookup and a
Newton-Raphson iteration instead of a simple function call."

How do we make the kernel "more programmable"?

Solution #1: make it more modular

● Identify which parts of the stack need to change more frequently

● Separate out those parts of the code as a standalone "modules"

● Define interfaces for these modules to interact with the rest of the
stack/kernel.

Example 1: Pluggable TCP Congestion Control
struct tcp_congestion_ops {

 unsigned long flags;

 /* return slow start threshold (required) */

 u32 (*ssthresh)(struct sock *sk);

 /* lower bound for congestion window (optional) */

 u32 (*min_cwnd)(const struct sock *sk);

 /* do new cwnd calculation (required) */

 void (*cong_avoid)(struct sock *sk, u32 ack, u32 in_flight);

 /* call when cwnd event occurs (optional) */

 void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);

 /* new value of cwnd after loss (optional) */

 u32 (*undo_cwnd)(struct sock *sk);

 /* hook for packet ack accounting (optional) */

 void (*pkts_acked)(struct sock *sk, u32 num_acked, s32 rtt_us);

 char name[TCP_CA_NAME_MAX];

 struct module *owner;

 /* plus some other functions and fields */

};

Example 1: Pluggable TCP Congestion Control

void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked)

{ /* … */}

/* Slow start threshold is half the congestion window (min 2) */

u32 tcp_reno_ssthresh(struct sock *sk)

{ /* … */}

u32 tcp_reno_undo_cwnd(struct sock *sk)

{ /* … */}

struct tcp_congestion_ops tcp_reno = {

.flags = TCP_CONG_NON_RESTRICTED,

.name = "reno",

.owner = THIS_MODULE,

.ssthresh = tcp_reno_ssthresh,

.cong_avoid = tcp_reno_cong_avoid,

.undo_cwnd = tcp_reno_undo_cwnd,

};

Example 1: Pluggable TCP Congestion Control

void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked)

{ /* … */}

/* Slow start threshold is half the congestion window (min 2) */

u32 tcp_reno_ssthresh(struct sock *sk)

{ /* … */}

u32 tcp_reno_undo_cwnd(struct sock *sk)

{ /* … */}

struct tcp_congestion_ops tcp_reno = {

.flags = TCP_CONG_NON_RESTRICTED,

.name = "reno",

.owner = THIS_MODULE,

.ssthresh = tcp_reno_ssthresh,

.cong_avoid = tcp_reno_cong_avoid,

.undo_cwnd = tcp_reno_undo_cwnd,

};

void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked)

{

struct tcp_sock *tp = tcp_sk(sk);

if (!tcp_is_cwnd_limited(sk))

return;

/* In "safe" area, increase. */

if (tcp_in_slow_start(tp)) {

acked = tcp_slow_start(tp, acked);

if (!acked)

return;

}

/* In dangerous area, increase slowly. */

tcp_cong_avoid_ai(tp, tcp_snd_cwnd(tp), acked);

}

Example 2: Packet scheduling with QDiscs
static int bfifo_enqueue(struct sk_buff *skb, struct Qdisc *sch,

 struct sk_buff **to_free){

if (likely(sch->qstats.backlog + qdisc_pkt_len(skb) <= sch->limit))

return qdisc_enqueue_tail(skb, sch);

return qdisc_drop(skb, sch, to_free);

}

/** definitions of other functions **/

struct Qdisc_ops bfifo_qdisc_ops __read_mostly = {

.id = "bfifo",

.priv_size = 0,

.enqueue = bfifo_enqueue,

.dequeue = qdisc_dequeue_head,

.peek = qdisc_peek_head,

.init = fifo_init,

.destroy = fifo_destroy,

.reset = qdisc_reset_queue,

.change = fifo_init,

.dump = fifo_dump,

.owner = THIS_MODULE,

};

How do we make the kernel "more programmable"?

Solution #2: Allow modifications from user space

● eBPF (extended Berkeley Packet Filter)

● Allows you to run your user-space programs in a "sandbox" in certain
locations in the kernel

● So, you can safely and efficiently extend the capabilities of the kernel
without having to change the kernel.

eBPF - Benefits and Challenges

● Much easier to use (compared to kernel programming)!

○ eBPF is like a virtual machine with its own instruction set.
○ You can write C programs, compile them to eBPF, and use the bpf() system

call to load them into the kernel.

● Several restrictions on the program to ensure it can run safely in the
kernel

○ e.g., on program size, data structures, available libraries and functions, etc.

Example eBPF "hook": XDP

● XDP stands for eXpress Data Path.

● The hook is right after packets are received by the NIC and right before
they enter the kernel network stack.

● After processing packets, you can make one of several decisions about
the packet, including but not limited to

○ drop (early filtering)
○ send through the kernel stack (pre-processing)
○ send directly to the user-space buffers (kernel bypass)
○ …

Looking Forward

● Can we design higher level abstractions and/or better tool chains for
"programming" the kernel stack?

○ Writing kernel modules is not easy.
○ Writing C programs that would satisfy all the constraints of eBPF is not easy.

● Can we design higher level abstractions for end-host networking, not
necessarily tied to the kernel as the data path?

User-Space
Packet Processing

Kernel Bypass

● What if we could write all the packet processing code in a regular program
in user space?

NIC

Kernel

User space

Kernel Bypass

● What if we could write all the packet processing code in a regular program
in user space?

NIC

Kernel

User space

Helps a program in user space
coordinate memory regions with the
NIC for incoming and outgoing packets.

Kernel Bypass

● What if we could write all the packet processing code in a regular program
in user space?

NIC

Kernel

User spacePackets go directly from the NIC to
user space (and vice versa) without
any interference from the kernel.

 Hence the name, kernel bypass

 Example frameworks: DPDK, Netmap

Kernel Bypass - Pros

You are in complete control!

● Fully customizable

● High performance

○ You can optimize your processing to match your traffic and application
○ You don't have to deal with the kernel's overhead for the functionality

that you don't necessarily need

● Easier software to develop

○ compared to kernel programming

● Provides an opportunity to rethink how we design the network stack

Kernel Bypass - Challenges

You are in complete control :)

● The user-space program takes over the entire NIC.
● Have to re-implement all of network processing yourself, from

scratch

● Can't take advantage of the Kernel benefits

○ e.g., resource management, security, etc.

● Busy polling to get packets locks up CPU resources

Network Processing
in Virtualized Platforms

Server Virtualization

Host

…

NIC

VM 1 VM 2 VM N

Host OS

Each VM provides an illusion of having a
standalone server.

You can run your operating system of
choice, configure/change it however you
want, run any application you choose,
etc.

Server Virtualization

Host

VM 1 VM 2 VM N

…

NIC

In fact, each VM has its own
network stack (with a virtualized
NIC)!

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Host OS

Server Virtualization

Host

VM 1 VM 2 VM N

…

NIC

The VMs share the link to the
network and can run any
application and/or network
processing they like!

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Host OS

Server Virtualization

Host

VM 1 VM 2 VM N

…

NIC

Typically, the provider of the
virtualized platform needs to

● forward traffic between VMs or
VMs and the NIC.

● manage how to share network
resource between VMs.

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Host OS

Server Virtualization

Host

VM 1 VM 2 VM N

…

NIC

Typically, the provider of the
virtualized platform needs to

● forward traffic between VMs or
VMs and the NIC.

● manage how to share network
resource between VMs.

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Host OS They have to do it
somewhere here

Virtual Switch (vSwitch)

Host

VM 1 VM 2 VM N

…

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Host OS

Virtual Switch

NIC

Virtual Switch (vSwitch)

Host

VM 1 VM 2 VM N

…

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Data Link

Network

Application

Transport

Physical

Host OS

Virtual Switch

NIC

It is a switch! But it can (and needs to)
do much more than a switch in the
middle of the network
(e.g., connection tracking)

It is a large complex piece of software
that needs to run fast → possible to
change but not easy

Do we use P4 to program it? Do we
use OpenFlow (e.g., the start of Open
vSwitch)? Or do we need something
else? (e.g., Microsoft VFP)

Network Function Virtualization (NFV)

Host

VM 1 VM 2 VM N

…

Host OS

NIC

Remember you can run anything you want
in a VM?

In network function virtualization, each VM
runs a Network Function (NF).

What is a network function?

● Traditionally, switches and routers only do packet processing up to and
including layer 3 (the network layer) to do forwarding.

● But soon, it became apparent we may need to do more than just
forwarding in the middle of the network and may need to look further into
packets (i.e., high layers of the stack)

○ Network address translation (NAT)
○ Stateful firewalls
○ Load balancers
○ Proxies
○ Intrusion detection and prevention
○ …

What is a network function?

● Specialized devices were designed and customized to do these more
"advanced" kinds of packet processing.

● They were called middleboxes.

What is a network function?

● Network function is a generic term to describe any kind of network
processing, specially the more advanced middlebox-like packet
processing.

● If network function virtualization (NFV), network functions are as software
inside VMs instead of each having a separate (specialized) physical
device.

● Should we use a generic server virtualization platform and run network
functions in VMs?

● Network functions are special kinds of software
○ They are heavily network-bound
○ They need optimized packet I/O
○ May need more "VM to VM" communication (e.g., for NF chaining)

● Should we use the knowledge that we are running special packet
processing software to customize/optimize things more?

Programming platforms for software network functions

This Week's Reading

Paper 1: The design and implementation of Open vSwitch

● A very popular virtual switch
○ Open source
○ Programmable (was based on OpenFlow from the start, but has evolved over

the years
○ Production quality

● Uses caching to achieve high performance

○ first packet of a flow goes through a "slower" path with multiple tables and
complex actions

○ Once we know the actions we want to take for the packet, a simpler rules with
simpler actions is installed in the fast cache for next packets.

○ Sounds familiar?

Paper 2: Restructuring endpoint congestion control

● Remember the pluggable TCP congestion control interface in the linux kernel?
This paper takes it a step further.

● They propose a congestion control plane (CCP)

○ think of it as applying the SDN principle to congestion control

● The main logic of the congestion control algorithm runs in the user space out of
the main packet processing data path

● The packet processing data path is configured with programs written in a
domain specific language to collects statistics for making congestion control
decisions

● CCP receives statistics reports from the data path and sends back congestion
control decisions (e.g., rate, window size, etc.)

Additional Resources

● Revisiting the Open vSwitch Dataplane Ten Years Later (SIGCOMM'21)

● The eXpress Data Path (XDP) (CoNEXT'18)

● K2, a compiler that optimizes BPF bytecode with formal correctness and
safety guarantees (SIGCOMM'21)

● NetBricks: Taking the V out of NFV (OSDI'16)

