
CS 856: Programmable Networks

Mina Tahmasbi Arashloo
Winter 2024

Lecture 3: Programmable Switch Architectures

Logistics

● Reviews are due Monday, Jan 29, at 5pm.

● Project proposal is due Jan 31.

● Extra instructions for M1 and M2 chips in the assignment repo.

Recap: Making the data-plane "more programmable"

● OpenFlow started as a simple abstraction of the data plane

○ One big look-up table, matching on 12 fields, a handful of actions.

● It quickly grew larger

○ There was a need more fields, multiple tables, …

● Why not open the interface even more?

Controller

Controller to switch
● Runtime communication

○ add/remove/modify table entries
○ send packet
○ request traffic statistics

Controller

Controller to switch
● Headers and Parsing

○ Header X and Y look like this
○ To parse header X, look at the bytes B1 to B2

in the packet…

● Table Configuration
○ Table T1 should use X for match and A1 or

A2 for actions.
○ Table T2 should use …

● Runtime communication
○ add/remove/modify table entries
○ send packet
○ request traffic statistics

Controller

Controller to switch
● Headers and Parsing

○ Header X and Y look like this
○ To parse header X, look at the bytes B1 to B2

in the packet…

● Table Configuration
○ Table T1 should use X for match and A1 or

A2 for actions.
○ Table T2 should use …

● Runtime communication
○ add/remove/modify table entries
○ send packet
○ request traffic statistics

Not restricted to certain protocols
→ Protocol-Independent

Controller

Controller to switch
● Headers and Parsing

○ Header X and Y look like this
○ To parse header X, look at the bytes B1 to B2

in the packet…

● Table Configuration
○ Table T1 should use X for match and A1 or

A2 for actions.
○ Table T2 should use …

● Runtime communication
○ add/remove/modify table entries
○ send packet
○ request traffic statistics

Not restricted to certain protocols
→ Protocol-Independent

Much more flexibility in specifying
packet processing

Challenge: High-Speed Reconfigurable Data Plane

● Switch data planes need to process packets very fast

… …

● N ports, each bringing in
traffic at rate R

● Switch capacity = N x R

Challenge: High-Speed Reconfigurable Data Plane

● Switch data planes need to process packets very fast

… …

● N ports, each bringing in
traffic at rate R

● Switch capacity = N x R

R = 100 Gbps

For back-to-back 64B packets, we
have a packet every ~5ns.

For back-to-back 1500B packets,
we have a packet every ~120ns.

N = 16

This happens concurrently on 16
ports…

N x R = 1.6 Tbps!

Challenge: High-Speed Reconfigurable Data Plane

● There is a trade-off between programmability and performance

CPU FPGA ASICs

Programmability

Performance

Challenge: High-Speed Reconfigurable Data Plane

● There is a trade-off between programmability and performance

CPU FPGA ASICs

Programmability

Performance

General-purpose processors
like CPUs can be programmed
to execute any logic.

Challenge: High-Speed Reconfigurable Data Plane

● There is a trade-off between programmability and performance

CPU FPGA ASICs

Programmability

Performance

General-purpose processors
like CPUs can be programmed
to execute any logic.

Fixed-function ASICs are
customized and optimized to for a
certain kind of computation.

Challenge: High-Speed Reconfigurable Data Plane

● There is a trade-off between programmability and performance

CPU FPGA ASICs

Programmability

Performance

General-purpose processors
like CPUs can be programmed
to execute any logic.

Fixed-function ASICs are
customized and optimized to for a
certain kind of computation.

Application-Specific Integrated Circuit

Challenge: High-Speed Reconfigurable Data Plane

● Traditionally: switching chips were ASICs
○ customized for packet processing, e.g., packet parsing, forwarding tables,

etc.

● The "programmability" trend:

○ Q1: Is it possible to have a high-speed reconfigurable switch data plane?

○ Q2: How much reconfigurability can we add to the switch data plane and still
be able to perform high-speed packet processing?

Inside a (output-queued) switch

… …

Port 1 (input)

Port N (input)

Port 1 (output)

Port N (output)

Ingress
Processing

Ingress
Processing

…

Egress
Processing

Egress
Processing

…

Interconnect
(switching)

Fabric

Inside a (output-queued) switch

… …

Port 1 (input)

Port N (input)

Port 1 (output)

Port N (output)

Ingress
Processing

Ingress
Processing

…

Egress
Processing

Egress
Processing

…

Interconnect
(switching)

Fabric

Note that these are two sides of
the same physical port

Inside a (output-queued) switch

… …

Port 1 (input)

Port N (input)

Port 1 (output)

Port N (output)

Ingress
Processing

Ingress
Processing

…

Egress
Processing

Egress
Processing

…

Interconnect
(switching)

Fabric

● Adding/Removing tunnel headers
● Figuring out the next hope and the output

port
● …

Inside a (output-queued) switch

… …

Port 1 (input)

Port N (input)

Port 1 (output)

Port N (output)

Ingress
Processing

Ingress
Processing

…

Egress
Processing

Egress
Processing

…

Interconnect
(switching)

Fabric

● Connects input ports to output ports
● Needs to operate at high speed (~ N

times the speed of an individual port)

Inside a (output-queued) switch

… …

Port 1 (input)

Port N (input)

Port 1 (output)

Port N (output)

Ingress
Processing

Ingress
Processing

…

Egress
Processing

Egress
Processing

…

Interconnect
(switching)

Fabric

Traffic manager:
● Packets going to the same output will be buffered in a queue

○ In ingress and/or egress.

● Packet scheduling algorithms decide which packets will go out of that port next

Inside a (output-queued) switch

… …

Port 1 (input)

Port N (input)

Port 1 (output)

Port N (output)

Ingress
Processing

Ingress
Processing

…

Egress
Processing

Egress
Processing

…

Interconnect
(switching)

Fabric

● Can do extra processing on a packet on its way out
○ adding telemetry information
○ modifying multi-cast packets
○ …

Inside a (output-queued) switch

… …

Port 1 (input)

Port N (input)

Port 1 (output)

Port N (output)

Ingress
Processing

Ingress
Processing

…

Egress
Processing

Egress
Processing

…

Interconnect
(switching)

Fabric
It's possible (and practical) for
multiple ports to share ingress and
egress processing.

If M ports share the same processing
modules, those modules should run
M times faster.

What should a "programmable" switch look like?

● We can't make everything programmable

○ the programmability-performance trade-off

● How do we decide what should be fixed and what programmable?

○ Which parts are subject to more innovation?

○ The logic of which part do we want to change more frequently?

○ Where can we afford to pay the overhead of programmability?

PISA: Protocol-Independent Switch Architecture

P
ar

se
r

In
gr

es
s

P
ro

ce
ss

in
g

Buffers

Packets in

 E
gr

es
s

P
ro

ce
ss

in
g

D
ep

ar
se

r

Packets out

● First academic proposal → Reconfigurable Match Tables (RMT)
● Later evolved and renamed PISA

Programmable Parser

● Takes bits from a packet and outputs a Packet Header Vector (PHV)

● PHV: the collection of all the header fields that are

○ parsed from the packet
○ can be used later in the match-action tables

Parser

PHV

… 02 af 34 ce 12 04 aa 00 bb 13 ce d2 b3 56 98 56

Programmable Parser

● Takes bits from a packet and outputs a Packet Header Vector (PHV)

● PHV: the collection of all the header fields that are

○ parsed from the packet
○ can be used later in the match-action tables

Parser

PHV

… 02 af 34 ce 12 04 aa 00 bb 13 ce d2 b3 56 98 56

Programmable Parser

Header
Identification

Field
Extraction

TCAM Action RAM

Memory

Computation/Logic

state &
header
data

Match
index

Field
loc

Fields

Header data
PHV

Next state

Programmable Parser

Header
Identification

Field
Extraction

TCAM Action RAM

Memory

Computation/Logic

Match
index

Field
loc

Fields

PHV

Next state

TCAM can be used to
implement a match-action
table

The parser is "programmed"
by changing the contents of
the TCAM and the RAM

state &
header
data

Header data

Programmable Parser

Header
Identification

Field
Extraction

TCAM Action RAM
Match
index

Next state
Field
loc

Fields

PHV

Memory

Computation/Logic

state &
header
data

Header data

● Headers:

header H1 {
 bit<4> A;
 bit<1> B;
}
header H2 {
 bit<2> C;
}

● If B = 1, we parse H2.

Header
Identification

Field
Extraction

TCAM Action RAM
Match
index

Next state
Field
loc

Fields

PHV

Memory

Computation/Logic

We have three states.
● s0: parse H1
● s1: parse H2
● s2: done parsing all headers

state &
header
data

Header data

● Headers:

header H1 {
 bit<4> A;
 bit<1> B;
}
header H2 {
 bit<2> C;
}

● If B = 1, we parse H2.

Header
Identification

Field
Extraction

TCAM Action RAM
Match
index

Next state
Field
loc

Fields

PHV

Memory

Computation/Logic
The TCAM matches on

● the state
● first N bits in header data.

state &
header
data

Header data

● Headers:

header H1 {
 bit<4> A;
 bit<1> B;
}
header H2 {
 bit<2> C;
}

● If B = 1, we parse H2.

Header
Identification

Field
Extraction

TCAM Action RAM
Match
index

Next state
Field
loc

Fields

PHV

Memory

Computation/Logic

We populate the TCAM with 3 entries.

Entry 1:
● match: state = s0, header data [4] = 1
● action: action 0

state &
header
data

Header data

The actions are defined in the RAM:

action 0: extract 5 bits (H1) and put them in
the first 5 bits of PHV, go to s1

● Headers:

header H1 {
 bit<4> A;
 bit<1> B;
}
header H2 {
 bit<2> C;
}

● If B = 1, we parse H2.

Header
Identification

Field
Extraction

TCAM Action RAM
Match
index

Next state
Field
loc

Fields

PHV

Memory

Computation/Logic

state &
header
data

Header data

The actions are defined in the RAM:

action 1: extract 5 bits (H1) and put them in
the first 5 bits of PHV, go to s2

● Headers:

header H1 {
 bit<4> A;
 bit<1> B;
}
header H2 {
 bit<2> C;
}

● If B = 1, we parse H2.

We populate the TCAM with 3 entries.

Entry 2:
● match: state = s0, header data [4] = 0
● action: action 1

Header
Identification

Field
Extraction

TCAM Action RAM
Match
index

Next state
Field
loc

Fields

PHV

Memory

Computation/Logic

state &
header
data

Header data

The actions are defined in the RAM:

action 2: extract 2 bits (H2) and put them in
the bits 6 and 7 of PHV, go to s2

● Headers:

header H1 {
 bit<4> A;
 bit<1> B;
}
header H2 {
 bit<2> C;
}

● If B = 1, we parse H2.

We populate the TCAM with 3 entries.

Entry 3:
● match: state = s1, header data = *
● action: action 2

Programmable Parser

Header
Identification

Field
Extraction

TCAM Action RAM

Memory

Computation/Logic

state &
header
data

Match
index

Field
loc

Fields

Header data
PHV

Next state

PISA: Protocol-Independent Switch Architecture

P
ar

se
r

In
gr

es
s

P
ro

ce
ss

in
g

Buffers

Packets in

 E
gr

es
s

P
ro

ce
ss

in
g

D
ep

ar
se

r

Packets out

● First academic proposal → Reconfigurable Match Tables (RMT)
● Later evolved and renamed PISA

Ingress Processing

PHV
0 Stage 1 PHV

1 Stage 2 PHV
2 Stage N PHV

N…

Ingress Processing

PHV
0 Stage 1 PHV

1 Stage 2 PHV
2 Stage N PHV

N…

Allows for parallel processing of packets

Ingress Processing

PHV
0 Stage 1 PHV

1 Stage 2 PHV
2 Stage N PHV

N…

Once PHV for a packet is past Stage 1,
Stage 1 can start processing the PHV of
the next packet.

What happens inside a stage?

PHV
0

Stage 1

PHV
1

M

M

M

…
A

A

A

What happens inside a stage?

The following fours slides are adapted from Changhoon Kim's guest
lecture at the "CSE 561: Computer Communication and Networks,
Winter 2021" course at University of Washington

What happens inside a stage?

PHV
0

Stage 1

PHV
1

M

M

M

…
A

A

A

A Match-Action Unit:

Match: SRAM or TCAM for
lookup tables

Action: ALUs for standard
boolean and arithmetic
operations, header
modification operations,
hashing operations, etc.

A stage is a collection of
match-action units.

PHV
0

Stage 1

PHV
1

M

M

M

…

A

A

A

PHV
0

Stage 1

PHV
1

M

M

M

…

A

A

A

Match-action units are
"programmed" by configuring the
components marked with red
dotted arrows.

PHV
0

Stage 1

PHV
1

M

M

M

…

A

A

A

Notice the similarities with the parser.

Stages allow for more general
match-action processing.

Ingress Processing

PHV
0

PHV
1

PHV
2

PHV
N…

Stage 1

…

Stage 2

…

Stage N

…

PISA: Protocol-Independent Switch Architecture

P
ar

se
r

In
gr

es
s

P
ro

ce
ss

in
g

Buffers

Packets in

 E
gr

es
s

P
ro

ce
ss

in
g

D
ep

ar
se

r

Packets out

Not as flexible as other
components

Similar to the ingress
pipeline

Defines which parts of the
PHV to put back on the
unparsed parts of the
packet and in which order

Is PISA practical?

● The RMT paper developed a prototype and evaluated the overheads.

● Barefoot's Tofino switch was the first commercial switching chip with this
architecture
○ With multiple "pipes" rather than just one.

PISA - Pros and Cons

● PISA has many advantages

○ It maintains some of the structure of high-speed switching chips

○ The architecture is amenable to high-speed implementation

○ It does a great job of identifying the kind of programmability that is needed in the
networking domain (at least in the switch)

○ It was the first practical solution to providing meaningful programmability while
maintaining high speed.

○ Paved the way for work on other programmable architectures

PISA - Pros and Cons

● But, it is not without disadvantages

● Resources can't be shared across stages

● The computational model is quite constrained

○ Feed forward pipeline: can't go back to previous stages
○ For each packet, you can only access the memory in each stage a limited

number of times
○ The kinds of computations that the ALUs can do is also limited

● If what you want to do fits within the constraints, it runs at line rate

● If not, it doesn't run at all

Other proposed architectures: dRMT

● dRMT = disaggregated RMT

○ Separate the compute and memory resources

○ schedule how packets should share their access to each resource.

● Offers advantages over RMT

○ Can use resources more flexibly and efficiently.

○ Possible to implement more complex logic but at lower performance

■ i.e., performance degradation as opposed to performance cliffs

● But, uses more area and is harder to scale.

Other proposed architectures: dRMT

Other proposed architectures: Trio by Juniper Networks

● An interconnected collection of strong packet forwarding engines
○ as opposed to a pipeline.

● Shares similarities with dRMT but takes it further in terms of the flexibility
at the architecture level

Other proposed architectures: Trio by Juniper Networks

Paper 1: Forwarding metamorphosis: Fast programmable
match-action processing in hardware for SDN

● Proposes the RMT architecture, which later evolves into PISA

● Published in 2013

● P4 was published in 2014 as an abstraction for programming these kinds
of chips

● Shows that building such a programmable data plane is actually feasible.

Paper 2: Compiling packet programs to reconfigurable switches

● Published in 2015

● Describes how to compile P4-like programs to RMT-like switch data
planes

● RMT, P4, and this paper collectively offered an end-to-end solution for
programming the data plane.

○ RMT → the underlying hardware

○ P4 → the abstraction

○ This paper → the compiler

Additional Resources

● dRMT (SIGCOMM 2017)

● Trio (SIGCOMM 2022)

● FlexCore (NSDI 2022)

○ Can we (partially) reconfigure the switch data plane without disrupting traffic?

● Menshen (NSDI 2022)

○ Isolation mechanisms for high-speed packet-processing pipelines

