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Logistics

● Reviews are due Monday, Jan 29, at 5pm.

● Project proposal is due Jan 31.

● Extra instructions for M1 and M2 chips in the assignment repo. 



Recap: Making the data-plane "more programmable"

● OpenFlow started as a simple abstraction of the data plane

○ One big look-up table, matching on 12 fields, a handful of actions.

● It quickly grew larger 

○ There was a need more fields, multiple tables, …

● Why not open the interface even more?
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Controller to switch
● Headers and Parsing

○ Header X and Y look like this
○ To parse header X, look at the bytes B1 to B2 

in the packet…

● Table Configuration
○ Table T1 should use X for match and A1 or 

A2 for actions.
○ Table T2 should use …

● Runtime communication
○ add/remove/modify table entries
○ send packet
○ request traffic statistics

Not restricted to certain protocols 
→ Protocol-Independent

Much more flexibility in specifying 
packet processing
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Challenge: High-Speed Reconfigurable Data Plane

● Switch data planes need to process packets very fast

… …

● N ports, each bringing in 
traffic at rate R

● Switch capacity = N x R 

R = 100 Gbps

For back-to-back 64B packets, we 
have a packet every ~5ns.

For back-to-back 1500B packets, 
we have a packet every ~120ns.

N = 16

This happens concurrently on 16 
ports…

N x R = 1.6 Tbps!
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Challenge: High-Speed Reconfigurable Data Plane

● There is a trade-off between programmability and performance

CPU FPGA ASICs

Programmability

Performance

General-purpose processors 
like CPUs can be programmed 
to execute any logic.

Fixed-function ASICs are 
customized and optimized to for a 
certain kind of computation.

Application-Specific Integrated Circuit



Challenge: High-Speed Reconfigurable Data Plane

● Traditionally: switching chips were ASICs 
○ customized for packet processing, e.g., packet parsing, forwarding tables, 

etc.

● The "programmability" trend:

○ Q1: Is it possible to have a high-speed reconfigurable switch data plane?

○ Q2: How much reconfigurability can we add to the switch data plane and still 
be able to perform high-speed packet processing?
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● Adding/Removing tunnel headers
● Figuring out the next hope and the output 

port
● …
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Interconnect 
(switching) 

Fabric

● Connects input ports to output ports
● Needs to operate at high speed (~ N 

times the speed of an individual port)



Inside a (output-queued) switch

… …

Port 1 (input)

Port N (input)

Port 1 (output)

Port N (output)

Ingress 
Processing

Ingress 
Processing

…

Egress 
Processing

Egress 
Processing

…

Interconnect 
(switching) 

Fabric

Traffic manager:
● Packets going to the same output will be buffered in a queue

○ In ingress and/or egress.

● Packet scheduling algorithms decide which packets will go out of that port next



Inside a (output-queued) switch

… …

Port 1 (input)

Port N (input)

Port 1 (output)

Port N (output)

Ingress 
Processing

Ingress 
Processing
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Egress 
Processing

Egress 
Processing

…

Interconnect 
(switching) 

Fabric

● Can do extra processing on a packet on its way out
○ adding telemetry information
○ modifying multi-cast packets
○ …



Inside a (output-queued) switch

… …

Port 1 (input)

Port N (input)

Port 1 (output)

Port N (output)

Ingress 
Processing

Ingress 
Processing

…

Egress 
Processing

Egress 
Processing

…

Interconnect 
(switching) 

Fabric
It's possible (and practical) for 
multiple ports to share ingress and 
egress processing. 

If M ports share the same processing 
modules, those modules should run 
M times faster.



What should a "programmable" switch look like?

● We can't make everything programmable

○ the programmability-performance trade-off

● How do we decide what should be fixed and what programmable?

○ Which parts are subject to more innovation? 

○ The logic of which part do we want to change more frequently?

○ Where can we afford to pay the overhead of programmability?



PISA: Protocol-Independent Switch Architecture
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● First academic proposal → Reconfigurable Match Tables (RMT)
● Later evolved and renamed PISA
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● Takes bits from a packet and outputs a Packet Header Vector (PHV)

● PHV: the collection of all the header fields that are 

○ parsed from the packet
○ can be used later in the match-action tables  

Parser

PHV

… 02 af 34 ce 12 04 aa 00 bb 13 ce d2 b3 56 98 56
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TCAM can be used to 
implement a match-action 
table

The parser is "programmed" 
by changing the contents of 
the TCAM and the RAM 
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We have three states.
● s0: parse H1
● s1: parse H2
● s2: done parsing all headers
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● Headers:

header H1 {
 bit<4> A;
 bit<1> B;
}
header H2 {
 bit<2> C;
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● If B = 1, we parse H2.
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● the state 
● first N bits in header data. 
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● Headers:

header H1 {
 bit<4> A;
 bit<1> B;
}
header H2 {
 bit<2> C;
}

● If B = 1, we parse H2.
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We populate the TCAM with 3 entries. 

Entry 1:
● match: state = s0, header data [4] = 1
● action: action 0
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The actions are defined in the RAM:

action 0: extract 5 bits (H1) and put them in 
the first 5 bits of PHV, go to s1

● Headers:

header H1 {
 bit<4> A;
 bit<1> B;
}
header H2 {
 bit<2> C;
}

● If B = 1, we parse H2.
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The actions are defined in the RAM:

action 1: extract 5 bits (H1) and put them in 
the first 5 bits of PHV, go to s2

● Headers:

header H1 {
 bit<4> A;
 bit<1> B;
}
header H2 {
 bit<2> C;
}

● If B = 1, we parse H2.

We populate the TCAM with 3 entries. 

Entry 2:
● match: state = s0, header data [4] = 0
● action: action 1
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The actions are defined in the RAM:

action 2: extract 2 bits (H2) and put them in 
the bits 6 and 7 of PHV, go to s2

● Headers:

header H1 {
 bit<4> A;
 bit<1> B;
}
header H2 {
 bit<2> C;
}

● If B = 1, we parse H2.

We populate the TCAM with 3 entries. 

Entry 3:
● match: state = s1, header data = *
● action: action 2
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PISA: Protocol-Independent Switch Architecture
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● First academic proposal → Reconfigurable Match Tables (RMT)
● Later evolved and renamed PISA
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Allows for parallel processing of packets



Ingress Processing

PHV
0 Stage 1 PHV

1 Stage 2 PHV
2 Stage N PHV

N…

Once PHV for a packet is past Stage 1, 
Stage 1 can start processing the PHV of 
the next packet.
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What happens inside a stage?

The following fours slides are adapted from Changhoon Kim's guest 
lecture at the "CSE 561: Computer Communication and Networks, 
Winter 2021" course at University of Washington



What happens inside a stage?
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A Match-Action Unit:

Match: SRAM or TCAM for 
lookup tables

Action: ALUs for standard 
boolean and arithmetic 
operations, header 
modification operations, 
hashing operations, etc.

A stage is a collection of 
match-action units.
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Match-action units are 
"programmed" by configuring the 
components marked with red 
dotted arrows. 
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Notice the similarities with the parser.

Stages allow for more general 
match-action processing.



Ingress Processing
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PISA: Protocol-Independent Switch Architecture
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Not as flexible as other 
components

Similar to the ingress 
pipeline

Defines which parts of the 
PHV to put back on the 
unparsed parts of the 
packet and in which order



Is PISA practical?

● The RMT paper developed a prototype and evaluated the overheads.

● Barefoot's Tofino switch was the first commercial switching chip with this 
architecture
○ With multiple "pipes" rather than just one.



PISA - Pros and Cons

● PISA has many advantages

○ It maintains some of the structure of high-speed switching chips

○ The architecture is amenable to high-speed implementation

○ It does a great job of identifying the kind of programmability that is needed in the 
networking domain (at least in the switch)

○ It was the first practical solution to providing meaningful programmability while 
maintaining high speed.

○ Paved the way for work on other programmable architectures



PISA - Pros and Cons

● But, it is not without disadvantages

● Resources can't be shared across stages 

● The computational model is quite constrained

○ Feed forward pipeline: can't go back to previous stages
○ For each packet, you can only access the memory in each stage a limited 

number of times
○ The kinds of computations that the ALUs can do is also limited

● If what you want to do fits within the constraints, it runs at line rate

● If not, it doesn't run at all



Other proposed architectures: dRMT

● dRMT = disaggregated RMT

○ Separate the compute and memory resources

○ schedule how packets should share their access to each resource.

● Offers advantages over RMT

○ Can use resources more flexibly and efficiently. 

○ Possible to implement more complex logic but at lower performance 

■ i.e., performance degradation as opposed to performance cliffs

● But, uses more area and is harder to scale.



Other proposed architectures: dRMT



Other proposed architectures: Trio by Juniper Networks

● An interconnected collection of strong packet forwarding engines 
○ as opposed to a pipeline.

● Shares similarities with dRMT but takes it further in terms of the flexibility 
at the architecture level



Other proposed architectures: Trio by Juniper Networks



Paper 1:  Forwarding metamorphosis: Fast programmable 
match-action processing in hardware for SDN 

● Proposes the RMT architecture, which later evolves into PISA

● Published in 2013

● P4 was published in 2014 as an abstraction for programming these kinds 
of chips

● Shows that building such a programmable data plane is actually feasible.



Paper 2: Compiling packet programs to reconfigurable switches 

● Published in 2015

● Describes how to compile P4-like programs to RMT-like switch data 
planes

● RMT, P4, and this paper collectively offered an end-to-end solution for 
programming the data plane.

○ RMT → the underlying hardware

○ P4 → the abstraction

○ This paper → the compiler



Additional Resources

● dRMT (SIGCOMM 2017)

● Trio (SIGCOMM 2022)

● FlexCore (NSDI 2022)

○ Can we (partially) reconfigure the switch data plane without disrupting traffic?

● Menshen (NSDI 2022)

○ Isolation mechanisms for high-speed packet-processing pipelines


