
CS 856: Programmable Networks

Mina Tahmasbi Arashloo
Winter 2023

Lecture 2: Programming the Data Plane with P4

Logistics

● Presentations were assigned yesterday

● Reviews are due Monday at 5pm.

● Project proposal is due Jan 31.

○ There will be a dropbox on LEARN for submitting proposals.

So for in programmable networks…

● 2005: 4D
○ Separating the "decision" plane from the data plane

● 2008: OpenFlow
○ A simple yet general protocol for controller-switch communication
○ Abstracts the switch data plane as one big look-up table

● 2011: Frenetic
○ Domain-specific network programming language
○ Raising the level of abstraction for network programming

OpenFlow started simple…

Data Plane

Match Action

1, *, *, *, 10.0.0.1, *, *, *, *, 80 drop

● Match
○ Input port
○ Ethernet header fields (src, dst, type)
○ Some IP header fields (src, dst, proto)
○ Some TCP header fields (src port, dst port)

● Action
○ drop
○ forward to port N
○ send to controller
○ modify the value of a field

But it grew more complex (and quickly)!

● More fields

* From "P4: Programming Protocol-Independent Packet Processors", SIGCOMM CCR 2014

*

But it grew more complex (and quickly)!

● More fields

● Multiple tables

*
*

* From "P4: Programming Protocol-Independent Packet Processors", SIGCOMM CCR 2014

Why multiple tables?

● Suppose you want to assign VLAN tags based on source and destination
MAC addresses.

Match

Actionsrc
MAC

dst
MAC

everything
else

A B * vlan = 2

C B * vlan = 3

… … … …

N entries

Why multiple tables?

● Now you also want to forward packets based on their source and
destination IP address.

Match

Action
src IP dst IP everything

else

X Y * outport = 1

Z W * outport = 5

… … … …

Match

Actionsrc
MAC

dst
MAC

everything
else

A B * vlan = 2

C B * vlan = 3

… … … …

N entries M entries

Why multiple tables?

● Now you also want to forward packets based on their source and
destination IP address.

You can write separate programs in, say,
Frenetic, and compose them.

But what would the final OpenFlow table
look like?

Match

Action
src IP dst IP everything

else

X Y * outport = 1

Z W * outport = 5

… … … …

Match

Actionsrc
MAC

dst
MAC

everything
else

A B * vlan = 2

C B * vlan = 3

… … … …

N entries M entries

Why multiple tables?

Match

Actionsrc
MAC

dst
MAC

src
IP

dst
IP

everything else

A B X Y * vlan = 2; outport = 1

C B X Y * vlan = 3; outport = 1

A B Z W * vlan = 2; outport = 5

C B Z W * vlan = 3; outport = 5

… … … … … …

M x N entries

Why multiple tables?

Match

Actionsrc
MAC

dst
MAC

src
IP

dst
IP

everything else

A B X Y * vlan = 2; outport = 1

C B X Y * vlan = 3; outport = 1

A B Z W * vlan = 2; outport = 5

C B Z W * vlan = 3; outport = 5

… … … … … …

M x N entries

● Network devices have multiple tables.

● For simplicity and uniformity, OpenFlow
abstracted away everything as a single table.

● Why not allow the controller to program
separate network logic in separate tables?

OpenFlow kept getting extended

● To support more fields

● To expose more of the data-plane capabilities to the control-plane

○ e.g., multiple tables

OpenFlow kept getting extended

● To support more fields

● To expose more of the data-plane capabilities to the control-plane

○ e.g., multiple tables

This does not seem sustainable…

OpenFlow kept getting extended

● To support more fields

● To expose more of the data-plane capabilities to the control-plane

○ e.g., multiple tables

This does not seem sustainable…

Why don't we open up the
controller-switch interface even more?

Controller

Controller to switch
● Runtime communication

○ add/remove/modify table entries
○ send packet
○ request traffic statistics

Controller

Controller to switch
● Headers and Parsing

○ Header X and Y look like this
○ To parse header X, look at the bytes B1 to B2

in the packet…

● Table Configuration
○ Table T1 should use X for match and A1 or

A2 for actions.
○ Table T2 should use …

● Runtime communication
○ add/remove/modify table entries
○ send packet
○ request traffic statistics

Controller

Controller to switch
● Headers and Parsing

○ Header X and Y look like this
○ To parse header X, look at the bytes B1 to B2

in the packet…

● Table Configuration
○ Table T1 should use X for match and A1 or

A2 for actions.
○ Table T2 should use …

● Runtime communication
○ add/remove/modify table entries
○ send packet
○ request traffic statistics

Not restricted to certain protocols
→ Protocol-Independent

Controller

Controller to switch
● Headers and Parsing

○ Header X and Y look like this
○ To parse header X, look at the bytes B1 to B2

in the packet…

● Table Configuration
○ Table T1 should use X for match and A1 or

A2 for actions.
○ Table T2 should use …

● Runtime communication
○ add/remove/modify table entries
○ send packet
○ request traffic statistics

Not restricted to certain protocols
→ Protocol-Independent

Much more flexibility in specifying
packet processing

P4: Programming Protocol-Independent Packet Processors

● A data-plane programming language (proposed in 2014)

● P4 programs specify

○ Headers and Parsing
○ Match-action tables
○ How packets are processed in the data plane using those tables

Example: Destination-based IP forwarding

Ethernet

IPv4

UDP

Packet Data

● Decide which port to forward the packet to
based on the destination IP address.

● Destination IP is a field supported by OpenFlow.

● Can be implemented using OpenFlow rules.

Example: Destination-based IP forwarding in OpenFlow

Ethernet

IPv4

UDP

Packet Data

Match
Action

dst IP everything else

125.12.1.25/24 * outport = 1

140.2.33.22/32 * outport = 5

… … …

Example: Destination-based IP forwarding in P4

Ethernet

IPv4

UDP

Packet Data

1. Define the headers that we need for
processing incoming packets.

○ The Ethernet and IP header

○ Don't need anything else beyond that

2. Define how they should be parsed from the
packet

Defining the Ethernet header

header ethernet_t {

 bit<48> dstAddr;

 bit<48> srcAddr;

 bit<16> etherType;

}

Preamble Dst MAC Src MAC Ether
Type Data CRC

8 bytes 6 bytes 6 bytes 2 bytes
46 - 1500

bytes 4 bytes

Ethernet Header
(14 bytes) Definition in P4

Defining the IPv4 header
Definition in P4

Ver IHL DSCP ECN Total Length

Identification Fl Fragment Offset

Time to Live Protocol Header Checksum

Source IP Address

Destination IP Address

Options (if IHL > 5)

header ipv4_t {

 bit<4> version;

 bit<4> ihl;

 bit<8> diffserv;

 bit<16> totalLen;

 bit<16> identification;

 bit<3> flags;

 bit<13> fragOffset;

 bit<8> ttl;

 bit<8> protocol;

 bit<16> hdrChecksum;

 bit<32> srcAddr;

 bit<32> dstAddr;

}

IPv4 Header
4*5 = 20 bytes (or more with options)

Instantiating the headers

● Next, we need to instantiate the headers. In this case, we expect our
packets to have one Ethernet header and one IP header.

struct headers {

 ethernet_t ethernet;

 ipv4_t ipv4;

}

Instantiating the headers

● We can have multiple instances of a header if needed (e.g., IP in IP
tunneling)

struct headers {

 ethernet_t ethernet;

 ipv4_t outer_ipv4;

 ipv4_t inner_ipv4;

}

Metadata

● Metadata are extra variables that accompany the packet as it is
processed in the switch.

● You can read from and write to them in different parts of a P4 program.

● You can define your own metadata or use special ones that the
underlying target makes available to you.

Parsing headers

● P4 parsers are state machines.

● The parser starts from the "start" state and transitions to user-defined
states as it parses bits from the packet and puts them into headers.

parser MyParser(packet_in packet,

 out headers hdr,

 inout metadata meta,

 inout standard_metadata_t standard_metadata){

 state machine describing how to parse headers

}

Parser States
state start {

 transition parse_ethernet;

}

state parse_ethernet {

 packet.extract(hdr.ethernet);

 transition select(hdr.ethernet.etherType) {

 0x800: parse_ipv4;

 default: accept;

 }

}

state parse_ipv4 {

 packet.extract(hdr.ipv4);

 transition accept;

}

● extract takes bits out of
the packet and put them in
the header instances.

● With select, we can pick
which state to transition
to next based on the other
"variables" in the program.

Example: Destination-based IP forwarding in P4

Ethernet

IPv4

UDP

Packet Data

● We have extracted bits from the packet into
headers.

● We can read from and write to these
headers in control blocks.

Controls

The body of a control
looks like a simple
imperative program.

control MyIngress(inout headers hdr,

 inout metadata meta,

 inout standard_metadata_t standard_metadata) {

 Declarations (e.g., tables, actions, etc.)

 apply {

 if (hdr.ipv4.isValid()) {

 ipv4_forward.apply();

 }

 }

}

Controls

You can declare
variables, tables, and
actions.

You can specify how
these tables and
actions should be
applied to packets.

control MyIngress(inout headers hdr,

 inout metadata meta,

 inout standard_metadata_t standard_metadata) {

 Declarations (e.g., tables, actions, etc.)

 apply {

 if (hdr.ipv4.isValid()) {

 ipv4_forward.apply();

 }

 }

}

Defining Tables

● key specifies the set of fields that
are used for matching

● actions specifies the set of
possible actions that can be
applied to packets in this table.

table ipv4_forward {

 key = {

 hdr.ipv4.dstAddr: exact;

 }

 actions = {

 forward;

 drop;

 NoAction;

 }

 default_action = drop();

}

Defining Tables

● To add a rule to the table, the
controller should specify

○ values for the match fields

○ which action to take for matched
packets

table ipv4_forward {

 key = {

 hdr.ipv4.dstAddr: exact;

 }

 actions = {

 forward;

 drop;

 NoAction;

 }

 default_action = drop();

}

Defining Actions

action drop() {

 mark_to_drop(standard_metadata);

}

action forward(macAddr_t dstAddr, egressSpec_t port) {

 standard_metadata.egress_spec = port;

 hdr.ethernet.srcAddr = hdr.ethernet.dstAddr;

 hdr.ethernet.dstAddr = dstAddr;

 hdr.ipv4.ttl = hdr.ipv4.ttl - 1;

}

● Actions can modify metadata,
packet fields, etc.

● When adding a rule, the
controller should

○ specify which action to take
○ provide the arguments for that

action

Tables & Actions
in Controls

control MyIngress(inout headers hdr,

 inout metadata meta,

 inout standard_metadata_t standard_metadata) {

 action drop() { … }

 action forward(macAddr_t dstAddr, egressSpec_t port) {...}

 table ipv4_forward {

 …
 }

 apply {

 if (hdr.ipv4.isValid()) {

 ipv4_forward.apply();

 }

 }

}

Architectures

● Data planes can have very different architectures and/or allow varying
levels of programmability.

P
ar

se
r

In
gr

es
s

P
ro

ce
ss

in
g

tra
ffi

c
m

an
ag

er

an
d

qu
eu

es

D
ep

ar
se

r

Packets in Packets out

P4 Programmable

Not P4 Programmable

Architectures

● Data planes can have very different architectures and/or allow varying
levels of programmability.

P
ar

se
r

In
gr

es
s

P
ro

ce
ss

in
g

tra
ffi

c
m

an
ag

er

an
d

qu
eu

es

D
ep

ar
se

r

Packets in Packets out

P4 Programmable

Not P4 Programmable

Architectures

● Data planes can have very different architectures and/or allow varying
levels of programmability.

P
ar

se
r

In
gr

es
s

P
ro

ce
ss

in
g

tra
ffi

c
m

an
ag

er

an
d

qu
eu

es

Packets in

P4 Programmable

Not P4 Programmable

E
gr

es
s

P
ro

ce
ss

in
g

D
ep

ar
se

r

Packets out

Architectures

● P4 architecture files describe the P4 programmable blocks in a data plane
and their interface with the programmer.

package V1Switch<H, M>(Parser<H, M> p,

 VerifyChecksum<H, M> vr,

 Ingress<H, M> ig,

 Egress<H, M> eg,

 ComputeChecksum<H, M> ck,

 Deparser<H> dep

);

Architectures

● P4 architecture files describe the P4 programmable blocks in a data plane
and their interface with the programmer.

 parser Parser<H, M>(packet_in b,

 out H parsedHdr,

 inout M meta,

 inout standard_metadata_t standard_metadata);

control Ingress<H, M>(inout H hdr,

 inout M meta,

 inout standard_metadata_t standard_metadata);

Architectures

● They specify what kind of standard metadata they make available to the
programmers.

struct standard_metadata_t {

 bit<9> ingress_port;

 bit<9> egress_spec;

 bit<9> egress_port;

 bit<32> instance_type;

 bit<32> packet_length;

 …
}

Architectures

● They also specify any "special" block that is not programmable but can be
used as a blackbox in P4 programs.

● You can think of it as a special library of objects and functions.

extern register<T>{

register(bit<32> size);

void read(out T result, in bit<32> index);

void write(in bit<32> index, in T value);

}

extern void random<T>(out T result, in T lo, in T hi);

Let's look at actual programs

● forwarding.p4
● v1model.p4

What about the control plane?

● P4 programs do not specify the dynamics of how rules are added,
modified, or removed from tables.

● The controller still needs to

○ populate the tables in P4 programs,
○ get statistics, or
○ send/receive packets to/from the data plane.

● Can't use OpenFlow out of the box.

○ The table definitions change from one program to another

P4 Runtime

● A controller platform for targets whose behavior is described by P4
programs

● Provides libraries in common programming languages to communicate
with P4 switches.

○ similar to OpenFlow controllers (e.g., NOX)

P4 Today

● Since 2014, the community around P4 has only grown.

● It has seen widespread adoption by industry and academia

● Many papers that either use P4 for various new applications or improve
the language itself and its compilers.

○ You'll see P4 pop up many times in papers in this class :)

● It has found applications in many places

○ Prototyping new hardware features
○ Offloading all sorts of functionality to the switch
○ Being used as a specification language for fixed-function switches
○ …

Paper 1: P4: Programming Protocol-Independent Packet
Processors
● The original P4 paper, published in 2014

● The language has evolved since then, but the main philosophy and
language constructs are mainly the same.

● In 2013, a subset of the authors published a paper (which we will read
later!) on a switch architecture that is more reconfigurable than
OpenFlow.

● So, this paper assumes that compiling P4 programs to actual hardware is
possible and mostly focuses on language design.

Paper 2: The P416 Programming Language

● P4 was a great starting point for making data planes programmable.

● But, there was room for lots of improvement from a language design
standpoint :)

● In 2017, the P4 language consortium released a major update to the P4
language.

● This paper describes the arguments behind the changes, the new version
of the language, and sketches of a compiler design.

Additional Resources

● P4.org!

● Domino, Mantis, MicroP4, and P4All

○ Proposals for higher level data plane programming languages
○ Or extensions to P4

Logistics

● Presentations were assigned yesterday

● Reviews are due Monday at 5pm.

● Project proposal is due Jan 31.

○ There will be a dropbox on LEARN for submitting proposals.

