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Logistics

● Join Piazza and HotCRP 
○ Invitations were sent on Wednesday
○ Make sure to check your spam folder as well

● Sign up for 10-minute paper presentations
○ The link to the spreadsheet will be sent on Slack.
○ Sign up for 4 papers you are interested to present. 
○ If there are already 3 people signed up, try to sign up for other papers 
○ 2 papers will be assigned to each person.



Logistics

● If you need help with project ideas, let me know

● First round of reviews are due Monday at 5pm.



Traditional networks - distributed control

● Each device (switch, router, etc.) runs its own instance of a network 
algorithm/protocol.

● The devices communicate with each other to figure out how to forward 
packets.

● Going forward, we'll use the word switch as a generic term to refer to 
network devices that forward traffic
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Traditional networks - distributed control

Control Plane
Runs algorithms such as OSPF, BGP, etc.

S1 S2

Data Plane

Destination IP address Next Hop - High-speed hardware/software, processing 
packets at Gbps or even Tbps



Traditional networks - distributed control

Control Plane
Runs algorithms such as OSPF, BGP, etc.
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Data Plane

Destination IP address Next Hop

- The control plane configures the data plane 
(e.g., populates the forwarding tables)

- Data plane can forward some packets (e.g., 
message from control plane of other 
switches) to the control plane
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Destination IP address Next Hop

S1: I can reach 128.56.10.10/24 
through S2 at cost 2, and through 
S3 at cost 5. Let's use the path 
through S2.
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Traditional networks - distributed control

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

128.56.10.10/24 S2

S1 S2

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

S1: Let's tell S3 that I can reach 
128.56.10.10/24 at cost 3

1
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Traditional networks - "Indirect" path selection

H1
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S5

1 1 1

2 1🤔
How can we get H1 to use the 
bottom path?
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Traditional networks - "Indirect" path selection

H1

H2

H3
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1 2 1

1 1

What if our network had thousands of 
devices and links?

What if we had more complex criteria for 
selecting forwarding paths?
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Instead of running (complex) 
distributed control-plane 
algorithms here …
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DP DP
DP

DP

DP

Logically Centralized 
Control-Plane

Has a global view of the 
network

Has direct control over the 
switches

A control layer for local control tasks, e.g., 
communicating with the SDN controller.



Software-Defined Networking (SDN)

● SDN provides global visibility and direct control

● Why software-defined? 

● Because the "software" running on the SDN controller will "define" the 
behavior of the network

○ As opposed to the interactions of several instances of a distributed protocol. 



Discussion
distributed vs centralized control: pros and cons, trade-offs



The controller-switch communication

● The controller-switch communication is an integral part of SDN

● An early (and quite popular) proposal for such a communication protocol 
was OpenFlow



OpenFlow - The early days

● Abstracts the switch data plane as one big look-up table
● When a packet comes in

○ Extract the relevant headers from it 
○ See if it matches any table entries
○ Execute the corresponding action



OpenFlow - The early days

Data Plane

Match Action

1, *, *, *, 10.0.0.1, *, *, *, *, 80 drop

● Match
○ Input port
○ Ethernet header fields (src, dst, type)
○ Some IP header fields (src, dst, proto)
○ Some TCP header fields (src port, dst port)

● Action
○ drop
○ forward to port N
○ send to controller
○ modify the value of a field



OpenFlow: flow table entries

Match Action Stats

1. Forward packet to port(s)
2. Drop packet
3. Modify fields in header(s)
4. Encapsulate and forward to controller

Packet + byte counters

Header fields to match:

Ingress 
Port

Src 
MAC

Dst 
MAC

Eth 
Type

VLAN
 ID

IP
ToS

IP 
Proto

IP Src IP Dst
TCP/UDP 
Src Port

VLAN
 Pri

TCP/UDP 
Dst Port

Link 
layer

Network 
layer

Transport layer



OpenFlow: examples

IP datagrams destined to IP address  51.6.0.8 should be forwarded to router output port 6 

Block (do not forward) all datagrams destined to TCP  port 22 (ssh port #)

Block (do not forward) all datagrams sent by host 128.119.1.1

Destination-based forwarding:

* * * * * * 51.6.0.8 * * * port6

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port ActionVLAN

Pri
IP

ToS

**

* * * * * * * * * *

Firewall:

drop

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port ActionVLAN

Pri
IP

ToS

22*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port ActionVLAN

Pri
IP

ToS

* * * * * * * * * * drop*128.119.1.1



OpenFlow: examples

Layer 2 destination-based forwarding:

layer 2 frames with destination  MAC address 22:A7:23:11:E1:02 should be forwarded to 
output port 3 

* * * * * * * * * port3
22:A7:23:
11:E1:02 * *

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port ActionVLAN

Pri
IP

ToS



OpenFlow - The early days

Data Plane

● Switch to Controller
○ connect
○ disconnect
○ status of ports
○ packet (e.g., if it matches no rules)
○ traffic statistics

● Controller to Switch
○ add/remove/modify table entries
○ packet
○ request traffic statistics

Match-action table

Controller



OpenFlow - The early days

● OpenFlow became quite popular

● It was simple

● Yet, it captured the essence of how many network devices process 
packets

○ MAC learning, IP forwarding, Access control (ACL), NAT, …



• match+action: abstraction unifies different kinds of devices

OpenFlow abstraction

Router
•match: longest 
destination IP prefix

•action: forward out a link

Switch
•match: destination MAC 
address

•action: forward or flood

ACL (e.g., Firewall)
•match: IP addresses and 
TCP/UDP port numbers

•action: permit or deny 

NAT
• match: IP address and port
• action: rewrite address and 

port



OpenFlow - Today

● It has become a lot more complicated
○ Multiple tables
○ More headers, actions, etc.
○ Bundled communication messages
○ …

● It is still a popular abstraction for configuring different components of 
switches, routers, network interface cards (NICs), middleboxes, etc.

● Successor (kind of): P4 (next week) 



Paper 1: A clean slate 4D approach to network control …

● This paper was published in 2005. 
○ SDN didn't exist back then.
○ The community was starting to think more seriously about direct control and global 

visibility.

● From the paper's introduction: "Our goal for this paper is not to prove that 4D is 
the best approach. [...] Rather, by presenting a specific design alternative that is 
radically different from today’s approach, [...], we want to highlight the issues 
that need to be considered in a clean slate design of network control and 
management."

● Keep the above quote in mind when reading the paper. Do you think they 
achieved their goal?



Paper 1: A clean slate 4D approach to network control …

● There are a lot of acronyms in networking 😅
● If you can't figure out what they mean, ask on Piazza

● Examples from this paper

○ Autonomous Systems (AS)
○ OSPF, IS-IS, and EIGRP
○ MPLS (and tunneling in general)
○ FIB
○ …



Paper 2: Frenetic: A network programming language

● This paper was published in 2011

● SDN and OpenFlow had been around for a couple of years.

● OpenFlow had done a great job of abstracting away the low-level details 
of the data plane. 

● But, people were realizing that we may need higher-level abstractions on 
top of OpenFlow to make programming the network easier. 



Paper 2: Frenetic: A network programming language

● This paper proposes a new programming language to describe network 
policies and queries.

○ Policies describe how packets should be processed in the network

○ Queries describe what kind of information operators would like to get from the 
network. 



Paper 2: Frenetic: A network programming language

● Operators describe policies and queries in this language on the controller.

● Frenetic's runtime system makes sure the controller and switches interact 
in a way that makes those policies and queries happen.



Paper 2: Frenetic: A network programming language

● When proposing a new language, the authors describe its syntax and 
semantics

● Syntax specifies what valid programs look like

○ In text with examples

○ More formally as a grammar

● Semantics specifies what a program means

○ i.e., what happens when you execute the program



Paper 2: Frenetic: A network programming language



Additional Resources

● The original OpenFlow paper (2008)

● NetKAT: A Frenetic-like network programming language, but with a 
heavier mathematical foundation and treatment (2014)
○ There has been a long line of research (still ongoing) on NetKat-like family of 

network programming languages.



Don't forget 🙂

● Join Piazza and HotCRP 

● Sign up for 10-minute paper presentations

● If you need help with project ideas, let me know.

● First round of reviews are due Monday at 5pm.


