IIIIIIIIIIII

CS 856: Programmable Networks
Lecture 1: SDN and OpenFlow

Mina Tahmasbi Arashloo
Winter 2024

Logistics

e Join Piazza and HotCRP
o Invitations were sent on Wednesday
o Make sure to check your spam folder as well

e Sign up for 10-minute paper presentations
o The link to the spreadsheet will be sent on Slack.
Sign up for 4 papers you are interested to present.

O
o If there are already 3 people signed up, try to sign up for other papers
o 2 papers will be assigned to each person.

Logistics

e If you need help with project ideas, let me know

e First round of reviews are due Monday at 5pm.

Traditional networks - distributed control

e Each device (switch, router, etc.) runs its own instance of a network
algorithm/protocol.

e The devices communicate with each other to figure out how to forward
packets.

e Going forward, we'll use the word switch as a generic term to refer to
network devices that forward traffic

Traditional networks - distributed control

\ S1 S2 /
e o

Traditional networks - distributed control

\ S1 S2 /
e o

Control Plane

Traditional networks - distributed control

\ S1 S2 /
e =

Control Plane

- Software running on a (weak) CPU

: - Runs different algorithms to figure
out what the network looks like,
what paths are available, etc.

- Tells the data plane how to forward
packets accordingly.

Traditional networks - distributed control

\ S1 S2 /
e =

Control Plane
Runs algorithms such as OSPF, BGP, etc. <

- Software running on a (weak) CPU

- Runs different algorithms to figure
out what the network looks like,
what paths are available, etc.

- Tells the data plane how to forward
packets accordingly.

Traditional networks - distributed control

\ S1

e =

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Data Plane

Destination IP address | Next Hop

Traditional networks - distributed control

\ S1 S2 /
e =

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Data Plane

Destination IP address | Next Hop - High-speed hardware/software, processing
8 packets at Gbps or even Tbps

Traditional networks - distributed control

\ S1

S2

e

Control Plane
Runs algorithms such as OSPF, BGP, etc.

/
=

Data Plane

8 Destination IP address | Next Hop

- The control plane configures the data plane
(e.g., populates the forwarding tables)

- Data plane can forward some packets (e.g.,
message from control plane of other
switches) to the control plane

Traditional networks - distributed control

\ S1

(>

S2

— -

Control Plane

Runs algorithms such as OSPF, BGP, etc.

/
=

Control Plane

Runs algorithms such as OSPF, BGP, etc.

Data Plane

1

Next Hop

Data Plane

Destination IP address

Next Hop

E Destination IP address

Traditional networks - distributed control

T~

(>

S2

— -

/
=

Control Plane

Runs algorithms such as OSPF, BGP,

Control Plane

etc./\ .__ | Runs algorithms such as OSPF, BGP, etc.

Data Plane

S2 to S1: | have a path with cost ;

2 t0 128.56.10.10/24

Next Hop

Destination IP address | Next Hop

8 Destination IP address

Traditional networks - distributed control

S1: | can reach 128.56.10.10/24
through S2 at cost 2, and through
S3 at cost 5. Let's use the path

through S2.

S2 /
=

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Control Plane
Runs algorithms such as OSPF, BGP, etc.

1

Data Plane

Data Plane

Destination IP address | Next Hop

8 Destination IP address | Next Hop

Traditional networks - distributed control

\ S1

(>

S2

— -

Control Plane

Runs algorithms such as OSPF, BGP, etc.

/
=

Control Plane

Runs algorithms such as OSPF, BGP, etc.

Data Plane

1

Next Hop

Data Plane

Destination IP address

Next Hop

Destination IP address
E 128.56.10.10/24

S2

Traditional networks - distributed control

\ S1

(>

S2

— -

Control Plane

Runs algorithms such as OSPF, BGP, etc.

/
=

1

Control Plane

Runs algorithms such as OSPF, BGP, etc.

1

Data Plane
Destination IP address | Next Hop
128.56.10.10/24 S2

Data Plane

Destination IP address

Next Hop

Traditional networks - distributed control

S1: Let's tell S3 that | can reach
128.56.10.10/24 at cost 3

3

S2

Control Plane

Runs algorithms such as OSPF, BGP, etc.

/
=

1

Control Plane

Runs algorithms such as OSPF, BGP, etc.

1

Data Plane
Destination IP address | Next Hop
128.56.10.10/24 S2

Data Plane

Destination IP address

Next Hop

Traditional networks - "Indirect" path selection

Traditional networks - "Indirect" path selection

H2

=

[H1 starts sending traffic to H3]

&=

S4

H1 1 1 \
-
S1

Traditional networks - "Indirect" path selection

H2
H 1 1 ‘;‘\
__eo%a %> S3 ST
S1 2 2 g= S5
=

Traditional networks - "Indirect" path selection

[H2 starts sending traffic to H3]

H1

>
-
S1

1

d
\

S

2

H2

LA

1 & :

.~ g

S3

.
et

2 1
&=

S4

H3

Traditional networks - "Indirect" path selection

H2
H1] 1 S H3
e>a o= $3 as
T ~a’ /\ =
S1 s2 ; ss T
=2

Traditional networks - "Indirect" path selection

How can we get H1 to use the H2

bottom path?

®)

—
i H1 1 1 »’.\ H3
__e=a o= S3 &

¢
.
]

Traditional networks - "Indirect" path selection

H2

Change the link weights

-
H1] 1 &= \ H3
__e=a o S3 3

Traditional networks - "Indirect" path selection

H2

Change the link weights

-
H1] 2 &5 \ H3
__eo%a oF S3 3

Traditional networks - "Indirect" path selection

Change the link weights

——

H1

Traditional networks - "Indirect" path selection

What if our network had thousands of
devices and links?

What if we had more complex criteria for
selecting forwarding paths?

4)

- J

H1

H3

What if we had global visibility and direct control?

»| Controller |

What if we had global visibility and direct control?

There is traffic
1
fromH1toH3 _-—* Controller
/// *
7]
/ . H2

There is traffic |
from H2 to H3 \

1
I
I
|
I
H1 ‘, ;‘»
1

//

H3
S1 S2 \@/ 85/
—

S4

What if we had global visibility and direct control?

Controller
,/
For traffic from H1 to e
H3, use the link to S4. ,/ H2
II
1
]
1 | \
| =
H1 | [g =3 H3
S1 S2 S5
vﬁ

What if we had global visibility and direct control?

Controller

For traffic from H1 to
H3, use the link to S4.

H1

Software-Defined Networking (SDN)

Software-Defined Networking (SDN)

CP

CP

CP

DP

DP

\/

/\

CP

DP

CP

DP

Software-Defined Networking (SDN)

Instead of running (complex)

distributed control-plane
algorithms here ... \

Y a—
CP
CP C DP \ CP
P

P
—| D DP
S LeP

DP

Software-Defined Networking (SDN)

Run them here, and directly tell
the switch data plane how to —>
forward traffic.

Logically Centralized
Control-Plane

|_|_I:I/ DP \l_l

~ _~Lop

Software-Defined Networking (SDN)

\
Has a global view of the
Logically Centralized network
/’ Control-Plane
,’ A 4 A [Ha§ direct control over the
/ / I \ \ switches
/ / \ \ /

I
|
|
\

Software-Defined Networking (SDN)

\
Has a global view of the
Logically Centralized network
K Control-Plane
,’ A 4 A [Has direct control over the
/ / I \ \ switches
'I 'I . \ \\ /
1 \
A control layer for local control tasks, e.g., " ‘I \\
communicating with the SDN controller. \ I !
I
I
I
|

Software-Defined Networking (SDN)

e SDN provides global visibility and direct control

e \Why software-defined?

e Because the "software" running on the SDN controller will "define" the
behavior of the network

o As opposed to the interactions of several instances of a distributed protocol.

Discussion
distributed vs centralized control: pros and cons, trade-offs

The controller-switch communication

e The controller-switch communication is an integral part of SDN

e An early (and quite popular) proposal for such a communication protocol
was OpenFlow

OpenFlow - The early days

e Abstracts the switch data plane as one big look-up table
e \When a packet comes in

o Extract the relevant headers from it

o See if it matches any table entries

o Execute the corresponding action

OpenFlow - The early days

=

Data Plane

Match

Action

1,*% %% 10.0.0.1, %, %,

*’ *’ 80

drop

e Match
o Input port
o Ethernet header fields (src, dst, type)
o Some IP header fields (src, dst, proto)
o Some TCP header fields (src port, dst port)

e Action
o drop
o forward to port N
o send to controller
o modify the value of a field

OpenFlow: flow table entries

Match Action Stats

Packet + byte counters

Forward packet to port(s)

Drop packet

Modify fields in header(s)
Encapsulate and forward to controller

= 2 I =

Header fields to match:

Ingress Src Dst Eth VLAN VLAN IP IP TCP/UDP TCP/UDP

Port MAC MAC Type ID Pri [— Proto ToS Src Port Dst Port

Y 1 T
Link Network Transport layer

layer layer

OpenFlow: examples

Destination-based forwarding:

Switch| MAC | MAC | Eth | VLAN |VLAN IP IP IP IP TCP | TCP
Port | src dst | type ID Pri Src Dst | Prot | ToS |[s-port|d-port

Action

* * * * * * * 51.6.0.8 * * * * port6
IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Firewall:
Switch| MAC | MAC | Eth | VLAN | VLAN IP IP IP IP TCP | TCP Acti
Port | src dst | type ID Pri Src Dst | Prot | ToS | s-port|d-port ction
* * * * * * * * * * * 22 drop
Block (do not forward) all datagrams destined to TCP port 22 (ssh port #)
Switch| MAC | MAC | Eth | VLAN | VLAN IP IP IP IP TCP | TCP Acti
Port | src dst | type ID Pri Src Dst | Prot | ToS | s-port|d-port| ~€'O"
* * * * * * 128.119.1.1 * * * * * drop

Block (do not forward) all datagrams sent by host 128.119.1.1

OpenFlow: examples

Layer 2 destination-based forwarding:

Switch| MAC | MAC | Eth [VLAN |VLAN IP IP IP IP TCP | TCP Acti
Port | src dst | type ID Pri Src Dst | Prot | ToS | s-port]d-port ction

22:A7:23:
* * 11:E1:02

layer 2 frames with destination MAC address 22:A7:23:11:E1:02 should be forwarded to
output port 3

* * * * * * * * * port3

OpenFlow - The early days

e Switch to Controller

connect

disconnect

status of ports

packet (e.qg., if it matches no rules)
traffic statistics

Controller

o O O O O

e Controller to Switch
| | o add/remove/modify table entries

Data Plane o packet
o request traffic statistics

Match-action table

OpenFlow - The early days

e OpenFlow became quite popular

e It was simple

e Yet, it captured the essence of how many network devices process
packets

o MAC learning, IP forwarding, Access control (ACL), NAT, ...

OpenFlow abstraction

* match+action: abstraction unifies different kinds of devices

Router ACL (e.g., Firewall)
*match: longest * match: IP addresses and
destination IP prefix TCP/UDP port numbers
eaction: forward out a link eaction: permit or deny
Switch NAT
*match: destination MAC * match: IP address and port
address * action: rewrite address and

eaction: forward or flood port

OpenFlow - Today

e It has become a lot more complicated
o Multiple tables
o More headers, actions, etc.
o Bundled communication messages

O

e |tis still a popular abstraction for configuring different components of
switches, routers, network interface cards (NICs), middleboxes, etc.

e Successor (kind of): P4 (next week)

Paper 1: A clean slate 4D approach to network control ...

e This paper was published in 2005.

o SDN didn't exist back then.
o The community was starting to think more seriously about direct control and global

visibility.
e From the paper's introduction: "Our goal for this paper is not to prove that 4D is
the best approach. [...] Rather, by presenting a specific design alternative that is

radically different from today’s approach, [...], we want to highlight the issues
that need to be considered in a clean slate design of network control and

management.”

e Keep the above quote in mind when reading the paper. Do you think they
achieved their goal?

Paper 1: A clean slate 4D approach to network control ...

e There are a lot of acronyms in networking &
e If you can't figure out what they mean, ask on Piazza

e Examples from this paper

Autonomous Systems (AS)
OSPF, I1S-IS, and EIGRP

MPLS (and tunneling in general)
FIB

O O O O O

Paper 2: Frenetic: A network programming language

e This paper was published in 2011
e SDN and OpenFlow had been around for a couple of years.

e OpenFlow had done a great job of abstracting away the low-level details
of the data plane.

e But, people were realizing that we may need higher-level abstractions on
top of OpenFlow to make programming the network easier.

Paper 2: Frenetic: A network programming language

e This paper proposes a new programming language to describe network
policies and queries.

o Policies describe how packets should be processed in the network

o Queries describe what kind of information operators would like to get from the
network.

Paper 2: Frenetic: A network programming language

e Operators describe policies and queries in this language on the controller.

e Frenetic's runtime system makes sure the controller and switches interact
in a way that makes those policies and queries happen.

Paper 2: Frenetic: A network programming language

e \When proposing a new language, the authors describe its syntax and
semantics

e Syntax specifies what valid programs look like
o In text with examples
o More formally as a grammar

e Semantics specifies what a program means

o i.e., what happens when you execute the program

Paper 2: Frenetic: A network programming language

Queries q ::= Select(a) *
Where(fp) *

GroupBy([gh,,...,qh,]) *
SplitWhen([gh,,..., qh,]) *

Every(n) *
Limit(n)
Aggregates a ::= packets | sizes | counts
Headers qh ::= inport | srcmac | dstmac | ethtype |

vlan | srcip | dstip | protocol |

srcport | dstport | switch
Patterns fp ::=true_f£p() | gh_£fp(n) |

and_fp([fpl g & e ,fpn]) |

or_£p([fps, ..., fpn]) |

diff £p(fp1,fpz) | not_1p(fp)

Figure 3. Frenetic query syntax

Additional Resources

e The original OpenFlow paper (2008)

e NetKAT: A Frenetic-like network programming language, but with a

heavier mathematical foundation and treatment (2014)
o There has been a long line of research (still ongoing) on NetKat-like family of
network programming languages.

Don't forget =)

e Join Piazza and HotCRP
e Sign up for 10-minute paper presentations
e |If you need help with project ideas, let me know.

e First round of reviews are due Monday at 5pm.

