
CS 856: Programmable Networks

Mina Tahmasbi Arashloo
Winter 2024

Lecture 1: SDN and OpenFlow

Logistics

● Join Piazza and HotCRP
○ Invitations were sent on Wednesday
○ Make sure to check your spam folder as well

● Sign up for 10-minute paper presentations
○ The link to the spreadsheet will be sent on Slack.
○ Sign up for 4 papers you are interested to present.
○ If there are already 3 people signed up, try to sign up for other papers
○ 2 papers will be assigned to each person.

Logistics

● If you need help with project ideas, let me know

● First round of reviews are due Monday at 5pm.

Traditional networks - distributed control

● Each device (switch, router, etc.) runs its own instance of a network
algorithm/protocol.

● The devices communicate with each other to figure out how to forward
packets.

● Going forward, we'll use the word switch as a generic term to refer to
network devices that forward traffic

Traditional networks - distributed control
S1 S2

Traditional networks - distributed control

Control Plane

S1 S2

Traditional networks - distributed control

Control Plane

S1 S2

- Software running on a (weak) CPU

- Runs different algorithms to figure
out what the network looks like,
what paths are available, etc.

- Tells the data plane how to forward
packets accordingly.

Traditional networks - distributed control

Control Plane
Runs algorithms such as OSPF, BGP, etc.

S1 S2

- Software running on a (weak) CPU

- Runs different algorithms to figure
out what the network looks like,
what paths are available, etc.

- Tells the data plane how to forward
packets accordingly.

Traditional networks - distributed control

Control Plane
Runs algorithms such as OSPF, BGP, etc.

S1 S2

Data Plane

Destination IP address Next Hop

Traditional networks - distributed control

Control Plane
Runs algorithms such as OSPF, BGP, etc.

S1 S2

Data Plane

Destination IP address Next Hop - High-speed hardware/software, processing
packets at Gbps or even Tbps

Traditional networks - distributed control

Control Plane
Runs algorithms such as OSPF, BGP, etc.

S1 S2

Data Plane

Destination IP address Next Hop

- The control plane configures the data plane
(e.g., populates the forwarding tables)

- Data plane can forward some packets (e.g.,
message from control plane of other
switches) to the control plane

Traditional networks - distributed control

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

S1 S2

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

Traditional networks - distributed control

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

S1 S2

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

S2 to S1: I have a path with cost
2 to 128.56.10.10/24

Traditional networks - distributed control

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

S1 S2

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

S1: I can reach 128.56.10.10/24
through S2 at cost 2, and through
S3 at cost 5. Let's use the path
through S2.

Traditional networks - distributed control

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

128.56.10.10/24 S2

S1 S2

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

Traditional networks - distributed control

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

128.56.10.10/24 S2

S1 S2

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

1

Traditional networks - distributed control

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

128.56.10.10/24 S2

S1 S2

Data Plane

Control Plane
Runs algorithms such as OSPF, BGP, etc.

Destination IP address Next Hop

S1: Let's tell S3 that I can reach
128.56.10.10/24 at cost 3

1

Traditional networks - "Indirect" path selection

H1

H2

H3

S1 S2

S3

S4

S5

1 1 1

2 1

Traditional networks - "Indirect" path selection

H1

H2

H3

S1 S2

S3

S4

S5

1 1 1

2 1

H1 starts sending traffic to H3

Traditional networks - "Indirect" path selection

H1

H2

H3

S1 S2

S3

S4

S5

1 1 1

2 1

Traditional networks - "Indirect" path selection

H1

H2

H3

S1 S2

S3

S4

S5

1 1 1

2 1

H2 starts sending traffic to H3

Traditional networks - "Indirect" path selection

H1

H2

H3

S1 S2

S3

S4

S5

1 1 1

2 1

Traditional networks - "Indirect" path selection

H1

H2

H3

S1 S2

S3

S4

S5

1 1 1

2 1🤔
How can we get H1 to use the
bottom path?

Traditional networks - "Indirect" path selection

H1

H2

H3

S1 S2

S3

S4

S5

1 1 1

2 1💡
Change the link weights

Traditional networks - "Indirect" path selection

H1

H2

H3

S1 S2

S3

S4

S5

1 2 1

1 1💡
Change the link weights

Traditional networks - "Indirect" path selection

H1

H2

H3

S1 S2

S3

S4

S5

1 2 1

1 1💡
Change the link weights

Traditional networks - "Indirect" path selection

H1

H2

H3

S1 S2

S3

S4

S5

1 2 1

1 1

What if our network had thousands of
devices and links?

What if we had more complex criteria for
selecting forwarding paths?

What if we had global visibility and direct control?

H1

H2

H3

S1 S2

S3

S4

S5

Controller

What if we had global visibility and direct control?

H1

H2

H3

S1 S2

S3

S4

S5

ControllerThere is traffic
from H1 to H3

There is traffic
from H2 to H3

What if we had global visibility and direct control?

H1

H2

H3

S1 S2

S3

S4

S5

Controller

For traffic from H1 to
H3, use the link to S4.

What if we had global visibility and direct control?

H1

H2

H3

S1 S2

S3

S4

S5

Controller

For traffic from H1 to
H3, use the link to S4.

Software-Defined Networking (SDN)

Software-Defined Networking (SDN)

DP

CP

DP

CP DP

CP

DP

CP
DP

CP

Software-Defined Networking (SDN)

DP

CP

DP

CP DP

CP

DP

CP
DP

CP

Instead of running (complex)
distributed control-plane
algorithms here …

Software-Defined Networking (SDN)

DP DP
DP

DP

DP

Logically Centralized
Control-Plane

Run them here, and directly tell
the switch data plane how to
forward traffic.

Software-Defined Networking (SDN)

DP DP
DP

DP

DP

Logically Centralized
Control-Plane

Has a global view of the
network

Has direct control over the
switches

Software-Defined Networking (SDN)

DP DP
DP

DP

DP

Logically Centralized
Control-Plane

Has a global view of the
network

Has direct control over the
switches

A control layer for local control tasks, e.g.,
communicating with the SDN controller.

Software-Defined Networking (SDN)

● SDN provides global visibility and direct control

● Why software-defined?

● Because the "software" running on the SDN controller will "define" the
behavior of the network

○ As opposed to the interactions of several instances of a distributed protocol.

Discussion
distributed vs centralized control: pros and cons, trade-offs

The controller-switch communication

● The controller-switch communication is an integral part of SDN

● An early (and quite popular) proposal for such a communication protocol
was OpenFlow

OpenFlow - The early days

● Abstracts the switch data plane as one big look-up table
● When a packet comes in

○ Extract the relevant headers from it
○ See if it matches any table entries
○ Execute the corresponding action

OpenFlow - The early days

Data Plane

Match Action

1, *, *, *, 10.0.0.1, *, *, *, *, 80 drop

● Match
○ Input port
○ Ethernet header fields (src, dst, type)
○ Some IP header fields (src, dst, proto)
○ Some TCP header fields (src port, dst port)

● Action
○ drop
○ forward to port N
○ send to controller
○ modify the value of a field

OpenFlow: flow table entries

Match Action Stats

1. Forward packet to port(s)
2. Drop packet
3. Modify fields in header(s)
4. Encapsulate and forward to controller

Packet + byte counters

Header fields to match:

Ingress
Port

Src
MAC

Dst
MAC

Eth
Type

VLAN
 ID

IP
ToS

IP
Proto

IP Src IP Dst
TCP/UDP
Src Port

VLAN
 Pri

TCP/UDP
Dst Port

Link
layer

Network
layer

Transport layer

OpenFlow: examples

IP datagrams destined to IP address 51.6.0.8 should be forwarded to router output port 6

Block (do not forward) all datagrams destined to TCP port 22 (ssh port #)

Block (do not forward) all datagrams sent by host 128.119.1.1

Destination-based forwarding:

* * * * * * 51.6.0.8 * * * port6

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port ActionVLAN

Pri
IP

ToS

**

* * * * * * * * * *

Firewall:

drop

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port ActionVLAN

Pri
IP

ToS

22*

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port ActionVLAN

Pri
IP

ToS

* * * * * * * * * * drop*128.119.1.1

OpenFlow: examples

Layer 2 destination-based forwarding:

layer 2 frames with destination MAC address 22:A7:23:11:E1:02 should be forwarded to
output port 3

* * * * * * * * * port3
22:A7:23:
11:E1:02 * *

Switch
Port

MAC
src

MAC
dst

Eth
type

VLAN
ID

IP
Src

IP
Dst

IP
Prot

TCP
s-port

TCP
d-port ActionVLAN

Pri
IP

ToS

OpenFlow - The early days

Data Plane

● Switch to Controller
○ connect
○ disconnect
○ status of ports
○ packet (e.g., if it matches no rules)
○ traffic statistics

● Controller to Switch
○ add/remove/modify table entries
○ packet
○ request traffic statistics

Match-action table

Controller

OpenFlow - The early days

● OpenFlow became quite popular

● It was simple

● Yet, it captured the essence of how many network devices process
packets

○ MAC learning, IP forwarding, Access control (ACL), NAT, …

• match+action: abstraction unifies different kinds of devices

OpenFlow abstraction

Router
•match: longest
destination IP prefix

•action: forward out a link

Switch
•match: destination MAC
address

•action: forward or flood

ACL (e.g., Firewall)
•match: IP addresses and
TCP/UDP port numbers

•action: permit or deny

NAT
• match: IP address and port
• action: rewrite address and

port

OpenFlow - Today

● It has become a lot more complicated
○ Multiple tables
○ More headers, actions, etc.
○ Bundled communication messages
○ …

● It is still a popular abstraction for configuring different components of
switches, routers, network interface cards (NICs), middleboxes, etc.

● Successor (kind of): P4 (next week)

Paper 1: A clean slate 4D approach to network control …

● This paper was published in 2005.
○ SDN didn't exist back then.
○ The community was starting to think more seriously about direct control and global

visibility.

● From the paper's introduction: "Our goal for this paper is not to prove that 4D is
the best approach. [...] Rather, by presenting a specific design alternative that is
radically different from today’s approach, [...], we want to highlight the issues
that need to be considered in a clean slate design of network control and
management."

● Keep the above quote in mind when reading the paper. Do you think they
achieved their goal?

Paper 1: A clean slate 4D approach to network control …

● There are a lot of acronyms in networking 😅
● If you can't figure out what they mean, ask on Piazza

● Examples from this paper

○ Autonomous Systems (AS)
○ OSPF, IS-IS, and EIGRP
○ MPLS (and tunneling in general)
○ FIB
○ …

Paper 2: Frenetic: A network programming language

● This paper was published in 2011

● SDN and OpenFlow had been around for a couple of years.

● OpenFlow had done a great job of abstracting away the low-level details
of the data plane.

● But, people were realizing that we may need higher-level abstractions on
top of OpenFlow to make programming the network easier.

Paper 2: Frenetic: A network programming language

● This paper proposes a new programming language to describe network
policies and queries.

○ Policies describe how packets should be processed in the network

○ Queries describe what kind of information operators would like to get from the
network.

Paper 2: Frenetic: A network programming language

● Operators describe policies and queries in this language on the controller.

● Frenetic's runtime system makes sure the controller and switches interact
in a way that makes those policies and queries happen.

Paper 2: Frenetic: A network programming language

● When proposing a new language, the authors describe its syntax and
semantics

● Syntax specifies what valid programs look like

○ In text with examples

○ More formally as a grammar

● Semantics specifies what a program means

○ i.e., what happens when you execute the program

Paper 2: Frenetic: A network programming language

Additional Resources

● The original OpenFlow paper (2008)

● NetKAT: A Frenetic-like network programming language, but with a
heavier mathematical foundation and treatment (2014)
○ There has been a long line of research (still ongoing) on NetKat-like family of

network programming languages.

Don't forget 🙂

● Join Piazza and HotCRP

● Sign up for 10-minute paper presentations

● If you need help with project ideas, let me know.

● First round of reviews are due Monday at 5pm.

