
CS 856: Programmable Networks
Mina Tahmasbi Arashloo

Winter 2024



Networks when they started (1970s)

● Small and simple



Networks when they started (1970s)

● Small and simple

* photo credit: https://www.computerhistory.org/internethistory/1970s/

Tens of nodes



Networks when they started (1970s)

● Small and simple
● A scientific experiment



Networks when they started (1970s)

● Small and simple
● A scientific experiment
● Few simple requirements

Get data from A to B 
(preferably without losing it 🙂)

A

B



Networks when they started (1970s)

● Small and simple
● A scientific experiment
● Few simple requirements

Networks today (2020s)



Networks when they started (1970s)

● Small and simple
● A scientific experiment
● Few simple requirements

Networks today (2020s)

● Large and complex

Thousands, even millions of 
nodes.



Networks when they started (1970s)

● Small and simple
● A scientific experiment
● Few simple requirements

Networks today (2020s)

● Large and complex
● Critical infrastructure/ Public utility



Networks when they started (1970s)

● Small and simple
● A scientific experiment
● Few simple requirements

Networks today (2020s)

● Large and complex
● Critical infrastructure/ Public utility
● Many complex requirements

- Get data from A to B
- Ensure isolation
- Maintain quality of service 
- High throughput
- Low latency
- Low jitter
- …



Networks today



How does this affect network 
design, operation, and management?









































How can we make it better?

Separate what you want the network to do 
from how it is implemented

Don't implement in manually 🙂

Abstraction

Automation



Separate what you want the network to do 
from how it is implemented

Don't implement in manually 🙂

Abstraction

Automation

Recurring theme 
in this course

How can we make it better?



Here are some examples…

Configure a pre-defined set of distributed protocols (e.g., OSPF, 
BGP, etc.) to pick your desired forwarding paths. 



Here are some examples…

Control Plane

- Write a program that decides the forwarding paths. 
- Have a runtime compute and communicate proper 

configurations to network devices.



Here are some examples…

Control Plane

- Write a program that decides the forwarding paths. 
- Have a runtime compute and communicate proper 

configurations to network devices.

Configure a fixed-function hardware with 
pre-defined packet processing steps, 
e.g., MAC learning → GRE-Tunnel 
Processing → IP forwarding



Here are some examples…

Control Plane

- Write a program that decides the forwarding paths. 
- Have a runtime compute and communicate proper 

configurations to network devices.

- Write a program that specifies how packets are 
parsed and processed.

- Have a compiler translate that into instructions 
for switch hardware.



Here are some examples…

Control Plane

- Write a program that decides the forwarding paths. 
- Have a runtime compute and communicate proper 

configurations to network devices.

- Write a program that specifies how packets are 
parsed and processed.

- Have a compiler translate that into instructions 
for switch hardware.

- Write a program that specifies how 
packets are parsed and processed.

- Have a compiler implement it across 
user-space, the Kernel, and hardware 
accelerators.



Here are some examples…

Control Plane

- Write a program that decides the forwarding paths. 
- Have a runtime compute and communicate proper 

configurations to network devices.

- Write a program that specifies how packets are 
parsed and processed.

- Have a compiler translate that into instructions 
for switch hardware.

- Write a program that specifies how 
packets are parsed and processed.

- Have a compiler implement it across 
user-space, the Kernel, and hardware 
accelerators.



Here are some examples…

Control Plane

- Write a program that decides the forwarding paths. 
- Have a runtime compute and communicate proper 

configurations to network devices.

- Write a program that specifies how packets are 
parsed and processed.

- Have a compiler translate that into instructions 
for switch hardware.

- Write a program that specifies how 
packets are parsed and processed.

- Have a compiler implement it across 
user-space, the Kernel, and hardware 
accelerators.

Treat the network as a 
big, distributed, and 
specialized computer 



Here are some examples…

Control Plane

- Write a program that decides the forwarding paths. 
- Have a runtime compute and communicate proper 

configurations to network devices.

- Write a program that specifies how packets are 
parsed and processed.

- Have a compiler translate that into instructions 
for switch hardware.

- Write a program that specifies how 
packets are parsed and processed.

- Have a compiler implement it across 
user-space, the Kernel, and hardware 
accelerators.

Programmable
Networks



When we can "program" the network…

We can

● Analyze high-level programs to verify network functionality 

● Customize network devices to process packets exactly how we need
○ measure fine-grained statistics about traffic

○ add a variety of signals about congestion to packets for end-to-end 
congestion control algorithms

○ implement sophisticated and customized packet scheduling algorithms to 
provide quality of service (QoS) guarantees 

○ accelerate distributed applications (!)

○ …

● …



● (Programming) abstractions and automation applied to different 
components of networks

● How they have improved networks

● The new functionalities and tools they have enabled

● Open research questions in the area

In this course, we will discuss



Logistics

● Class is Tuesdays and Thursdays, 12:00pm to 1:20pm.

● Thursdays: lecture followed by discussion

○ Lay of the land for that topic
○ Context about the papers we want to read

● Tuesdays: Paper discussion



Logistics - Continued

● Instructor is me! Email me for any questions and to request office hours

○ prefix the email with [CS856] for a timely reply

● We will use Piazza for announcements, questions, and discussions.

● Project submissions and grades will be through LEARN.



Course Components

● Reviews (20%)
● Paper Presentation (15%)
● In-class Discussion (10%)
● Assignment (5% + Bonus) 
● Project (50%)



Reviews

● Two papers each week
● Due on Mondays at 5pm EST.
● Will be visible (anonymously) afterwards, so make sure to check them 

before class on Tuesday. 
● Review grading

○ Complete (2 points): adheres to the reviewing guidelines (next slide), clearly 
demonstrates that the reviewer has read and thought about the paper.

○ Partially Complete (1 point): Misses some but not all the reviewing guidelines, 
demonstrates that the reviewer has some understanding of the paper.

○ Incomplete (0 points)



Reviewing Guidelines

Each review should be ~500 words and contain the following sections, following the typical 
format of reviews in networking and systems conferences:

● A concise summary of the paper (1 paragraph)

● A list of the paper's main strengths (at least 2 bullet points)

● A list of opportunities for improvement (at least 2 bullet points)

● Critical analysis and comments (justifying the strengths and improvement opportunities 
listed in the previous sections)

● Trade-offs:  There is almost never a free lunch! a paragraph or two about the trade-off 
space that is relevant to the proposed approach of the paper, and where the proposed 
approach is in that trade-off space.



Reviewing Platform: HotCRP



Reviewing Platform: HotCRP

● When ready, submit review
● Every Monday at 5pm, the review form 

is deactivated and you can see all the 
other reviews submitted for the paper. 



Paper Presentation

● Each Paper discussion starts by a 10-minute presentation:

○ Describe the context and motivation behind the paper

○ The main problem the paper is trying to solve

○ The main design choices and/or techniques used in the solution

○ A summary of evaluation results

○ 4-5 discussion questions

● Each student is expected to do 1-2 presentations

● Feel free to send me a draft a few days before for feedback



Programming Assignment

● Assignment 1 (5%): implement a simple network functionality using P4

● Assignment 2 (Optional, 5% bonus): analyze the correctness of a simple network 
functionality using existing analysis tools

● The assignments are quite light

● The main purpose is for you to just install and use the tools, specially since 
P4 is used/mentioned in many papers. 



Project

● Individually or in groups of two.

● Original research projects related to programmable networks.

● Run your project idea by the instructor before submitting the proposal.

● One-Page Proposal (Jan 31)
○ problem statement, context and motivation, and a high-level overview of related work

● Two-Page Progress Report (March 2)

● Presentation (Last week of March)

● Final Project Report (April 15)
○ 6-page conference-style paper 
○ problem statement and motivation, design, evaluation, related work, and future research 

directions



Final Remarks

● Seminar courses are only as good as the discussions we have.

● Be active, ask questions, and voice your opinion. 

● There are no bad ideas, and I mean it 🙂
● If you have a hard time speaking up, let me know and I'll make sure to provide 

space for you to voice your opinion. 

● Be mindful of others in discussions. 


