IIIIIIIIIIII

CS 856: Programmable Networks

Lecture 10: In-Network Computing

Mina Tahmasbi Arashloo
Winter 2023

Logistics

e Project presentations, April 4 and April 6
o 20-minute presentation + 5 min Q&A

e Final project report, April 10
o Will send template on Slack

e Final review (@) due Monday, March 27th, at 5pm

Using network programmability to improve the network

e So far, we have mostly discussed how network programmability can help
improve networks themselves.

Trying out new algorithms/protocols

Customizing packet processing to the specific needs of a network
Helping with network verification

Flexible and fine-grained monitoring

In-network support for quality of service and transport-layer algorithms

O O O O O O

Using network programmability to accelerate applications?

e \With programmable parsing, we can specify
what we want to parse from the packet.

Ethernet

e Why stop after the transport-layer headers?

e \We can look into the data that networked 17

applications put into packets. TCP

o -
.

Using network programmability to accelerate applications?

e A programmable network device has limited
computational resources and capabilities.

e But it can still do basic arithmetic operations Ethernet

. . IP
e and keep track of some information across

packets. TCP

"Data" <

In-Network Computing

Offloading part of the application processing (i.e., compute)
to the network

Example 1: In-network caching

Online services rely quite heavily on distributed key-value stores.

I Data Center

=

Qh/,w Qm”

\

Storage servers
(key-value stores)

> Web servers

Example 1: In-network caching

e Online services rely quite heavily on distributed key-value stores.

\

I Data Center
S , Storage servers
= (key-value stores)

r

=

Refresh my
facebook feed

e o

(>
&

=)
-l

> Web servers

el i

Example 1: In-network caching

e Online services rely quite heavily on distributed key-value stores.

I Data Center

-
Refresh my
facebook feed

3 . Storage servers
= (key-value stores)

(////W QMW

> Web servers

Q//,W Q//,W

Example 1: In-network caching

e Online services rely quite heavily on distributed key-value stores.

I Data Center

-
Storage servers

Refresh my
(key-value stores)

facebook feed

Q/HW ’////‘»
(1 //1] j

Issues multiple

requests to the
key-value stores that

store user information,
post information, etc.

Web servers

Example 1: In-network caching

e Online services rely quite heavily on distributed key-value stores.

I Data Center

f ’///W

-
Storage servers

Refresh my
(key-value stores)

facebook feed

<’////

Issues multiple

requests to the
key-value stores that
store user information,
post information, etc.

Web servers

Example 1: In-network caching

e Key-value stores can get millions if not billions of requests every second.

e To handle such load, there are usually several storage servers, each
taking care of part of the key-value store.

e Requests are load-balanced across storage servers.

e Problem?

Hot items change all the time

This can create load imbalance.

That is, one server (or a subset of them) can get overwhelmed and not be
able to answer queries fast enough for good user quality of experience.

Example 1: In-network caching

| Data Center (\
[=
Refresh my \/ . Storage servers
facebook feed (key-value stores)
@)

Issues multiple

requests to the
key-value stores that

store user information,
post information, etc. y

Web servers

Example 1: In-network caching

7

Refresh my
facebook feed

I Data Center

4)

()

- ™

All the requests are going
through the top of rack switch!

Can we store (i.e., cache)
some of the "hot items" there?

"

. Storage servers
(key-value stores)

/

ssues multiple
requests to the
key-value stores that

. store user information,
= post information, etc.)

Web servers

Example 1: In-network caching

NetCache (SOSP'17) proposes to do just that!

Clients]

Controller Key-Value Storage Rack
I
L2/L.3 Key-Value Query
Routing Cache Statistics
ToR Switch Data plan

]

T

High-performance Storage Servers

Example 1: In-network caching

e NetCache (SOSP'17) proposes to do just that!

p \ Clients]

Regular switch functionality

Controller Key-Value Storage Rack
]

Maintains "hot" items

| L2/L3 Key-Value Query
Routing / Cache || Statistics

AT

//

ltch Data plan

Gather statistics about the queries.
-«
so the controller can update the i

cache as query patterns change. High-performance Storage Servers

Example 1: In-network caching

e NetCache (SOSP'17) proposes to do just that!

with a programmable parser, NetCache
can define its own header.

Existing Protocols\ NetCache Protocol
A

1
[1 |

UDP OP SEQ KEY

\ J
|
. reserved
L2/L3 Routing ‘ port #

VALUE

get, put,
delete, etc.

Example 1: In-network caching

e NetCache (SOSP'17) proposes to do just that!

Applications are provided with a library
that translates their requests to packets
with NetCache headers.

with a programmable parser, NetCache
can define its own header.

Existing Protocols\ NetCache Protocol
A

1
[1 |

P/UDP OP SEQ KEY
\ J
X . reserved
L2/L.3 Routing port #

VALUE

get, put,
delete, etc.

Example 1: In-network caching

e NetCache (SOSP'17) proposes to do just that!

Ingress | Egress

vaid_, Cache Value
clibolcpatte invalid Query [process | > Mirrorto egress entry

cache status »| statistics

>

Hit

Yes | Cache ”
. NetCache g Lookup Miss | Routing
Packet In | Query? No >

o
. g

[
>

Packet Out

{} v

Figure 8: Logical view of NetCache switch data plane.

Example 2: In-network consensus

e \What is consensus?

e You have a distributed set of participants .
o e.g., servers keeping track of the store inventory

e You want all of them to agree on some values.
o e.g., the total number of available trash cans to buy

Example 2: In-network consensus

e How is consensus/agreement usually implemented?

4)
Each participant has its own view of

the values of interest
_ J

~N

Before any changes, participants
communicate to make sure

everyone is aware of the change.
- /

Example 2: In-network consensus

How is consensus/agreement usually implemented?

s

_

Each participant has its own view of
the values of interest

~

\-

Before any changes, participants
communicate to make sure
everyone is aware of the change.

~N

J

Changeato 3]

Example 2: In-network consensus

How is consensus/agreement usually implemented?

s

_

Each participant has its own view of
the values of interest

~

\-

Before any changes, participants
communicate to make sure
everyone is aware of the change.

~

J

Changeato 3]

Example 2: In-network consensus

e How is consensus/agreement usually implemented?

4)
Each participant has its own view of

the values of interest
_ J

~N

Before any changes, participants
communicate to make sure

everyone is aware of the change.
- /

Example 2: In-network consensus

e How is consensus/agreement usually implemented?

4)
Each participant has its own view of

the values of interest
_ J

~

Before any changes, participants
communicate to make sure

everyone is aware of the change.
- /

Example 2: In-network consensus

e How is consensus/agreement usually implemented?

4)
Each participant has its own view of

the values of interest
_ J

~N

Before any changes, participants
communicate to make sure

everyone is aware of the change.

- /

(

Paxos is a very famous and complex

protocol that governs these a=3
communications to ensure consensus.

\-

Example 2: In-network consensus

e Consensus is hard to implement efficiently.
o Lots of communication to provide strong consistency.

e As such, itis typically only used for services that critically need such
consistency.

e e.g., lock manager, configuration management, group membership
e Many distributed services depend on the above "coordination” services.

e And are bottlenecked by them...

Example 2: In-network consensus

[
Consensus is communication heavy

the actual computations done on
each participant is quite simple.

~

Changeato 3]

Example 2: In-network consensus

w

[Can we implement it in the network?

[
Consensus is communication heavy

the actual computations done on
each participant is quite simple.

~

Changeato 3]

Example 2: In-network consensus

Changeato 3]

Example 2: In-network consensus

(s

witches keep all copies of the values.
Switches server read and write requests.

Switches run the consensus (or
\coordination, or agreement) protocol.

~

J

Changeato 3]

Example 2: In-network consensus

(s)

Switches serve read and write requests.

witches keep all copies of the values.

Switches run the consensus (or
\coordination, or agreement) protocol.)

/Benefits? \

e Switches are faster than servers

e Communication between each pair of
servers requires the traversal of multiple
switches (multiple RTTs)

e Switches are "closer" to each other, so

\ this can be done even in sub-RTT j

Changeato 3]

Example 3: Accelerating ML Training

e Distributed training of ML models can require a lot of network

communication.
Workers

Parameter Server j

Example 3: Accelerating ML Training

e Distributed training of ML models can require a lot of network

communication.
Workers

Parameter Server
' j a2

Example 3: Accelerating ML Training

e Distributed training of ML models can require a lot of network

communication.
Workers

Parameter Server

Example 3: Accelerating ML Training

e Distributed training of ML models can require a lot of network

communication.
Workers

Parameter Server

a'=al+a2+a3

Example 3: Accelerating ML Training

e Distributed training of ML models can require a lot of network

communication.
Workers

a' j al
Parameter Server

a'=al+a2+a3

Example 3: Accelerating ML Training

e Distributed training of ML models can require a lot of network

communication.
Workers

e This happens in every of the several iterations.

a' j a1
Parameter Server

a'=al+a2+a3

Example 3: Accelerating ML Training

Lots of communication
between the parameter
server and workers.

[

Simple computation on
the parameter server

Parameter Server

Network

a'=al+a2+a3

Workers

&y & ™

al

a2

a3

Example 3: Accelerating ML Training

Lots of communication
between the parameter
server and workers.

p
Simple computation on
\the parameter server

r

_

Familiar pattern?

Parameter Server

Network

a'=al+a2+a3

Workers

&y & ™

al

a2

a3

Example 3: Accelerating ML Training

. Implement the parameter server in network switches

e The switch can keep track of the sum (aggregate) in a register.

e As packets come from the workers, it can retrieve values from packets
and update the sum.

e Once the switch receives values from all workers, it can send the sum
back to the workers.

e Benefits? Same as before

o Higher throughput and lower communication latency

Challenges of in-network computing

e \What if the information we need from the applications spans multiple
packets?

o e.g., in Netcache, what if the value for a key-value pair doesn't fit into one
packet?

e It is difficult to reconstruct a stream in the switch

o reconstruct = put together packet contents from multiple packets

Challenges of in-network computing

e Application logic is typically stateful.
e Switches have limited memory, and only allow limited access to it
e Application logic can be more complex than network processing

e Switches have limited computational capabilities.

Challenges of in-network computing

e You can see these constraints play out in current applications of
iIn-network computing

NetCache caches hot items with smallish values.
Coordination services don't store a lot of data
same as ML training parameter aggregation

In all cases, computation is quite simple.

O O O O

e There have been proposals for switches with computational resources

and capabilities that are more suited for application acceleration
o e.g., Trio, or Tofino + FPGA

Challenges of in-network computing

e \What should the API be for the applications?
e Suppose you are writing a distributed/networked application.

e How should you specify which part should be "offloaded" and executed in
the network?

Challenges of in-network computing

e There is a higher abstraction bar here for programming abstractions.

e |f someone is implementing a new network protocol, you can assume
they have networking knowledge.

e We don't want application developers to have to learn all the details about
network processing (packets, headers, protocols, etc.) to be able to
accelerate their application.

e There are recent proposals that try to extend familiar programming
abstractions like connections and RPCs for this purpose.

Paper: ATP: In-network Aggregation for Multi-tenant Learning

e Provides a framework for accelerating ML training by performing the
aggregation in the network.

e Address many challenges of doing so at large scale:
o Multiple training jobs running simultaneously.

o Aggregation across multiple racks, i.e., over multiple switches, when workers
and parameter servers are scattered across multiple racks.

o Handling packet loss and congestion control

Additional Resources

e When Should The Network Be The Computer? (HotOS'19)
e In-network caching: NetCache

e In-network consensus: NetChain, NetLock, P4xos.

e ML acceleration: ATP, Trio

e Programming interfaces/abstractions: NetRPC, NCL, Bertha

