
CS 856: Programmable Networks

Mina Tahmasbi Arashloo
Winter 2023

Lecture 10: In-Network Computing

Logistics

● Project presentations, April 4 and April 6

○ 20-minute presentation + 5 min Q&A

● Final project report, April 10

○ Will send template on Slack

● Final review (😊) due Monday, March 27th, at 5pm

Using network programmability to improve the network

● So far, we have mostly discussed how network programmability can help
improve networks themselves.

○ Trying out new algorithms/protocols
○ Customizing packet processing to the specific needs of a network
○ Helping with network verification
○ Flexible and fine-grained monitoring
○ In-network support for quality of service and transport-layer algorithms
○ …

Using network programmability to accelerate applications?

● With programmable parsing, we can specify
what we want to parse from the packet.

● Why stop after the transport-layer headers?

● We can look into the data that networked
applications put into packets.

HTTP Header

TCP

Ethernet

IP

Contents of a
webpage

"Data"

Using network programmability to accelerate applications?

● A programmable network device has limited
computational resources and capabilities.

● But it can still do basic arithmetic operations

● and keep track of some information across
packets.

HTTP Header

TCP

Ethernet

IP

Contents of a
webpage

"Data"

In-Network Computing

Offloading part of the application processing (i.e., compute)
to the network

Example 1: In-network caching

● Online services rely quite heavily on distributed key-value stores.

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Example 1: In-network caching

● Online services rely quite heavily on distributed key-value stores.

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Example 1: In-network caching

● Online services rely quite heavily on distributed key-value stores.

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Example 1: In-network caching

● Online services rely quite heavily on distributed key-value stores.

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Issues multiple
requests to the
key-value stores that
store user information,
post information, etc.

Example 1: In-network caching

● Online services rely quite heavily on distributed key-value stores.

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Issues multiple
requests to the
key-value stores that
store user information,
post information, etc.

Example 1: In-network caching

● Key-value stores can get millions if not billions of requests every second.

● To handle such load, there are usually several storage servers, each
taking care of part of the key-value store.

● Requests are load-balanced across storage servers.

● Problem?

○ Hot items change all the time
○ This can create load imbalance.
○ That is, one server (or a subset of them) can get overwhelmed and not be

able to answer queries fast enough for good user quality of experience.

Example 1: In-network caching

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Issues multiple
requests to the
key-value stores that
store user information,
post information, etc.

Example 1: In-network caching

Data Center

Internet

Storage servers
(key-value stores)

Web servers

Refresh my
facebook feed

Issues multiple
requests to the
key-value stores that
store user information,
post information, etc.

All the requests are going
through the top of rack switch!

Can we store (i.e., cache)
some of the "hot items" there?

💡

Example 1: In-network caching

● NetCache (SOSP'17) proposes to do just that!

Example 1: In-network caching

● NetCache (SOSP'17) proposes to do just that!

Regular switch functionality

Maintains "hot" items

Gather statistics about the queries.

so the controller can update the
cache as query patterns change.

Example 1: In-network caching

● NetCache (SOSP'17) proposes to do just that!

with a programmable parser, NetCache
can define its own header.

Example 1: In-network caching

● NetCache (SOSP'17) proposes to do just that!

Applications are provided with a library
that translates their requests to packets
with NetCache headers.

with a programmable parser, NetCache
can define its own header.

Example 1: In-network caching

● NetCache (SOSP'17) proposes to do just that!

Example 2: In-network consensus

● What is consensus?

● You have a distributed set of participants .
○ e.g., servers keeping track of the store inventory

● You want all of them to agree on some values.
○ e.g., the total number of available trash cans to buy

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 2

a = 2

a = 2

a = 2

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 2

a = 2

a = 2

a = 2

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

Change a to 3

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 2

a = 2

a = 2

a = 2

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

Change a to 3

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 3

a = 3

a = 3

a = 3

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 3

a = 3

a = 3

a = 3

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

done!

Example 2: In-network consensus

● How is consensus/agreement usually implemented?

Network

a = 3

a = 3

a = 3

a = 3

Each participant has its own view of
the values of interest

Before any changes, participants
communicate to make sure
everyone is aware of the change.

Paxos is a very famous and complex
protocol that governs these
communications to ensure consensus.

Example 2: In-network consensus

● Consensus is hard to implement efficiently.

○ Lots of communication to provide strong consistency.

● As such, it is typically only used for services that critically need such
consistency.

● e.g., lock manager, configuration management, group membership

● Many distributed services depend on the above "coordination" services.

● And are bottlenecked by them…

Example 2: In-network consensus

Network

a = 2

a = 2

a = 2

a = 2Consensus is communication heavy

the actual computations done on
each participant is quite simple.

Change a to 3

Example 2: In-network consensus

Network

a = 2

a = 2

a = 2

a = 2Consensus is communication heavy

the actual computations done on
each participant is quite simple.

Change a to 3

Can we implement it in the network?

💡

Example 2: In-network consensus

a = 2

Change a to 3

a = 2

a = 2

Example 2: In-network consensus

a = 2

Change a to 3

a = 2

a = 2

Switches keep all copies of the values.

Switches server read and write requests.

Switches run the consensus (or
coordination, or agreement) protocol.

Example 2: In-network consensus

a = 2

Change a to 3

a = 2

a = 2

Switches keep all copies of the values.

Switches serve read and write requests.

Switches run the consensus (or
coordination, or agreement) protocol.

Benefits?

● Switches are faster than servers
● Communication between each pair of

servers requires the traversal of multiple
switches (multiple RTTs)

● Switches are "closer" to each other, so
this can be done even in sub-RTT

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

Network

Parameter Server

Workers

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

Network

Parameter Server

Workers

a1

a2

a3

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

Network

Parameter Server

Workers

a1

a2

a3

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

Network

Parameter Server

Workers

a1

a2

a3a' = a1 + a2 + a3

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

Network

Parameter Server

Workers

a1

a2

a3a' = a1 + a2 + a3

a'

a'

a'

Example 3: Accelerating ML Training

● Distributed training of ML models can require a lot of network
communication.

● This happens in every of the several iterations.

Network

Parameter Server

Workers

a1

a2

a3a' = a1 + a2 + a3

a'

a'

a'

Example 3: Accelerating ML Training

Network

Parameter Server

Workers

a1

a2

a3a' = a1 + a2 + a3

a'

a'

a'

Lots of communication
between the parameter
server and workers.

Simple computation on
the parameter server

Example 3: Accelerating ML Training

Network

Parameter Server

Workers

a1

a2

a3a' = a1 + a2 + a3

a'

a'

a'

Lots of communication
between the parameter
server and workers.

Simple computation on
the parameter server

Familiar pattern?

💡Implement the parameter server in network switches

● The switch can keep track of the sum (aggregate) in a register.

● As packets come from the workers, it can retrieve values from packets
and update the sum.

● Once the switch receives values from all workers, it can send the sum
back to the workers.

● Benefits? Same as before
○ Higher throughput and lower communication latency

Example 3: Accelerating ML Training

Challenges of in-network computing

● What if the information we need from the applications spans multiple
packets?

○ e.g., in Netcache, what if the value for a key-value pair doesn't fit into one
packet?

● It is difficult to reconstruct a stream in the switch

○ reconstruct = put together packet contents from multiple packets

Challenges of in-network computing

● Application logic is typically stateful.

● Switches have limited memory, and only allow limited access to it

● Application logic can be more complex than network processing

● Switches have limited computational capabilities.

Challenges of in-network computing

● You can see these constraints play out in current applications of
in-network computing

○ NetCache caches hot items with smallish values.
○ Coordination services don't store a lot of data
○ same as ML training parameter aggregation
○ In all cases, computation is quite simple.

● There have been proposals for switches with computational resources
and capabilities that are more suited for application acceleration
○ e.g., Trio, or Tofino + FPGA

● What should the API be for the applications?

● Suppose you are writing a distributed/networked application.

● How should you specify which part should be "offloaded" and executed in
the network?

Challenges of in-network computing

● There is a higher abstraction bar here for programming abstractions.

● If someone is implementing a new network protocol, you can assume
they have networking knowledge.

● We don't want application developers to have to learn all the details about
network processing (packets, headers, protocols, etc.) to be able to
accelerate their application.

● There are recent proposals that try to extend familiar programming
abstractions like connections and RPCs for this purpose.

Challenges of in-network computing

● Provides a framework for accelerating ML training by performing the
aggregation in the network.

● Address many challenges of doing so at large scale:

○ Multiple training jobs running simultaneously.

○ Aggregation across multiple racks, i.e., over multiple switches, when workers
and parameter servers are scattered across multiple racks.

○ Handling packet loss and congestion control

○ …

Paper: ATP: In-network Aggregation for Multi-tenant Learning

Additional Resources

● When Should The Network Be The Computer? (HotOS'19)

● In-network caching: NetCache

● In-network consensus: NetChain, NetLock, P4xos.

● ML acceleration: ATP, Trio

● Programming interfaces/abstractions: NetRPC, NCL, Bertha

