%} WATERLOO

High-Level and Target-Agnostic
Transport Programs

Mina Tahmasbi Arashloo

University of Waterloo

Winter 2026

No “one-size-fits-all” transport protocol

—
which data segment to send and when

such that
* Data is reliably delivered to the receiver

Application

Application-layer
(arbitrary-sized) data

* as fast as possible
Transport <L' w/o overwhelming the network and receiver

(Paced)
Data segments

Network

(best-effort packet-based)

No “one-size-fits-all” transport protocol

Application

Application-layer
(arbitrary-sized) data

Transport

(Paced)
Data segments

Network

(best-effort packet-based)

‘which data segment to send and when

'

Depends on

e Network characteristics
* Wide area? Data center?

* Applications

* Traffic patterns: small flows? Bursty?
* Requirements: low latency? High throughput?

No “one-size-fits-all” transport protocol

—

TCP and its many many variants

Application QUIC
NDP

Application-layer
(arbitrary-sized) data Homa
RoCEv2
Transport <L

(Paced)
Data segments

Network

(best-effort packet-based)

The transport protocol development cycle today

No high-level specification with well-defined semantics
* Natural language documents > ambiguity

N * Existing implementations - low-level target-specific code
ick the “right”
-
protocol/features [Implement on
J/ —>
your “target”
| 7] :
Have to grapple with low-level L- Optimize 1
protocol-independent issues g .
Ensure it works
* |[/O, memory management,)
optimized data structures, ... L as intended

No high-level specification with well-defined semantics
* Intended behavioris not always clear

* Pick and choose scenarios to test

* No automated high-coverage analysis and testing

The transport protocol development cycle today

‘ No high-level specification with well-defined semantics ‘

Have to grapple withjlow-level

protocol-independent issues

)

No high-level specification with well-defined semantics ‘

The transport protocol development cycle today

Have to grapple withjlow-level

protocol-independent issues

‘ No high-level specification with well-defined semantics ‘

-)

\ 4

We need a high-level
target-agnostic
protocol-independent
programming interface for transport

*

‘ No high-level specification with well-defined semantics ‘

)

What should a transport program look like??

{ Packet] Transport
Reassembled
\ Program data
App /
request | — 37
\ \
]
['[_[Packet]

(w/ data)

{ Timeout]

What should a transport program look like??

{ Packet] Transport

\ Program
App ‘
request | — 37 |
(w/ data) °°

{ Timeout]

Transport events

Packet] Net
[— | event Transport

— Program

App App Transport
request | — = event [

(w/ data) | G ??

. Timer
Timeout -
event

Transport events

— /Specifies what events it expects: \

[Packet] — Net event tcp_snd : APP {
event Trans port uint32 data_size;
— Program addr_t user_buff_addr;
App App Transport ¢ def }
ven
request - event event || v e1s ‘ event tcp_data_pkt : NET {
(w/ data) —__ parser defs | uint32 seq_num;
Y| uint32 payload_size;
A addr_t payload_addr;
[Timeout] — e}
event
- e Specifies how to create events from packets

and app requests
e Syntax similar to other network languagey

Transport events

—
Packet] Net
[— | event Transport
— Program
App App Transport
request | — —| event defs
event event
(w/ data) parser defs
{ .] Timer
Timeout | —
| event

Flow contexts

[Packet] —

App
request | —
(w/ data)

. Timer
Timeout -
event

Net

event
—

)
App
event

—

~
[Transport
—

event
J

[

~
Flow

4)

Each flow has some state (or context) that is
* usedinevent processing

* maintained across events

* E.g., sliding window start and end in TCP

context(s)
J

Transport
Program

event defs
parser defs

Flow contexts

[Packet] —

App
request | —
(w/ data)

[Timeout] —

Net

event
—

)
App
event

—

Timer
event

.)
: [Transport
-

——

event

N :
[Flow o

context(s) |:
J =

P 1 :

(

\

Each flow has some state (or context) that is

used in event processing
maintained across events

E.g., sliding window start and end in TCP

Transport
Program

event defs
parser defs
context defs

a8

Specifies what information to keep in
the context.

‘ context tcp_context {
uint32 send_una;
uint32 send_nxt;
uint32 cwnd_size;

~

* Each eventis associated with a specific flow
* Programs attach look-up keys to events during parsing

J

Output: ?7?

Transport
Reassembled
Program

; data
~| event defs /

parser defs

context defs \)
>l ... : 1
Packet]

Output: ?7?

(

\

~
How do we decouple

protocol logic for reassembly and packet generation
from target-specific implementation details?

J

(Involves performance-sensitive operations:\F Reassembled

* Data movement
* Buffer management
* Packet pacing

* The most “optimal” implementation is
\ target-dependent

data

A

Transport instructions

r

_

Program specifies what the output should

look like, not how to generate it.

* e.g., the order of data segments with respect

to each other

~

Reassembled
1 data

W, - [Transport J_» @
parser defs instructions
context defs)
>l ... Target)
1 [-[_[Packet]

r

.

\

The target follows the instruction to generate the output, in the
most efficient way for that target.

* e.g., copies packet payloads to a buffer and maintains
them in the specified order.

Transport instructions

Abstracts operations
on receive buffers

—

{ Data Reassembly J

Transport
Program

instr.

»| event defs - Transport
parser defs instructions

context defs

Transport instructions — Data Reassembly

Transport instructions
Issued by the program

new_rx_ordered_data(uid, size[, addr])

* |expecttoreceive size bytes of consecutive data
* size can be INF for byte streams

* The identifier for this “unit” is uid

* The data should eventually be available at addr

What the target
should do

* Allocate memory accordingly

 Dynamic allocation?
* Pool of buffers?
« Zero copy (addr)?

Maintain a mapping between
uid and the allocated space

Transport instructions — Data Reassembly

Transport instructions
Issued by the program

add_rx_data_seg(addr, len, uid, offset)

| want len bytes starting from addr to be at index
offset of the consecutive data unit uid

addr > where incoming packet’s payload is stored

What the target
should do

Find the right “destination”
memory locations based on
offset and uid

Copy data from addr

Transport instructions — Data Reassembly

Transport instructions
Issued by the program

rx_flush_and notify(uid, len, addr)

| want len more bytes from uid to be made
available to the application at addr

addr > user’s buffer address

What the target
should do

Keep track of how far into uid
has been “flushed” to the app

Find the right “source”
memory locations accordingly

Move data to addr

Transport instructions

Transport
Program
»| event defs

parser defs
context defs

-

Transport
instructions

Vs

_

Data Reassembly
instr.

~N

J

r

|-

Packet generation
instr.

\

Transport instructions — Packet Generation

Transport instructions
Issued by the program

What the target
should do

new_tx_ordered_data(uid, size[, addr])

add_tx_data_seg(addr, len, uid) Allocate memory for uid

tx_flush_and_notify(uid, len) Append app data to uid

Remove data from uid
* Similarto the “rx” counter-parts

* Abstracts operations on send buffers

Transport instructions — Packet Generation

Transport instructions
Issued by the program

What the target
should do

pkt_gen(pkt_bpl[, seg rule id, ...])

Generate the actual packets:

| want packets looking like this blueprint
. * Allocate packet memory
blueprint:

e header Fillout headers

« data address and size for payload * Move data for payload

If data does not fitin one packet, segment it:

* Update headers based on seg rule_id

Transport instructions

Transport
Program

event defs
parser defs
context defs

-

Transport
instructions

|-

Vs

_

Data reassembly
instr.

~N

J

Ve

_

Packet generation
instr.

\

J

Vs

_

Packet scheduling
instr.

~N

J

Ve

Timer instr.

\

From inputs to outputs

{ Packet] —

App
request | —
(w/ data)

{ Timeout] -

Net

event
—

)
App
event

—

Timer
event

. N
: [Transport
-

——

event

[Flow o

context(s) |:
J =

Transport
Program

event defs
parser defs
context defs

-

Transport
instructions

|-

Vs

_

Data reassembly
instr.

~N

J

r

_

Packet generation
instr.

\

J

Vs

Packet scheduling
instr.

~N

J

Timer instr.

\

From inputs to outputs

[Packet] —

App
request | —
(w/ data)

[Timeout] —

Net

event
—

)
App

event
—

Timer
event

")
: [Transport
-

——

event

. N =
: Flow o
:| context(s) |:
n J =

dispatch tcp_dispatch {
tcp_send -> {rec_data, gen_seg};
tcp_ack ->{rto, cong_ctrl,

Transport
Program

event defs
parser defs
context defs
ep func defs
dispatch def

/Mapping events to chain of event
processing functions

fast_rtx, gen_seg};
tcp_data_pkt -> {proc_recv, ack};
tcp_timeout ->...

Packet scheduling

instr.

J

Timer instr.

N

From inputs to outputs

/Mapping events to chain of event
processing functions

dispatch tcp_dispatch {

B tcp_send -> {rec_data, gen_seg};
f Net ‘ tcp_ack -> {rto, cong_ctrl,
[Packet] —_ Transport fast_rtx, gen_seg);
event tcp_data_pkt -> {proc_recv, ack};
N B -z | Program tcp_timeout -> ...
App : | Transport |:
App : P :
request | — —»| event defs }
event | | : event |:
(w/ data) \) |: ~/ 1 | parserdefs
: Flow N : | contextdefs Packet scheduling
Timer : toxt =*| ep func defs instr.
[Timeout] = | event 1| eonte (s)) : | dispatch def <= <
25 Bt Event processing functions:

e Simple & C-like:
* Bounded loops
* No pointers

* Update context

\- Issue instructions /

Modular Transport Programming (MTP)

MTP Program
// decl. // main
event{...} main(){
context{...} register_ep_chains(...); > . D.eploy .
ev_proc. {...} register_ctx(...); (light-weight compiler)
dispatch{...} .
seg rule{...} }
data and notif to App.
App. requests 1
femsemsenssessessessssssessessessssnses Reassem. instr. RX Data
: events: Translated event reassembly
A loglcal : Event Parsers ; : processing logic E -------------------------------- ;-----d-.-----------S- ---------- E
E [SCkep : from the MTP program ECAIIE] fending es.
model of an : l keys : et : instr. TX data rules
MTP target Flow relevant| : . : . . I I
: timer | _. timer instr. : pkt. gen. instr. !
Contexts state : Timers [« : Pkt
: events : w/ pkt o Pkt > :
GEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES i blueprint gen' SChed :

A\ 4

Incoming pkts outgoing pkts

Modular Transport Programming (MTP)

MTP Program
// decl. // main
event{...} main(){
context{...} register_ep_chains(...);
ev_proc. {...} register_ctx(...);
dispatch{...} .
seg rule{...} }

v

Deploy

(light-weight compiler)

App. requests

data and notif to App.

a

/

................................. v Reassexq. ins RX Data
event Translated event eassembly
A loglcal : Event Parsers : processing logic E IIIIIIIIIIIIIIIIIII ; IIIIIIIIIIIIIII ldl.llI IIIIISI IIIIIIIIII
E look-up from the MTP program : WO, e it eg.
model of an : l Keys prog : instr. TX data || rules
MTP target] Flow relevant| : . : . . l
: : timer | _. _timer Instr. : pkt. gen. instr. !
: | Contexts state Timers [« : Pkt
: events : w/ pkt Pkt > :
GEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEES i blueprint ° gen SChed :

Incoming pkts

A 4

outgoing pkts

Expressiveness

Stream-based
v' TCP * Applications append data to byte streams to be sent

. TCP: one per connection
v" QUIC-Lite © Per Lol |
* QUIC-Lite: multiple parallel ones per connection

* Sender-side congestion control

v Homa * Message-based
— Application message size is known (e.g., RPC
J ¢ Receiver-driven

* Message-based

v RoCEv2

Queue pairs as “connections”
* Designed for hardware

What about performance?

Observation:

Existing protocol implementations already know how to do
transport tasks efficiently in a specific execution environment

 e.g., buffer management, packet /O, per-flow state tracking, ...

We can “refactor” them to expose these tasks via MTP’s high-
level unifying interface.

Target #1: MTP-DPDK

* DPDK: kernel-bypass networking

* A user-space process can directly send/receive packets from the NIC
* Specialized, user-space network stacks

« mTCP (NSDI’14)
* TCP implemented over DPDK

* MTP-DPDK
* mICP refactored to implement MTP’s API (Details in the paper!)

* Experiments:
* Cloudlab, x1170 nodes, 25Gbps network

TCP over MTP-DPDK

* Clients sending HTTP requests of varying size in a closed loop.

30

N
«o

N
e

throughput (Gbps)
= =
=) (8

@ TCP over MTP-DPDK (no ack coalescing)

%% TCP over MTP-DPDK (all optimizations)

limited by
network BW

2 cores 4 cores

Server throughput for 1MB files

225
—g—

2001 _o-
%) 5
0175
= - -
s 150 ——
g | -a-
9 125/
3
- 100
o
© 75
S
< 50 F==w——m

p—
- e
e —___—

500
TCP on MTP-DPDK (8KB) (avg)

TCP on MTP-DPDK (8KB) (p99)
TCP on MTP-DPDK (32B) (avg)

'S
=
o

99th Percentile Latency (usec.)

mTCP (8KB) (avg)

w
o
<)

mTCP (8KB) (p99)
mTCP (32B) (avg)
mTCP (32B) (p99)

50 90
Load (%)

Message response latency, single server thread

Multiple protocols over MTP-DPDK

P99 Slowdown
w
©

=
b

=
°©

Homa

N
bl

N
e

222 Homa on MTP-DPDK
E=8 TCP on MTP-DPDK

200 300 400
Message size (KB)

Message response slow-down
TCP vs. Homa on the same target
50% load from 1MB messages

QUIC-Lite

Open-loop latency (msec.)

100_

102,

101.

B3 QUIC-Lite on MTP-DPDK
@ TCP on MTP-DPDK

32KB 32KB

16KB 16KB
avg p99 avg p99 avg p99
Message size (KB)

8KB 8KB

Message response latency

TCP vs QUIC-Lite on the same target
Small message competing with 1MB ones
Over the same connection

Target #2: MTP-XDP

* eBPF: caninsert programs into various ”hooks” across the kernel

e XDP “hook”: executes in the NIC driver
* efran (NSDI’25)

« TCP and Homa implemented in some XDP hooks + user space

* MTP-XDP

* elran refactored to implement MTP’s APl (Details in the paper!)

* Experiments:
* Cloudlab, x1170 nodes, 25Gbps network

Multiple protocols over MTP-XDP

Throughput (Gbps)

TCP Homa (one server thread)
25
—e— TCP over MTP-XDP Homa Homa
—=— eTran (MTP-XDP) Cllely)
o 32B message 8.45us 8.29 us
avg. latency
13 1MB message 19.75 Gbps 20.52 Gbps
throughput
10
" QUIC-Lite (one server thread, open loop)
32KB message QUIC-Lite TCP
2 8 32 128 512

Message size (KB) avg. latency 3.4ms 20.1ms

Server throughput (1 thread) tail latency 5.8ms 28.8ms

Takeaways

* MTP’s APl is at the right level of abstraction
* abstracts away enough details to be target-agnostic
* implementable with already existing efficient mechanisms

* Different targets’ impl. of transport tasks vary in non-trivial ways
* Confirmed our decision to abstract them as instructions
* The heavy lifting is in implementing the instructions

* Abstract away most of the complexity

* Translating the event chains can be done with a light-weight compiler

Reduction in development effort

MTP Programs TCP 753 LoC
Target-independent Homa 1205 LoC
Written once QUIC-Lite 920 LoC

MTP-Compliant Targets
Protocol-independent
Developed once per target

MTP-DPDK 15,593 LoC
MTP-XDP 14,837 LoC

S

AUtOmated analyS|S MTP event processing chain

for TCP acks

.

Light-weight

* MTP programs are amenable to
automated analysis

* Constrained C-like language \
* no pointers Property fromTCP A C program with

. Bounded loops RFC as assertion symbolic inputs

* Constrained data structures \
* target-agnostic instructions hiding KLEE Symbolic
Executor

low-level details
|

Test case for each path
One path violated the property
Bug in our original MTP program

transformations

A shout-out to the team!

Pedro Mizuno Kimiya Mohammadtaheri Linfan Qian _ Joshua Johnson
UWaterloo UWaterloo UWaterloo UWaterloo

>

Chris Neely Mario Baldi Nachiket Kapre ~ Mina Tahmasbi Arashloo
AMD NVIDIA UWaterloo UWaterloo

Summary and looking forward

* Transport protocols will continue to evolve

e Their execution environments will continue to evolve

* Software: Kernel, Kernel-bypass, eBPF
* Hardware accelerators

* This diversity calls for a language abstraction that is high-level, target-
agnostic, and protocol-independent ...

* MTP takes a significant step in this direction.

* ...thatcan unlock a myriad of benefits:

* Seamlessly swapping in new protocols and add features on a target
* Automated functional and performance verification

* Automated testing

* Write-once run-anywhere

	Slide 1: High-Level and Target-Agnostic Transport Programs
	Slide 2: No “one-size-fits-all” transport protocol
	Slide 3: No “one-size-fits-all” transport protocol
	Slide 4: No “one-size-fits-all” transport protocol
	Slide 5: The transport protocol development cycle today
	Slide 6: The transport protocol development cycle today
	Slide 7: The transport protocol development cycle today
	Slide 9: What should a transport program look like?
	Slide 10: What should a transport program look like?
	Slide 11: Transport events
	Slide 12: Transport events
	Slide 13: Transport events
	Slide 14: Flow contexts
	Slide 15: Flow contexts
	Slide 16: Output: ??
	Slide 17: Output: ??
	Slide 18: Transport instructions
	Slide 19: Transport instructions
	Slide 20: Transport instructions – Data Reassembly
	Slide 21: Transport instructions – Data Reassembly
	Slide 22: Transport instructions – Data Reassembly
	Slide 23: Transport instructions
	Slide 24: Transport instructions – Packet Generation
	Slide 25: Transport instructions – Packet Generation
	Slide 26: Transport instructions
	Slide 27: From inputs to outputs
	Slide 28: From inputs to outputs
	Slide 29: From inputs to outputs
	Slide 30: Modular Transport Programming (MTP)
	Slide 31: Modular Transport Programming (MTP)
	Slide 32: Expressiveness
	Slide 33: What about performance?
	Slide 34: Target #1: MTP-DPDK
	Slide 35: TCP over MTP-DPDK
	Slide 36: Multiple protocols over MTP-DPDK
	Slide 37: Target #2: MTP-XDP
	Slide 38: Multiple protocols over MTP-XDP
	Slide 39: Takeaways
	Slide 40: Reduction in development effort
	Slide 41: Automated analysis
	Slide 44: A shout-out to the team!
	Slide 45: Summary and looking forward

