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Transport layer: roadmap

▪ Transport-layer overview

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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Congestion:

▪ informally: “too many sources sending too much data too fast for 
network to handle”

▪manifestations:

• long delays (queueing in router buffers)

• packet loss (buffer overflow at routers)

▪ different from flow control!

Principles of congestion control

congestion control: 
too many senders, 

sending too fast

flow control: one sender 

too fast for one receiver

▪ a top-10 problem!
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Throughput cannot exceed available capacity

▪ The transmission rate for all links is R bps

▪ So, if host A wants to send out data at R 
bps, the link can carry it to the router

▪ But, A has to share the link between 
Router X and Router Y with the traffic 
from Host B
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Throughput cannot exceed available capacity
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▪ Q. What happens if both Host A and Host B send data to 
their destinations at R bps?
▪ Suppose the available bandwidth from Router X Router Y is 

shared fairly between traffic from A and B. 



Throughput cannot exceed available capacity
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▪ No matter how fast A and B send data to the router, the router’s bandwidth to 
Y is limited to R.

▪ So, host C can receive at most R/2 bps from A, and so does Host D from B

▪ In the best case, all the R/2 bits every second are sent exactly once
▪ whatever is sent, it is delivered the first time

Host C

Host D

▪ So, in the best case, the 
throughput at which data is 
received by the application 
running in Host C is R/2 bps.



Throughput cannot exceed available capacity
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▪ 𝑆𝐴: the rate at which host A sends data out.

▪ 𝑇𝐶: the rate at which new data is received by the application.

▪ Best case scenario: As 𝑆𝐴 increases, 𝑇𝐶  increases up to R/2. 

▪ 𝑇𝐶 = min(𝑆𝐴,
𝑅

2
)

▪ Throughput can never exceed available capacity. 

maximum per-connection 
throughput: R/2

R/2

R/2

𝑇 𝐶

𝑆𝐴



Ideal case 1: Infinite buffers
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▪ When would this best case happen?
▪ The buffer at Router X has infinite capacity. 

▪ So, no packets are dropped, they may just take longer and longer to get to Host C. (Why?)

▪ No packet drops ⇨ all the R/2 bits per second getting to Host C have been sent exactly once.

maximum per-connection 
throughput: R/2

R/2

R/2

𝑇 𝐶

𝑆𝐴



Ideal case 2: Finite buffers but perfect knowledge of capacity
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▪ Could there be no packet loss if the buffer is finite?
▪ Yes, if Host A has perfect knowledge of the available buffer capacity.

▪ That is, if Host A only sends when router buffers are available.

maximum per-connection 
throughput: R/2

R/2

R/2

𝑇 𝐶

𝑆𝐴



Host A

Host B finite shared output 

link buffers

Ideal case 2: Finite buffers but perfect knowledge of capacity

copy

free buffer space!

Idealization: perfect knowledge
▪ sender sends only when router buffers available 

RR

R/2

𝑆𝐴

R/2

𝑇 𝐶
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Ideal case 2: Finite buffers but perfect knowledge of capacity
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▪ Could there be no loss if the buffer is finite?
▪ Yes, if Host A has perfect knowledge of the available capacity.

▪ That is, if Host A only sends when router buffers are available.

▪ No packet drops all the R/2 bits per second getting to Host C have been sent exactly once.

maximum per-connection 
throughput: R/2

R/2

R/2

𝑇 𝐶

𝑆𝐴

Q. Can this ideal case happen in the Internet? 
     (hint: packet switching vs circuit switching)



What happens if packets are lost?
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▪ In reality, host A may not have real-time information of the available buffer capacity.

▪ With reliable data transfer, if a packet is lost, the transport layer will retransmit the 
corresponding data segments.

▪ Retransmission = Wasted capacity

▪ Why? 



Host A

Host B finite shared output 

link buffers

RR

What happens if packets are lost?

copy

no buffer space!

Idealization: some perfect knowledge

▪ packets can be lost (dropped at router) due  to 
full buffers

▪ sender knows when packet has been dropped: 
only resends if packet known to be lost
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Host A

Host B finite shared output 

link buffers

RR

What happens if packets are lost?

free buffer space!

Idealization: some perfect knowledge

▪ packets can be lost (dropped at router) due  to 
full buffers

▪ sender knows when packet has been dropped: 
only resends if packet known to be lost

when sending at 
R/2, some packets 
need 
retransmissions

𝑆𝐴

R/2

𝑇 𝐶

R/2

“wasted” capacity due 
to retransmissions
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Host A

Host B finite shared output 

link buffers

RR

What happens if packets are lost?

copytimeout

Realistic scenario: un-needed duplicates
▪ packets can be lost, dropped at router due  to 

full buffers – requiring retransmissions

▪ but sender timer can go off prematurely, 
sending two copies, both of which are delivered

free buffer space!

when sending at 

R/2, some packets 

are retransmissions, 

including needed 

and un-needed 

duplicates, that are 

delivered!

“wasted” capacity due 
to un-needed 
retransmissions

𝑆𝐴

R/2

𝑇 𝐶

R/2
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What happens if packets are lost?

“costs” of congestion: 
▪ more work (retransmission) for given receiver throughput

▪ unneeded retransmissions: link carries multiple copies of a packet

• decreasing maximum achievable throughput

Realistic scenario: un-needed duplicates
▪ packets can be lost, dropped at router due  to 

full buffers – requiring retransmissions

▪ but sender timer can go off prematurely, 
sending two copies, both of which are delivered when sending at 

R/2, some packets 

are retransmissions, 

including needed 

and un-needed 

duplicates, that are 

delivered!

“wasted” capacity due 
to un-needed 
retransmissions

𝑆𝐴

R/2

𝑇 𝐶

R/2
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What happens if packets are lost along a path?
Realistic scenario: retransmissions triggered 

by loss throughout the network
▪ whenever a packet is dropped at Router Y, the work 

done by Router X (buffering and forwarding) is wasted

▪ upstream transmission capacity / buffering wasted for 
packets lost downstream
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• In extreme cases, this can lead to a 
situation called congestion 
collapse, where the network keeps 
carrying retransmitted packets, 
only for them to be dropped later 
in the path.

• No data gets delivered.
• This happened in the early days of 

the Internet!



How can we avoid congestion?
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▪ Throughput can’t exceed available capacity

▪ Sending over capacity ⇨ packet loss or long delays

▪ Packet loss or long delay ⇨ retransmission

▪ Retransmission ⇨ Wasted capacity

▪ Constant retransmission throughout the network ⇨ congestion collapse

▪ Congestion control: Have each sender estimate the available capacity in the 
network before sending, and only send out what the network can handle. 



End-end congestion control:

▪ no explicit feedback from 
network

▪ congestion inferred from 
observed loss, delay

Approaches towards congestion control

datadata
ACKs

ACKs

▪ approach taken by TCP
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▪ TCP ECN, ATM, DECbit protocols

Approaches towards congestion control

datadata
ACKs

ACKs

explicit congestion info

Network-assisted congestion 
control:

▪ routers provide direct feedback 
to sending/receiving hosts with 
flows passing through congested 
router

▪ may indicate congestion level or 
explicitly set sending rate
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Discussion
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▪ What if some senders decide to send more data than the available network 
capacity anyway?



Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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TCP congestion control: AIMD
▪ approach: senders can increase sending rate until packet loss 

(congestion) occurs, then decrease sending rate on loss event

AIMD sawtooth

behavior: probing
for bandwidth
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time

increase sending rate by 1 
maximum segment size every 
RTT until loss detected

Additive Increase

cut sending rate in half at 
each loss event

Multiplicative Decrease
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TCP AIMD: more

Multiplicative decrease detail:  sending rate is 

▪ Cut in half on loss detected by triple duplicate ACK (TCP Reno)

▪ Cut to 1 MSS (maximum segment size) when loss detected by 
timeout (TCP Tahoe)

Why AIMD? 

▪ AIMD – a distributed, asynchronous algorithm – has been 
shown to:

• optimize congested flow rates network wide!

• have desirable stability properties
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TCP congestion control: details

▪ TCP sender limits transmission:

▪ cwnd is dynamically adjusted in response to observed 
network congestion (implementing TCP congestion control)

LastByteSent- LastByteAcked < cwnd

last byte
ACKed

last byte sent

cwnd

sender sequence number space 

available but 
not used

TCP sending behavior:

▪ roughly: send cwnd bytes, 
wait RTT for ACKS, then 
send more bytes

TCP rate ~~
cwnd

RTT
bytes/secsent, but not-

yet ACKed 
(“in-flight”)
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TCP slow start 

▪ when connection begins, 
increase rate exponentially 
until first loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing cwnd 
for every ACK received

Host A Host B

R
T

T

time

▪ summary: initial rate is 
slow, but ramps up 
exponentially fast
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TCP: from slow start to congestion avoidance

Q: when should the exponential 
increase switch to linear? 

A: when cwnd gets to 1/2 of its 
value before timeout.

Implementation:
▪ variable ssthresh 

▪ on loss event, ssthresh is set to 
1/2 of cwnd just before loss event

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

X
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TCP congestion control
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Slow start:

▪ New ACK
• if cwnd < ssthresh, cwnd 

grows exponentially

• if cwnd ≥ ssthresh, go to 
congestion avoidance

▪ Three duplicate ACKs
• set ssthresh ← cwnd/2 

• set cwnd ← ssthresh

• go to congestion avoidance

▪ Timeout
• set ssthresh ← cwnd/2 

• set cwnd ← 1

Congestion avoidance:

▪ New ACK
• cwnd increases linearly

▪ Three duplicate ACKs
• set ssthresh ← cwnd/2 

• set cwnd ← ssthresh

▪ Timeout 
• set ssthresh ← cwnd/2 

• set cwnd ← 1

• go to slow start

AIMD



sending 
process

data

receiving 
process

dataapplication

transport

unreliable channel
network

transport

TCP 
send buffer

TCP 
receive buffer

▪ Flow control
• Sender will not overwhelm receiver

▪ Congestion control
• Sender will not overwhelm the network

▪ In rdt tools, windows are used 
to manage pipelined transfer

▪ TCP has two windows
• Flow control window

• Congestion control window

▪ Sender is limited by the 
smallest window

Note: Congestion control ≠ Flow control



TCP CUBIC
▪ Is there a better way than AIMD to “probe” for usable bandwidth?

Wmax

Wmax/2

classic TCP

TCP CUBIC - higher 
throughput in this 
example

▪ Insight/intuition: 
• Wmax: sending rate at which congestion loss was detected

• congestion state of bottleneck link probably (?) hasn’t changed much

• after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then 
approach Wmax more slowly
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TCP CUBIC
▪ K: point in time when TCP window size will reach Wmax

• K itself is tunable

• larger increases when further away from K

• smaller increases (cautious) when nearer K

TCP
sending 

rate

time

TCP Reno

TCP CUBIC

Wmax

t0 t1 t2 t3 t4 

▪ TCP CUBIC default 
in Linux, most 
popular TCP for 
popular Web 
servers

▪ increase W as a function of the cube of the distance between current 
time  and K
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TCP and the congested “bottleneck link”

▪ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs 
at some router’s output: the bottleneck link

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

bottleneck link (almost always busy)

packet queue almost 
never empty, sometimes 

overflows packet (loss)
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TCP and the congested “bottleneck link”

▪ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs 
at some router’s output: the bottleneck link

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

▪understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will 
not increase end-end throughout 
with congested bottleneck

insight: increasing TCP 
sending rate will 

increase measured RTT

RTT

Goal: “keep the end-end pipe just full, but not fuller”
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Delay-based TCP congestion control

Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep 
bottleneck link busy transmitting, but avoid high delays/buffering

RTTmeasured

Delay-based approach:

▪ RTTmin - minimum observed RTT (uncongested path)

▪ uncongested throughput with congestion window cwnd is cwnd/RTTmin

if measured throughput “very close” to  uncongested throughput
        increase cwnd linearly                /* since path not congested */ 
else if measured throughput “far below” uncongested throughout
      decrease cwnd linearly /* since path is congested */

RTTmeasured

measured 
throughput =

# bytes sent in 
last RTT interval
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Delay-based TCP congestion control

▪ congestion control without inducing/forcing loss

▪ maximizing throughout (“keeping the just pipe full… ”) while keeping 
delay low (“…but not fuller”)

▪ a number of deployed TCPs take a delay-based approach

▪ BBR deployed on Google’s (internal) backbone network
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Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router to indicate congestion

• policy to determine marking chosen by network operator
▪ congestion indication carried to destination
▪ destination sets ECE bit on ACK segment to notify sender of congestion
▪ involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment
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TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link of 
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R
TCP connection 2
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Q: is TCP Fair?
Example: two competing TCP sessions:

▪ additive increase gives slope of 1, as throughout increases

▪multiplicative decrease decreases throughput proportionally 

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

A: Yes, under idealized 
assumptions:
▪ same RTT
▪ fixed number of sessions 

only in congestion 
avoidance 

Is TCP fair?
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Fairness: must all network apps be “fair”?
Fairness and UDP
▪multimedia apps often do not 

use TCP
• do not want rate throttled by 

congestion control

▪ instead use UDP:
• send audio/video at constant rate, 

tolerate packet loss

▪ there is no “Internet police” 
policing use of congestion 
control

Fairness, parallel TCP 
connections

▪ application can open multiple 
parallel connections between two 
hosts

▪web browsers do this , e.g., link of 
rate R with 9 existing connections:
• new app asks for 1 TCP, gets rate R/10

• new app asks for 11 TCPs, gets R/2 
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Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer 

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer 
functionality
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▪ TCP, UDP: principal transport protocols for 40 years

▪ different “flavors” of TCP developed, for specific scenarios:

Evolving transport-layer functionality

▪moving transport–layer functions to application layer, on top of UDP

• HTTP/3: QUIC

Scenario Challenges
Long, fat pipes (large data 
transfers)

Many packets “in flight”; loss shuts down 
pipeline

Wireless networks Loss due to noisy wireless links, mobility; 
TCP treat this as congestion loss

Long-delay links Extremely long RTTs
Data center networks Latency sensitive
Background traffic flows Low priority, “background” TCP flows 
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▪ application-layer protocol, on top of UDP
• increase performance of HTTP

• deployed on many Google servers, apps (Chrome, mobile YouTube app) 

QUIC: Quick UDP Internet Connections

IP

TCP

TLS

HTTP/2

IP

UDP

QUIC

HTTP/2 (slimmed)

Network

Transport

Application

HTTP/2 over TCP

HTTP/3

HTTP/2 over QUIC over UDP
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QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for 
connection establishment, error control, congestion control

▪ multiple application-level “streams” multiplexed over single QUIC 
connection
• separate reliable data transfer, security

• common congestion control

• error and congestion control: “Readers familiar with TCP’s loss 
detection and congestion control will find algorithms here that parallel 
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control, 
authentication, encryption, state established in one RTT
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QUIC: Connection establishment

TCP handshake
(transport layer)

TLS handshake
(security)

TCP (reliability, congestion control 

state) + TLS (authentication, crypto 
state)

▪2 serial handshakes

data

QUIC handshake

data

QUIC:  reliability, congestion control, 
authentication, crypto state

▪ 1 handshake

Transport Layer: 3-49



QUIC: streams: parallelism, no HOL blocking

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. Contr.
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(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT

TCP Cong. Contr.

TLS encryption

error!

HTTP 
GET 

HTTP 
GET 

HTTP 
GET 

QUIC Cong. Cont.

QUIC 
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC 
encrypt

QUIC 
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC 
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC 
encrypt

QUIC 
encrypt

error!

HTTP 
GET HTTP 

GET 
HTTP 
GET 
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Transport layer: summary

Transport Layer: 3-52

▪ principles behind transport 
layer services:
• multiplexing, demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ instantiation, implementation 
in the Internet
• UDP

• TCP

Up next:

▪ leaving the network 
“edge” (application, 
transport layers)

▪ into the network “core”



Additional Slides
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Packet drops along the path

▪ four senders

▪ multi-hop paths

▪ timeout/retransmit

Q: what happens as in and in
’ increase ?

A: as red  in
’ increases, all arriving blue pkts at upper 

queue are dropped, blue throughput  0

finite shared 
output link buffers

Host A

out

Host B

Host C

Host D

in : original data

'in: original data, plus 
retransmitted data
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Packet drops along the path

another “cost” of congestion: 
▪ when packet dropped, any upstream transmission capacity and 

buffering used for that packet was wasted!

R/2

R/2


o

u
t

in
’
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