
CS 456/656
Computer Networks

Mina Tahmasbi Arashloo and Bo Sun

Fall 2024

Lecture 8: Transport Layer – Part 4

A note on the slides

Adapted from the slides that
accompany this book.

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

Transport layer: roadmap

▪ Transport-layer overview

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-3

Congestion:

▪ informally: “too many sources sending too much data too fast for
network to handle”

▪manifestations:

• long delays (queueing in router buffers)

• packet loss (buffer overflow at routers)

▪ different from flow control!

Principles of congestion control

congestion control:
too many senders,

sending too fast

flow control: one sender

too fast for one receiver

▪ a top-10 problem!

Transport Layer: 3-4

Throughput cannot exceed available capacity

▪ The transmission rate for all links is R bps

▪ So, if host A wants to send out data at R
bps, the link can carry it to the router

▪ But, A has to share the link between
Router X and Router Y with the traffic
from Host B

Transport Layer: 3-5

Host A

Host B

R

shared output

link bufferR

R

R

R
Router X

Router Y

Throughput cannot exceed available capacity

Transport Layer: 3-6

Host A

Host B

R

shared output

link bufferR

R

R

R
Router X

Router Y

▪ Q. What happens if both Host A and Host B send data to
their destinations at R bps?
▪ Suppose the available bandwidth from Router X Router Y is

shared fairly between traffic from A and B.

Throughput cannot exceed available capacity

Transport Layer: 3-7

Host A

Host B

R

shared output

link bufferR

R

R

R
Router X

Router Y

▪ No matter how fast A and B send data to the router, the router’s bandwidth to
Y is limited to R.

▪ So, host C can receive at most R/2 bps from A, and so does Host D from B

▪ In the best case, all the R/2 bits every second are sent exactly once
▪ whatever is sent, it is delivered the first time

Host C

Host D

▪ So, in the best case, the
throughput at which data is
received by the application
running in Host C is R/2 bps.

Throughput cannot exceed available capacity

Transport Layer: 3-8

Host A

Host B

R

shared output

link bufferR

R

R

R
Router X

Router Y

Host C

Host D

▪ 𝑆𝐴: the rate at which host A sends data out.

▪ 𝑇𝐶: the rate at which new data is received by the application.

▪ Best case scenario: As 𝑆𝐴 increases, 𝑇𝐶 increases up to R/2.

▪ 𝑇𝐶 = min(𝑆𝐴,
𝑅

2
)

▪ Throughput can never exceed available capacity.

maximum per-connection
throughput: R/2

R/2

R/2

𝑇 𝐶

𝑆𝐴

Ideal case 1: Infinite buffers

Transport Layer: 3-9

Host A

Host B

R

shared output

link bufferR

R

R

R
Router X

Router Y

Host C

Host D

▪ When would this best case happen?
▪ The buffer at Router X has infinite capacity.

▪ So, no packets are dropped, they may just take longer and longer to get to Host C. (Why?)

▪ No packet drops ⇨ all the R/2 bits per second getting to Host C have been sent exactly once.

maximum per-connection
throughput: R/2

R/2

R/2

𝑇 𝐶

𝑆𝐴

Ideal case 2: Finite buffers but perfect knowledge of capacity

Transport Layer: 3-10

Host A

Host B

R

shared output

link bufferR

R

R

R
Router X

Router Y

Host C

Host D

▪ Could there be no packet loss if the buffer is finite?
▪ Yes, if Host A has perfect knowledge of the available buffer capacity.

▪ That is, if Host A only sends when router buffers are available.

maximum per-connection
throughput: R/2

R/2

R/2

𝑇 𝐶

𝑆𝐴

Host A

Host B finite shared output

link buffers

Ideal case 2: Finite buffers but perfect knowledge of capacity

copy

free buffer space!

Idealization: perfect knowledge
▪ sender sends only when router buffers available

RR

R/2

𝑆𝐴

R/2

𝑇 𝐶

Transport Layer: 3-11

Ideal case 2: Finite buffers but perfect knowledge of capacity

Transport Layer: 3-12

Host A

Host B

R

shared output

link bufferR

R

R

R
Router X

Router Y

Host C

Host D

▪ Could there be no loss if the buffer is finite?
▪ Yes, if Host A has perfect knowledge of the available capacity.

▪ That is, if Host A only sends when router buffers are available.

▪ No packet drops all the R/2 bits per second getting to Host C have been sent exactly once.

maximum per-connection
throughput: R/2

R/2

R/2

𝑇 𝐶

𝑆𝐴

Q. Can this ideal case happen in the Internet?
 (hint: packet switching vs circuit switching)

What happens if packets are lost?

Transport Layer: 3-13

Host A

Host B

R

shared output

link bufferR

R

R

R
Router X

Router Y

Host C

Host D

▪ In reality, host A may not have real-time information of the available buffer capacity.

▪ With reliable data transfer, if a packet is lost, the transport layer will retransmit the
corresponding data segments.

▪ Retransmission = Wasted capacity

▪ Why?

Host A

Host B finite shared output

link buffers

RR

What happens if packets are lost?

copy

no buffer space!

Idealization: some perfect knowledge

▪ packets can be lost (dropped at router) due to
full buffers

▪ sender knows when packet has been dropped:
only resends if packet known to be lost

Transport Layer: 3-14

Host A

Host B finite shared output

link buffers

RR

What happens if packets are lost?

free buffer space!

Idealization: some perfect knowledge

▪ packets can be lost (dropped at router) due to
full buffers

▪ sender knows when packet has been dropped:
only resends if packet known to be lost

when sending at
R/2, some packets
need
retransmissions

𝑆𝐴

R/2

𝑇 𝐶

R/2

“wasted” capacity due
to retransmissions

Transport Layer: 3-15

Host A

Host B finite shared output

link buffers

RR

What happens if packets are lost?

copytimeout

Realistic scenario: un-needed duplicates
▪ packets can be lost, dropped at router due to

full buffers – requiring retransmissions

▪ but sender timer can go off prematurely,
sending two copies, both of which are delivered

free buffer space!

when sending at

R/2, some packets

are retransmissions,

including needed

and un-needed

duplicates, that are

delivered!

“wasted” capacity due
to un-needed
retransmissions

𝑆𝐴

R/2

𝑇 𝐶

R/2

Transport Layer: 3-16

What happens if packets are lost?

“costs” of congestion:
▪ more work (retransmission) for given receiver throughput

▪ unneeded retransmissions: link carries multiple copies of a packet

• decreasing maximum achievable throughput

Realistic scenario: un-needed duplicates
▪ packets can be lost, dropped at router due to

full buffers – requiring retransmissions

▪ but sender timer can go off prematurely,
sending two copies, both of which are delivered when sending at

R/2, some packets

are retransmissions,

including needed

and un-needed

duplicates, that are

delivered!

“wasted” capacity due
to un-needed
retransmissions

𝑆𝐴

R/2

𝑇 𝐶

R/2

Transport Layer: 3-17

What happens if packets are lost along a path?
Realistic scenario: retransmissions triggered

by loss throughout the network
▪ whenever a packet is dropped at Router Y, the work

done by Router X (buffering and forwarding) is wasted

▪ upstream transmission capacity / buffering wasted for
packets lost downstream

Transport Layer: 3-18

Host A

Host B

R

Loss of a packet at Router

Y wastes the transmission

capacity of Router X

R

R

R/6

R
Router X

Router Y

Host C

Host D

• In extreme cases, this can lead to a
situation called congestion
collapse, where the network keeps
carrying retransmitted packets,
only for them to be dropped later
in the path.

• No data gets delivered.
• This happened in the early days of

the Internet!

How can we avoid congestion?

Transport Layer: 3-19

Host A

Host B

R

shared output

link bufferR

R

R

R
Router X

Router Y

Host C

Host D

▪ Throughput can’t exceed available capacity

▪ Sending over capacity ⇨ packet loss or long delays

▪ Packet loss or long delay ⇨ retransmission

▪ Retransmission ⇨ Wasted capacity

▪ Constant retransmission throughout the network ⇨ congestion collapse

▪ Congestion control: Have each sender estimate the available capacity in the
network before sending, and only send out what the network can handle.

End-end congestion control:

▪ no explicit feedback from
network

▪ congestion inferred from
observed loss, delay

Approaches towards congestion control

datadata
ACKs

ACKs

▪ approach taken by TCP

Transport Layer: 3-21

▪ TCP ECN, ATM, DECbit protocols

Approaches towards congestion control

datadata
ACKs

ACKs

explicit congestion info

Network-assisted congestion
control:

▪ routers provide direct feedback
to sending/receiving hosts with
flows passing through congested
router

▪ may indicate congestion level or
explicitly set sending rate

Transport Layer: 3-22

Discussion

Transport Layer: 3-23

▪ What if some senders decide to send more data than the available network
capacity anyway?

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-24

TCP congestion control: AIMD
▪ approach: senders can increase sending rate until packet loss

(congestion) occurs, then decrease sending rate on loss event

AIMD sawtooth

behavior: probing
for bandwidth

T
C

P
 s

e
n

d
e

r
 S

e
n

d
in

g
 r

a
te

time

increase sending rate by 1
maximum segment size every
RTT until loss detected

Additive Increase

cut sending rate in half at
each loss event

Multiplicative Decrease

Transport Layer: 3-25

TCP AIMD: more

Multiplicative decrease detail: sending rate is

▪ Cut in half on loss detected by triple duplicate ACK (TCP Reno)

▪ Cut to 1 MSS (maximum segment size) when loss detected by
timeout (TCP Tahoe)

Why AIMD?

▪ AIMD – a distributed, asynchronous algorithm – has been
shown to:

• optimize congested flow rates network wide!

• have desirable stability properties

Transport Layer: 3-26

TCP congestion control: details

▪ TCP sender limits transmission:

▪ cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)

LastByteSent- LastByteAcked < cwnd

last byte
ACKed

last byte sent

cwnd

sender sequence number space

available but
not used

TCP sending behavior:

▪ roughly: send cwnd bytes,
wait RTT for ACKS, then
send more bytes

TCP rate ~~
cwnd

RTT
bytes/secsent, but not-

yet ACKed
(“in-flight”)

Transport Layer: 3-27

TCP slow start

▪ when connection begins,
increase rate exponentially
until first loss event:
• initially cwnd = 1 MSS

• double cwnd every RTT

• done by incrementing cwnd
for every ACK received

Host A Host B

R
T

T

time

▪ summary: initial rate is
slow, but ramps up
exponentially fast

Transport Layer: 3-28

TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

A: when cwnd gets to 1/2 of its
value before timeout.

Implementation:
▪ variable ssthresh

▪ on loss event, ssthresh is set to
1/2 of cwnd just before loss event

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

X

Transport Layer: 3-30

TCP congestion control

Transport Layer: 3-32

Slow start:

▪ New ACK
• if cwnd < ssthresh, cwnd

grows exponentially

• if cwnd ≥ ssthresh, go to
congestion avoidance

▪ Three duplicate ACKs
• set ssthresh ← cwnd/2

• set cwnd ← ssthresh

• go to congestion avoidance

▪ Timeout
• set ssthresh ← cwnd/2

• set cwnd ← 1

Congestion avoidance:

▪ New ACK
• cwnd increases linearly

▪ Three duplicate ACKs
• set ssthresh ← cwnd/2

• set cwnd ← ssthresh

▪ Timeout
• set ssthresh ← cwnd/2

• set cwnd ← 1

• go to slow start

AIMD

sending
process

data

receiving
process

dataapplication

transport

unreliable channel
network

transport

TCP
send buffer

TCP
receive buffer

▪ Flow control
• Sender will not overwhelm receiver

▪ Congestion control
• Sender will not overwhelm the network

▪ In rdt tools, windows are used
to manage pipelined transfer

▪ TCP has two windows
• Flow control window

• Congestion control window

▪ Sender is limited by the
smallest window

Note: Congestion control ≠ Flow control

TCP CUBIC
▪ Is there a better way than AIMD to “probe” for usable bandwidth?

Wmax

Wmax/2

classic TCP

TCP CUBIC - higher
throughput in this
example

▪ Insight/intuition:
• Wmax: sending rate at which congestion loss was detected

• congestion state of bottleneck link probably (?) hasn’t changed much

• after cutting rate/window in half on loss, initially ramp to to Wmax faster, but then
approach Wmax more slowly

Transport Layer: 3-34

TCP CUBIC
▪ K: point in time when TCP window size will reach Wmax

• K itself is tunable

• larger increases when further away from K

• smaller increases (cautious) when nearer K

TCP
sending

rate

time

TCP Reno

TCP CUBIC

Wmax

t0 t1 t2 t3 t4

▪ TCP CUBIC default
in Linux, most
popular TCP for
popular Web
servers

▪ increase W as a function of the cube of the distance between current
time and K

Transport Layer: 3-35

TCP and the congested “bottleneck link”

▪ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

bottleneck link (almost always busy)

packet queue almost
never empty, sometimes

overflows packet (loss)

Transport Layer: 3-36

TCP and the congested “bottleneck link”

▪ TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

▪understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will
not increase end-end throughout
with congested bottleneck

insight: increasing TCP
sending rate will

increase measured RTT

RTT

Goal: “keep the end-end pipe just full, but not fuller”

Transport Layer: 3-37

Delay-based TCP congestion control

Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep
bottleneck link busy transmitting, but avoid high delays/buffering

RTTmeasured

Delay-based approach:

▪ RTTmin - minimum observed RTT (uncongested path)

▪ uncongested throughput with congestion window cwnd is cwnd/RTTmin

if measured throughput “very close” to uncongested throughput
 increase cwnd linearly /* since path not congested */
else if measured throughput “far below” uncongested throughout
 decrease cwnd linearly /* since path is congested */

RTTmeasured

measured
throughput =

bytes sent in
last RTT interval

Transport Layer: 3-38

Delay-based TCP congestion control

▪ congestion control without inducing/forcing loss

▪ maximizing throughout (“keeping the just pipe full… ”) while keeping
delay low (“…but not fuller”)

▪ a number of deployed TCPs take a delay-based approach

▪ BBR deployed on Google’s (internal) backbone network

Transport Layer: 3-39

source

application

TCP

network

link

physical

destination

application

TCP

network

link

physical

Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
▪ two bits in IP header (ToS field) marked by network router to indicate congestion

• policy to determine marking chosen by network operator
▪ congestion indication carried to destination
▪ destination sets ECE bit on ACK segment to notify sender of congestion
▪ involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

ECN=10 ECN=11

ECE=1

IP datagram

TCP ACK segment

Transport Layer: 3-40

TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

bottleneck
router

capacity R
TCP connection 2

Transport Layer: 3-41

Q: is TCP Fair?
Example: two competing TCP sessions:

▪ additive increase gives slope of 1, as throughout increases

▪multiplicative decrease decreases throughput proportionally

R

R

equal bandwidth share

Connection 1 throughput

congestion avoidance: additive increase

loss: decrease window by factor of 2

congestion avoidance: additive increase
loss: decrease window by factor of 2

A: Yes, under idealized
assumptions:
▪ same RTT
▪ fixed number of sessions

only in congestion
avoidance

Is TCP fair?

Transport Layer: 3-42

Fairness: must all network apps be “fair”?
Fairness and UDP
▪multimedia apps often do not

use TCP
• do not want rate throttled by

congestion control

▪ instead use UDP:
• send audio/video at constant rate,

tolerate packet loss

▪ there is no “Internet police”
policing use of congestion
control

Fairness, parallel TCP
connections

▪ application can open multiple
parallel connections between two
hosts

▪web browsers do this , e.g., link of
rate R with 9 existing connections:
• new app asks for 1 TCP, gets rate R/10

• new app asks for 11 TCPs, gets R/2

Transport Layer: 3-43

Transport layer: roadmap

▪ Transport-layer services

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport Layer: 3-44

▪ TCP, UDP: principal transport protocols for 40 years

▪ different “flavors” of TCP developed, for specific scenarios:

Evolving transport-layer functionality

▪moving transport–layer functions to application layer, on top of UDP

• HTTP/3: QUIC

Scenario Challenges
Long, fat pipes (large data
transfers)

Many packets “in flight”; loss shuts down
pipeline

Wireless networks Loss due to noisy wireless links, mobility;
TCP treat this as congestion loss

Long-delay links Extremely long RTTs
Data center networks Latency sensitive
Background traffic flows Low priority, “background” TCP flows

Transport Layer: 3-45

▪ application-layer protocol, on top of UDP
• increase performance of HTTP

• deployed on many Google servers, apps (Chrome, mobile YouTube app)

QUIC: Quick UDP Internet Connections

IP

TCP

TLS

HTTP/2

IP

UDP

QUIC

HTTP/2 (slimmed)

Network

Transport

Application

HTTP/2 over TCP

HTTP/3

HTTP/2 over QUIC over UDP

Transport Layer: 3-47

QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for
connection establishment, error control, congestion control

▪ multiple application-level “streams” multiplexed over single QUIC
connection
• separate reliable data transfer, security

• common congestion control

• error and congestion control: “Readers familiar with TCP’s loss
detection and congestion control will find algorithms here that parallel
well-known TCP ones.” [from QUIC specification]

• connection establishment: reliability, congestion control,
authentication, encryption, state established in one RTT

Transport Layer: 3-48

QUIC: Connection establishment

TCP handshake
(transport layer)

TLS handshake
(security)

TCP (reliability, congestion control

state) + TLS (authentication, crypto
state)

▪2 serial handshakes

data

QUIC handshake

data

QUIC: reliability, congestion control,
authentication, crypto state

▪ 1 handshake

Transport Layer: 3-49

QUIC: streams: parallelism, no HOL blocking

(a) HTTP 1.1

TLS encryption

TCP RDT

TCP Cong. Contr.

tr
a

n
sp

o
rt

a
p

p
lic

a
ti

o
n

(b) HTTP/2 with QUIC: no HOL blocking

TCP RDT

TCP Cong. Contr.

TLS encryption

error!

HTTP
GET

HTTP
GET

HTTP
GET

QUIC Cong. Cont.

QUIC
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC
encrypt

QUIC
encrypt

UDP UDP

QUIC Cong. Cont.

QUIC
encrypt

QUIC
 RDT

QUIC
 RDT

QUIC
 RDT

QUIC
encrypt

QUIC
encrypt

error!

HTTP
GET HTTP

GET
HTTP
GET

Transport Layer: 3-51

Transport layer: summary

Transport Layer: 3-52

▪ principles behind transport
layer services:
• multiplexing, demultiplexing

• reliable data transfer

• flow control

• congestion control

▪ instantiation, implementation
in the Internet
• UDP

• TCP

Up next:

▪ leaving the network
“edge” (application,
transport layers)

▪ into the network “core”

Additional Slides

Transport Layer: 3-53

Packet drops along the path

▪ four senders

▪ multi-hop paths

▪ timeout/retransmit

Q: what happens as in and in
’ increase ?

A: as red in
’ increases, all arriving blue pkts at upper

queue are dropped, blue throughput  0

finite shared
output link buffers

Host A

out

Host B

Host C

Host D

in : original data

'in: original data, plus
retransmitted data

Transport Layer: 3-54

Packet drops along the path

another “cost” of congestion:
▪ when packet dropped, any upstream transmission capacity and

buffering used for that packet was wasted!

R/2

R/2


o

u
t

in
’

Transport Layer: 3-55

	Slide 1: CS 456/656 Computer Networks
	Slide 2: A note on the slides
	Slide 3: Transport layer: roadmap
	Slide 4: Principles of congestion control
	Slide 5: Throughput cannot exceed available capacity
	Slide 6: Throughput cannot exceed available capacity
	Slide 7: Throughput cannot exceed available capacity
	Slide 8: Throughput cannot exceed available capacity
	Slide 9: Ideal case 1: Infinite buffers
	Slide 10: Ideal case 2: Finite buffers but perfect knowledge of capacity
	Slide 11: Ideal case 2: Finite buffers but perfect knowledge of capacity
	Slide 12: Ideal case 2: Finite buffers but perfect knowledge of capacity
	Slide 13: What happens if packets are lost?
	Slide 14: What happens if packets are lost?
	Slide 15: What happens if packets are lost?
	Slide 16: What happens if packets are lost?
	Slide 17: What happens if packets are lost?
	Slide 18: What happens if packets are lost along a path?
	Slide 19: How can we avoid congestion?
	Slide 21: Approaches towards congestion control
	Slide 22: Approaches towards congestion control
	Slide 23: Discussion
	Slide 24: Transport layer: roadmap
	Slide 25: TCP congestion control: AIMD
	Slide 26: TCP AIMD: more
	Slide 27: TCP congestion control: details
	Slide 28: TCP slow start
	Slide 30: TCP: from slow start to congestion avoidance
	Slide 32: TCP congestion control
	Slide 33: Note: Congestion control not equal Flow control
	Slide 34: TCP CUBIC
	Slide 35: TCP CUBIC
	Slide 36: TCP and the congested “bottleneck link”
	Slide 37: TCP and the congested “bottleneck link”
	Slide 38: Delay-based TCP congestion control
	Slide 39: Delay-based TCP congestion control
	Slide 40: Explicit congestion notification (ECN)
	Slide 41: TCP fairness
	Slide 42: Q: is TCP Fair?
	Slide 43: Fairness: must all network apps be “fair”?
	Slide 44: Transport layer: roadmap
	Slide 45: Evolving transport-layer functionality
	Slide 47: QUIC: Quick UDP Internet Connections
	Slide 48: QUIC: Quick UDP Internet Connections
	Slide 49: QUIC: Connection establishment
	Slide 51: QUIC: streams: parallelism, no HOL blocking
	Slide 52: Transport layer: summary
	Slide 53: Additional Slides
	Slide 54: Packet drops along the path
	Slide 55: Packet drops along the path

