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Transport layer: roadmap

" Principles of congestion control

Transport Layer: 3-3



Principles of congestion control

Congestion:

= informally: “too many sources sending too much data too fast for
network to handle”

" manifestations:
* long delays (queueing in router buffers)
* packet loss (buffer overflow at routers)

= different from flow control!

too many senders,
sending too fast

= 3 top-10 problem!

" - flow control: one sender
too fast for one receiver
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Throughput cannot exceed available capacity

" The transmission rate for all links is R bps

= So, if host A wants to send out data at R
bps, the link can carry it to the router

= But, A has to share the link between
Router X and Router Y with the traffic
from Host B

Host A A

g
shared output

<4

_ R link buffer R E

Router Y,
/‘ J
‘S Router X

" Host B R R E
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Throughput cannot exceed available capacity

= Q. What happens if both Host A and Host B send data to
their destinations at R bps?

= Suppose the available bandwidth from Router X Router Y is
shared fairly between traffic from A and B.

Host A A

g

> shared output

_ R link buffer R ﬁ

Router Y,
/‘ J
‘S Router X

" Host B R R B E
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Throughput cannot exceed available capacity

= No matter how fast A and B send data to the router, the router’s bandwidth to

Y is limited to R.

= So, host C can receive at most R/2 bps from A, and so does Host D from B

" |n the best case, all the R/2 bits every second are sent exactly once
= whatever is sent, it is delivered the first time

= So, in the best case, the
throughput at which data is
received by the application
running in Host Cis R/2 bps.

Host

]
. 4

shared output
link buffer

Router X

R

Host C

E

Router Y,

——

Host D
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Throughput cannot exceed available capacity

= S,: the rate at which host A sends data out.
" Tc: the rate at which new data is received by the application.
» Best case scenario: As S, increases, T increases up to R/2.

u TC — min(SA,g)

= Throughput can never exceed available capacity.

R/2 e

maximum per-connection
throughput: R/2

Host A
I /

R

74

shared output
link buffer

==

“Host B R

Router X

Router Y,

R

Host C

-

Host D
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ldeal case 1: Infinite buffers

= When would this best case happen?
= The buffer at Router X has infinite capacity.
= So, no packets are dropped, they may just take longer and longer to get to Host C. (Why?)
= No packet drops = all the R/2 bits per second getting to Host C have been sent exactly once.

Host C
Host A A
R/24-----mn--- . .
! ‘ gy shared output
: link buffer
: o O s =g
B ! Z Router Y,
i 1
|
R/2 = J
S, ﬁg Router X — E
maximum per-connection Host B R R Host D

throughput: R/2
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ldeal case 2: Finite buffers but perfect knowledge of capacity

= Could there be no packet loss if the buffer is finite?
= Yes, if Host A has perfect knowledge of the available buffer capacity.
= That is, if Host A only sends when router buffers are available.

Host C
Host A A
RI2+4----------- , N
| ‘ gy shared output
: R link buffer R
@® —

Router Y,

i
Rj2 = J
Sa ‘S Router X R - ﬁ

maximum per-connection Host B R Host D
throughput: R/2
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ldeal case 2: Finite buffers but perfect knowledge of capacity

|dealization: perfect knowledge
= sender sends only when router buffers available

Host A
dopy = ! -

. 1

? free buffer space! / ﬁ
T

g /Sy

" Host B finite shared output E

link buffers
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ldeal case 2: Finite buffers but perfect knowledge of capacity

= Could there be no loss if the buffer is finite?
= Yes, if Host A has perfect knowledge of the available capacity.
= That is, if Host A only sends when router buffers are available.
= No packet drops all the R/2 bits per second getting to Host C have been sent exactly once.

Q. Can this ideal case happen in the Internet?
(hint: packet switching vs circuit switching)

Host C
Host A A

R/24------------ / V/
| e shared output

_ R link buffer R ﬁ

Z Router Y,
#
R/2 & j
S ‘S Router X R - ﬁ

maximum per-connection Host B Host D
throughput: R/2

Te
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What happens if packets are lost?

" |[n reality, host A may not have real-time information of the available buffer capacity.

= With reliable data transfer, if a packet is lost, the transport layer will retransmit the
corresponding data segments.

= Retransmission = Wasted capacity

= Why?
Host C
Hogt :\ A
5; shared output
_ R link buffer R ﬁ

Router Y,

= J
‘S Router X

" Host B R R E
Host D
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What happens if packets are lost?

|dealization: some perfect knowledge

= packets can be lost (dropped at router) due to
full buffers

= sender knows when packet has been dropped:
only resends if packet known to be lost

Host A | [ |

q()py (I

o

o ZaE T

" Host B finite shared outpuf,._»!uj
link buffers="
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What happens if packets are lost?

|dealization: some perfect knowledge

= packets can be lost (dropped at router) due to
full buffers

= sender knows when packet has been dropped:
only resends if packet known to be lost

Host A

g F
J

o

? free buffer space!
? N
44—

Ere
a2 /Y

" Host B finite shared output

link buffers

R/2 —

E_EJ

“wasted” capacity due
to retransmissions

when sending at
R/2, some packets
need
retransmissions
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What happens if packets are lost?

Realistic scenario: un-needed duplicates

= packets can be lost, dropped at router due to
full buffers — requiring retransmissions

= but sender timer can go off prematurely,
sending two copies, both of which are delivered

)

\_s

4

=
®
free buffer space!
R
*%*"Host B finite shared output

link buffers

R/2 —

7 ' ‘“wasted” capacity due
, +toun-needed

] v{#ra nsmissions
1

when sending at

! R/2, some packets

| are retransmissions,
i including needed

|' and un-needed

> duplicates, that are
S 4 delivered!
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What happens if packets are lost?

Realistic scenario: un-needed duplicates

R/2 — .
= packets can be lost, dropped at router due to /’:

full buffers — requiring retransmissions | ______<. |
= but sender timer can go off prematurely, By

sending two copies, both of which are delivered

“costs” of congestion:

= more work (retransmission) for given receiver throughput

= unneeded retransmissions: link carries multiple copies of a packet
e decreasing maximum achievable throughput

“wasted” capacity due
to un-needed

Tw_ retransmissions
:\
1

when sending at
R/2, some packets
are retransmissions,
including needed
and un-needed
duplicates, that are
delivered!
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What happens if packets are lost along a path?

Realistic scenario: retransmissions trlggered + I extreme cases, this can lead to a
by loss throughout the network situation called congestion

= whenever a packet is dropped at Router Y, the work collapse, where the network keeps

done by Router X (buffering and forwarding) is wasted carrying retransmitted packets,
only for them to be dropped later

= upstream transmission capacity / buffering wasted for in the path
packets lost downstream +  No data gets delivered.

* This happened in the early days of
the Internet!

Loss of a packet at Router Host C
HOS"[ A Y wastes the transmission A
q capacity of Router X
e
7 Router Y,
e r
""" |

g J I
Dt Router X — ﬁ

Host B R R
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How can we avoid congestion?

=" Throughput can’t exceed available capacity

= Sending over capacity = packet loss or long delays

= Packet loss or long delay = retransmission

= Retransmission = Wasted capacity

= Constant retransmission throughout the network => congestion collapse

= Congestion control: Have each sender estimate the available capacity in the
network before sending, and only send out what the network can handle.

Host C

Host A A

N

‘% shared output
link buffer
. ; =
/ Router Y,
(" #
= J
% Router X E

Host B R R

Host D
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Approaches towards congestion control

End-end congestion control:

" no explicit feedback from . "
network

&
= congestion inferred from 4 T ﬁ
ACKs — data
observed loss, delay @~@ ACKs
\éﬂﬂl/ /

" approach taken by TCP el e
-




Approaches towards congestion control

Network-assisted congestion
control:

= routers provide direct feedback
to sending/receiving hosts with 4
flows passing through congested
router

A= explicit congestion info

ACKs

" may indicate congestion level or
explicitly set sending rate

= TCP ECN, ATM, DECbit protocols
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Discussion

= \What if some senders decide to send more data than the available network
capacity anyway?
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Transport layer: roadmap

= TCP congestion control
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TCP congestion control: AIMD

" gpproach: senders can increase sending rate until packet loss
(congestion) occurs, then decrease sending rate on loss event

- Additive Increase — Multiplicative Decrease ]
increase sending rate by 1 cut sending rate in half at
maximum segment size every each loss event
RTT until loss detected

AIMD sawtooth

behavior: probing
for bandwidth

4

=%
7

\

TCP sender Sending rate

time Transport Layer: 3-25



TCP AIMD: more

Multiplicative decrease detail: sending rate is

= Cutin half on loss detected by triple duplicate ACK (TCP Reno)

= Cutto 1l MSS (maximum segment size) when loss detected by
timeout (TCP Tahoe)

Why AIMD?

= AIMD - a distributed, asynchronous algorithm — has been
shown to:

* optimize congested flow rates network wide!
* have desirable stability properties
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TCP congestion control: details

sender sequence number space

TCP sending behavior:

cwnd
" roughly: send cwnd bytes,
wait RTT for ACKS, then

J send more bytes
last byte cwnd
ACKed  sent, but not- ava"ab'e but TCP rate = bytes/sec

yet ACKed not used RTT

(“in-flight”) — last byte sent

= TCP sender limits transmission: LastByteSent- LastByteAcked < cwnd

= cwnd is dynamically adjusted in response to observed
network congestion (implementing TCP congestion control)
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TCP slow start

" when connection begins,
increase rate exponentially
until first loss event:

* initially cwnd = 1 MSS
* double cwnd every RTT

e done by incrementing cwnd
for every ACK received

" summary: initial rate is
slow, but ramps up
exponentially fast

Host A
. /
! W
|_
x
|
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TCP: from slow start to congestion avoidance

Q: when should the exponential
increase switch to linear?

I
|

A: when cwnd gets to 1/2 of its . 27 e
value before timeout. gz estwen
Implementation: §° o g—
" variable ssthresh 2_ ———
O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

= on loss event, ssthresh is set to
1/2 of cwnd just before loss event

Transmission round

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/
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TCP congestion control

Slow start: Congestion avoidance:
= New ACK = New ACK AIMD
* if cwnd< ssthresh, cwnd  cwnd increases linearly

grows exponentially

 ifcwnd = ssthresh, goto
congestion avoidance

" Three duplicate ACKs
* set ssthresh « cwnd/2
* setcwnd <« ssthresh
e go to congestion avoidance

" Three duplicate ACKs
* set ssthresh « cwnd/?2
* setcwnd < ssthresh

" Timeout
 set ssthresh « cwnd/2
e setcwnd « 1

: e o0 toslow start
" Timeout 5

 set ssthresh « cwnd/2
* setecwnd « 1
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Note: Congestion control # Flow control

-~ — &
= sending receiving |
process process
application l data

" |n rdt tools, windows are used
to manage pipelined transfer

transport

TCP TCP
send buffer receive buffer
network

 Sender will not overwhelm receiver

= TCP has two windows
 Flow control window
* Congestion control window

transport

= Sender is limited by the
smallest window

Congestion control
 Sender will not overwhelm the network




TCP CUBIC

= |s there a better way than AIMD to “probe” for usable bandwidth?

= |nsight/intuition:
* W, .,: sending rate at which congestion loss was detected
e congestion state of bottleneck link probably (?) hasn’t changed much

* after cutting rate/window in half on loss, initially ramp to to W, _, faster, but then
approach W __ more slowly

Winax classic TCP
= = = = TCP CUBIC - higher
W, ../2 throughput in this
example
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TCP CUBIC

= K: point in time when TCP window size will reach W__,
* Kitselfis tunable

= increase W as a function of the cube of the distance between current
time and K

* larger increases when further away from K
* smaller increases (cautious) when nearer K

= TCP CUBIC default !
in Linux, most I Ny ey ey Ay
popular TCP for EE EEE’C
popular Web ot

servers rate

time

»
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TCP and the congested “bottleneck link”

" TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

source destination

TCP L E TCP

E

=

2

=5

packet queue almost
never empty, sometimes
overflows packet (loss)

bottleneck link (almost always busy)
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TCP and the congested “bottleneck link”

" TCP (classic, CUBIC) increase TCP’s sending rate until packet loss occurs
at some router’s output: the bottleneck link

= understanding congestion: useful to focus on congested bottleneck link

insight: increasing TCP sending rate will
source not increase end-end throughout

: destination
with congested bottleneck

TCP TCP

w5 A

insight: increasing TCP
sending rate will
increase measured RTT

Goal: “keep the end-end pipe just full, but not fuller”

RTT >

A
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Delay-based TCP congestion control

Keeping sender-to-receiver pipe “just full enough, but no fuller”: keep
bottleneck link busy transmitting, but avoid high delays/buffering

& _‘ & # bytes sent in
1 > measured last RTT interval

= «——RTT, = -

easured throughput RTT
measured

Delay-based approach:
= RTT,,, - minimum observed RTT (uncongested path)

= uncongested throughput with congestion window cwnd is cwnd/RTT_ .

if measured throughput “very close” to uncongested throughput
increase cwnd linearly /* since path not congested */
else if measured throughput “far below” uncongested throughout

decrease cwnd linearly /* since path is congested */
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Delay-based TCP congestion control

= congestion control without inducing/forcing loss

" maximizing throughout (“keeping the just pipe full... ”) while keeping
delay low (“...but not fuller”)
= 3 number of deployed TCPs take a delay-based approach

= BBR deployed on Google’s (internal) backbone network
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Explicit congestion notification (ECN)

TCP deployments often implement network-assisted congestion control:
" two bits in IP header (ToS field) marked by network router to indicate congestion
 policy to determine marking chosen by network operator
= congestion indication carried to destination
= destination sets ECE bit on ACK segment to notify sender of congestion
= involves both IP (IP header ECN bit marking) and TCP (TCP header C,E bit marking)

TCP ACK t . :
source / Segmen destination

TCP TCP ‘
5 4

=
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TCP fairness

Fairness goal: if K TCP sessions share same bottleneck link of
bandwidth R, each should have average rate of R/K

TCP connection 1

/ ‘
- N
% bottleneck

router
capacity R

TCP connection 2
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Q: is TCP Fair?

Example: two competing TCP sessions:

= additive increase gives slope of 1, as throughout increases

" multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput 0

Connection 1 throughput R

— |s TCP fair?

A: Yes, under idealized

assumptions:
= same RTT
= fixed number of sessions
only in congestion
avoidance
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Fairness: must all network apps be “fair”?

Fairness and UDP Fairness, parallel TCP
* multimedia apps often do not connections
use TCP

= application can open multiple

do not want rate throttled by parallel connections between two

congestion control

= instead use UDP: hosts
* send audio/video at constant rate, = web browsers do this, e.g., link of
tolerate packet loss rate R with 9 existing connections:
= there is no “Internet police” * new app asks for 1 TCP, gets rate R/10
policing use of congestion * new app asks for 11 TCPs, gets R/2

control
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Transport layer: roadmap

" Evolution of transport-layer
functionality
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Evolving transport-layer functionality

= TCP, UDP: principal transport protocols for 40 years
= different “flavors” of TCP developed, for specific scenarios:

Long, fat pipes (large data Many packets “in flight”; loss shuts down

transfers) pipeline

Wireless networks Loss due to noisy wireless links, mobility;
TCP treat this as congestion loss

Long-delay links Extremely long RTTs

Data center networks Latency sensitive

Background traffic flows Low priority, “background” TCP flows

" moving transport—layer functions to application layer, on top of UDP
 HTTP/3: QUIC
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QUIC: Quick UDP Internet Connections

= application-layer protocol, on top of UDP
* increase performance of HTTP
* deployed on many Google servers, apps (Chrome, mobile YouTube app)

Application

HTTP/2 HTTP/2 (slimmed)
LHTTP/3
TLS QuUIC
TCP UDP
IP IP

Network

HTTP/2 over TCP

HTTP/2 over QUIC over UDP
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QUIC: Quick UDP Internet Connections

adopts approaches we’ve studied in this chapter for
connection establishment, error control, congestion control

* error and congestion control: “Readers familiar with TCP’s loss
detection and congestion control will find algorithms here that parallel
well-known TCP ones.” [from QUIC specification]

* connection establishment: reliability, congestion control,
authentication, encryption, state established in one RTT

" multiple application-level “streams” multiplexed over single QUIC
connection

* separate reliable data transfer, security
e common congestion control
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QUIC: Connection establishment

/'/ ‘

e

TCP handshake \
(transport layer) <
TLS handshake

(security) /

\
data —

TCP (reliability, congestion control
state) + TLS (authentication, crypto
state)

= ) serial handshakes

]

s

QUIC handShake /

QUIC: reliability, congestion control,

authentication, crypto state
= 1 handshake
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application

transport

QUIC: streams: parallelism, no HOL blocking

. g
q B
HTTP HTTP

GET GET HTTP
HTTP s GET ' hrrp t 1 ‘
GET o GET
palls alic [quiciabic
ET
© encfypt || efcrypt || en Irypt 8&”& mgylp(,g’ g ryIp(t:
_ _ alic | duic | adic ol
TLY ehcryption TLS encryption RDT T || RpPT QRUJ)ITC errgr! O‘RLIJDITC
________________________________________________ QUIC Cohrg Copt. QUIC @ong. Copt
TAPIRDT ecor QT | 1ttt cUUTUTYTTTMh
TCP tohgl Contr. T({P|ddng. Fontr. Upp lipp
(a) HTTP 1.1 (b) HTTP/2 with QUIC: no HOL blocking

Transport Layer: 3-51



Transport layer: summary

" principles behind transport Up next:
layer services: = leaving the network
* multiplexing, demultiplexing “edge” (application,
* reliable data transfer transport layers)
* tlow control = into the network “core”

e congestion control

" instantiation, implementation
in the Internet
- UDP
* TCP
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Additional Slides
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Packet drops along the path

" four senders Q: what happens as A, and .~ increase ?

" multi-hop paths A:asred ) increases, all arriving blue pkts at upper

" timeout/retransmit queue are dropped, blue throughput = 0

Host A P A, : original data

A’ original data, plus
— Vin ! _1+
retransmitted data

finite shared

output link buffers |

)

Host D
;. out Host C
lA_x_
|
[ ——— I
H R | H
b
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Packet drops along the path

R/2

m -+

}\’OUt

another “cost” of congestion:

= when packet dropped, any upstream transmission capacity and
buffering used for that packet was wasted!
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