
CS 456/656
Computer Networks

Mina Tahmasbi Arashloo and Bo Sun

Fall 2024

Lecture 6: Transport Layer – Part 2

A note on the slides

Adapted from the slides that
accompany this book.

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

Transport layer: roadmap

▪ Transport-layer overview

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport layer: roadmap

▪ Transport-layer overview

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Reliable data transfer (rdt)

▪ How can I make sure all bytes are delivered
reliably? Reliable data transfer

▪ One of the most important services a transport
protocol can provide over an unreliable network
layer

Principles of RDT - Agenda

▪rdt at a glance

▪Stop-and-wait approach
• sender sends one pkt, then waits for receiver’s response

▪Pipelined approach
• Go-back-N (GBN)
• Selective Repeat (SR)

Principles of RDT - Agenda

▪rdt at a glance

▪Stop-and-wait approach
• sender sends one pkt, then waits for receiver’s response

▪Pipelined approach
• Go-back-N (GBN)
• Selective Repeat (SR)

Reliable data transfer (rdt)

sending
process

data

receiving
process

data

reliable channel

application

transport

reliable service abstraction

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol

Reliable data transfer (rdt)

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol

sending
process

data

receiving
process

data

reliable channel

application

transport

reliable service abstraction

Reliable data transfer (rdt)

sending
process

data

receiving
process

dataapplication

transport

reliable service implementation

unreliable channel
network

transport

sender-side of
reliable data

transfer protocol

receiver-side
of reliable data

transfer protocol

▪ Complexity of reliable data transfer
protocol will depend (strongly) on
characteristics of unreliable channel

• Bit-errors

• Pkt loss

• Out-of-order delivery

▪ Requirements of rdt

• No corrupted bits

• All bits are delivered

• No duplicates

• Data is received in the order sent

Reliable data transfer protocol (rdt): interfaces

sending
process

data

receiving
process

data

unreliable channel

sender-side
implementation of
rdt reliable data
transfer protocol

receiver-side
implementation of
rdt reliable data
transfer protocol

rdt_send()

udt_send() rdt_rcv()

deliver_data()

dataHeader dataHeader

rdt_send(): called from above,
(e.g., by app.). Passed data to
deliver to receiver upper layer

udt_send(): called by rdt
to transfer packet over
unreliable channel to receiver

rdt_rcv(): called when packet
arrives on receiver side of
channel

deliver_data(): called by rdt
to deliver data to upper layer

Bi-directional communication over
unreliable channel

(e.g., for reliable data transfer)

data

One transport-layer
segment (a.k.a a packet

over the network)

Reliable data transfer: getting started

We will:
▪ incrementally develop sender, receiver sides of reliable data transfer

protocol (rdt)

▪ We will discuss a unidirectional data transfer
• but remember, each end of the communication can act both as a sender and a

receiver

• Data and control packets can flow in both directions

▪ achieve rdt based on error-detection + retransmission
• General approach to reliable data transfer in different layers

• ARQ (Automatic Repeat request) protocols

Tools for reliable data transfer (rdt)

Detecting “errors” – i.e., lost, out of order, or corrupt segments

▪ Sequence number
• Identify data segments and their order
• Avoid duplicate delivery
• Maintain in-order delivery

▪ Timer expiration
• Detect pkt lost in the absence of

feedback

▪ Receiver feedback
• Positive acknowledge (ACK)

• I have received these segments!

• Negative acknowledge (NAK)
• I have not received these segments!

▪ Checksum
• Detect bit errors

• Used in many layers and protocols

How do we recover?

Sender retransmission

Principles of RDT - Agenda

▪rdt at a glance

▪Stop-and-wait approach
• sender sends one pkt, then waits for receiver’s response

▪Sliding-window approach
• Go-back-N (GBN)
• Selective Repeat (SR)

Stop and wait approach

▪ Send a segment
▪ Wait to make sure it is delivered properly
▪ Then send the next one
▪ We will develop a “simple” stop-and-wait protocol in

class as an example

Unreliable channel v1: Channel with bit errors

▪ Remember: complexity of reliable data transfer protocol
will depend (strongly) on characteristics of unreliable
channel

▪ For the example stop-and-wait protocol v1, we start
with an underlying channel that may flip bits in packet

Q: How do humans recover from “errors” during conversation?

Simple stop-and-wait protocol (v1)

▪ Channel with bit errors

Unreliable channel rdt tools

▪ ?

sender receiver

send pkt

rcv pkt

corrupted

Channel with bit errors

▪ underlying channel may flip bits in pkts
• checksum to detect bit errors

▪ the question: how to recover from errors?

• ACKs: receiver explicitly tells sender that pkt received OK

• NAKs: receiver explicitly tells sender that pkt had errors

• sender retransmits pkt on receipt of NAK

Example stop-and-wait protocol (v1)

▪ Send a pkt

▪Wait to get an ACK/NAK
• If NAK, resend the pkt

• go back to waiting

• If ACK, proceed with
sending next pkt

▪When pkt is received
• examine checksum

• If correct pkt, send ACK

• deliver data to app layer

• If corrupted pkt, send NAK

▪ Tools used: Checksum, ACK/NAK, retransmission

Sender Receiver

Example stop-and-wait protocol (v1)

▪ Channel with bit errors
• Corrupted data pkts

• Corrupted feedback

Unreliable channel rdt tools

▪ Checksum, ACK/NAK,
retransmission + ?

sender receiver

rcv pkt

send nak

send ack

rcv nak

send next pkt

resend pkt

rcv ack

send pkt

rcv pkt

corrupted

corrupted

what happens if ACK/NAK corrupted?

Corrupted feedback

what happens if ACK/NAK
corrupted?

▪ sender doesn’t know what
happened at receiver!

▪ can’t just retransmit: possible
duplicate pkt

handling duplicates:
▪ Sender retransmits current pkt

if ACK/NAK corrupted

▪ sender adds sequence number
to each pkt

▪ receiver discards (doesn’t
deliver up) duplicate pkt

Example stop-and-wait protocol (v2)

▪ Send a pkt
• Seq # = 1 – last seq #

▪Wait to get an ACK/NAK
• If NAK or corrupted, resend

• go back to waiting

• If ACK, proceed with next pkt

▪When pkt is received
• If correct pkt, send ACK

• If Seq # ≠ last Seq #, deliver
data to app layer

• If corrupted pkt, send NAK

▪ Tools used: Checksum, ACK/NAK, retransmission, 1-bit sequence number

Sender Receiver

Example stop-and-wait protocol (v2)

sender receiver

rcv pkt0

rcv pkt1

send nak

send ack

send ack

rcv nak

send pkt1

send pkt0

rcv ack

send pkt0

rcv pkt0

pkt1

pkt0

ack

nak
▪ Channel with bit errors

• Corrupted data pkts

• Corrupted feedback

Unreliable channel rdt tools

▪ Checksum, ACK/NAK,
retransmission,
sequence number

corrupted

corrupted

send pkt1
rcv ack

pkt1
rcv pkt1

send ackack

rcv ack

deliver to app

deliver to app

Duplicate pkt is not delivered to app layer

Example stop-and-wait protocol (v2+): NAK-free

▪ Send a pkt
• Seq # = 1 – last seq #

▪Wait to get an ACK
• If ACK (& last Seq #) or

corrupted, resend
• go back to waiting

• If ACK (& Seq #), proceed
with next pkt

▪When pkt is received
• If correct pkt, send ACK (& Seq #)

• If Seq # ≠ last Seq #, deliver data to
app layer

• If corrupted pkt, send (& last Seq #)

Sender Receiver

▪ instead of NAK, receiver sends ACK for last pkt correctly received
• receiver must explicitly include seq # of pkt being ACKed

▪ duplicate ACK at sender results in the same action as NAK:
retransmit current pkt

Example stop-and-wait protocol (v2+)

sender receiver

rcv pkt0

rcv pkt1

send ack1

send ack0

send ack1

rcv ack1

send pkt1

send pkt0

rcv ack0

send pkt0

rcv pkt0

pkt1

pkt0

ack0

ack1
▪ Channel with bit errors

• Corrupted data pkts

• Corrupted feedback

Unreliable channel rdt tools

▪ Checksum, ACK,
retransmission,
sequence number

corrupted

corrupted

send pkt1
rcv ack1

pkt1
rcv pkt1

send ack1ack1

rcv ack1

deliver to app

deliver to app

Unreliable channel v2: Channel with errors and loss

New channel assumption: underlying channel can also lose
packets (data or ACKs)
• checksum, sequence #s, ACKs, retransmissions will be of help …

but not quite enough

Q2: How do humans handle lost sender-to-
receiver words in conversation?

sender receiver

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

pkt1
X

loss

Q1: What is the difference between data
corruption and data loss?

Channel with errors and loss

Approach: sender waits “reasonable” amount of time for ACK

▪ retransmits if no ACK received in this time
▪ if pkt (or ACK) just delayed (not lost):

• retransmission will be duplicate, but seq #s already handles this!

• receiver must specify seq # of packet being ACKed

timeout

▪ use countdown timer to interrupt after “reasonable” amount
of time

Example stop-and-wait protocol (v3)

▪ Send a pkt
• Seq # = 1 – last Seq #

• Set timer

▪ Wait to get an ACK
• If ACK (& last Seq #) or corrupted,

resend pkt and reset timer
• go back to waiting

• If ACK (& Seq #), remove timer
and proceed with next pkt

• If timer goes off, resent pkt and
reset timer

▪When pkt is received
• If correct pkt, send ACK (& Seq #)

• If Seq # ≠ last Seq #, deliver data to
app layer

• If corrupted pkt, send (& last Seq #)

Sender Receiver

▪ Tools used: Checksum, ACK, retransmission, 1-bit sequence number, timer

Example stop-and-wait protocol (v3)

▪ Channel with bit errors
• Corrupted data pkts

• Corrupted feedback

Unreliable channel rdt tools

▪ Checksum, ACK,
retransmission,
sequence number

▪ Channel with errors and lost
• lost data pkts

▪ Checksum, ACK,
retransmission,
sequence number, timer

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(a) packet loss

pkt1
X

loss

pkt1
timeout

resend pkt1

Example stop-and-wait protocol (v3)

▪ Channel with bit errors
• Corrupted data pkts

• Corrupted feedback

Unreliable channel rdt tools

▪ Checksum, ACK,
retransmission,
sequence number

▪ Channel with errors and lost
• lost data pkts

• lost feedback

▪ Checksum, ACK,
retransmission,
sequence number, timer

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

rcv pkt0

send ack0

send ack1

send ack0

rcv ack0

send pkt0

send pkt1

rcv ack1

send pkt0

rcv pkt0
pkt0

pkt0

ack1

ack0

ack0

(b) ACK loss

ack1
X

loss

pkt1
timeout

resend pkt1

Example stop-and-wait protocol (v3)

▪ Channel with bit errors
• Corrupted data pkts

• Corrupted feedback

Unreliable channel rdt tools

▪ Checksum, ACK,
retransmission,
sequence number

▪ Channel with errors and lost
• lost data pkts

• lost feedback

▪ Checksum, ACK,
retransmission,
sequence number, timer

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(c) premature timeout/ delayed ACK

pkt1

timeout
resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0

rcv pkt0
send ack0

ack0

rcv ack1

send pkt0
pkt0

rcv pkt0

send ack0
(detect duplicate)

ack0 Duplicate pkt continues

Example stop-and-wait protocol (v3+)

▪ Send a pkt
• Seq # = 1 – last Seq #

• Set timer

▪ Wait to get an ACK
• If ACK (& last Seq #) or corrupted,

• do nothing

• If ACK (& Seq #), remove timer
and proceed with next pkt

• If timer goes off, resent pkt and
reset timer

▪When pkt is received
• If correct pkt, send ACK (& Seq #)

• If Seq # ≠ last Seq #, deliver data to
app layer

• If corrupted pkt, send (& last Seq #)

Sender Receiver

▪ Tools used: Checksum, ACK, retransmission, 1-bit sequence number, timer

Timer can handle all retransmissions

Example stop-and-wait protocol (v3+)

▪ Channel with bit errors
• Corrupted data pkts

• Corrupted feedback

Unreliable channel rdt tools

▪ Checksum, ACK,
retransmission,
sequence number

▪ Channel with errors and lost
• lost data pkts

• lost feedback

▪ Checksum, ACK,
retransmission,
sequence number, timer

rcv pkt1
send ack1

(detect duplicate)

pkt1

sender receiver

rcv pkt1

send ack0
rcv ack0

send pkt1

send pkt0

rcv pkt0
pkt0

ack0

(c) premature timeout/ delayed ACK

pkt1

timeout
resend pkt1

ack1

ack1

send ack1send pkt0
rcv ack1

pkt0

rcv pkt0
send ack0ack0

pkt1

(ignore)
rcv ack1

Principles of reliable data transfer (rdt)

▪rdt at a glance

▪Stop-and-wait approach
• sender sends one pkt, then waits for receiver’s response

▪Pipelined approach
• Go-back-N (GBN)
• Selective Repeat (SR)

Stop-and-wait protocol has a problem

▪ example: 1 Gbps link, 15 ms prop. delay, 8000 bit packet

▪U sender: utilization – fraction of time sender busy sending

Dtrans =
L
R

8000 bits
109 bits/sec

= = 8 microsecs

• time to transmit packet into channel:

Stop-and-wait protocol has a problem

first packet bit transmitted, t = 0

sender receiver

RTT

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

Stop-and-wait protocol has a problem

sender receiver

Usender
=

L / R

RTT

RTT

L/R

+ L / R

= 0.00027

=
.008

30.008

▪ Protocol performance stinks!
▪ Protocol limits performance of underlying infrastructure (channel)

Pipelined protocols operation
pipelining: sender allows multiple, “in-flight”, yet-to-be-acknowledged

packets
• range of sequence numbers must be increased

• buffering at sender and/or receiver

▪ two example forms of the pipelined approach: go-Back-N, selective repeat

Pipelining: increased utilization

first packet bit transmitted, t = 0

sender receiver

RTT

last bit transmitted, t = L / R

first packet bit arrives

last packet bit arrives, send ACK

ACK arrives, send next

packet, t = RTT + L / R

last bit of 2nd packet arrives, send ACK
last bit of 3rd packet arrives, send ACK

3-packet pipelining increases

 utilization by a factor of 3!

U
sender =

.0024

30.008
= 0.00081

3L / R

RTT + L / R
=

Go-Back-N: sender
▪ sender: “window” of up to N, consecutive transmitted but unACKed pkts

• k-bit seq # in pkt header

▪ cumulative ACK: ACK(n): ACKs all packets up to, including seq # n

• on receiving ACK(n): move window forward to begin at n+1

▪ timer for oldest in-flight packet

▪ timeout(n): retransmit packet n and all higher seq # packets in window

Go-Back-N: receiver

▪ ACK-only: always send ACK for correctly-received packet so far, with
highest in-order seq #
• may generate duplicate ACKs
• need only remember rcv_base

▪ on receipt of out-of-order packet:
• can discard (don’t buffer) or buffer: an implementation decision
• re-ACK pkt with highest in-order seq #

rcv_base

received and ACKed

Out-of-order: received but not ACKed

Not received

Receiver view of sequence number space:

… …

Go-Back-N in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, discard,
 (re)send ack1

send pkt2
send pkt3
send pkt4
send pkt5

Xloss

pkt 2 timeout

receive pkt4, discard,
 (re)send ack1
receive pkt5, discard,
 (re)send ack1

rcv pkt2, deliver, send ack2
rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4
rcv pkt5, deliver, send ack5

ignore duplicate ACK

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

Go-Back-N in action

▪Animation here:

https://media.pearsoncmg.com/ph/esm/ecs_kurose_com
pnetwork_8/cw/content/interactiveanimations/go-back-n-
protocol/index.html

Selective repeat: the approach

▪pipelining: multiple packets in flight

▪receiver individually ACKs all correctly received packets
• buffers packets, as needed, for in-order delivery to upper layer

▪sender:

• maintains (conceptually) a timer for each unACKed pkt

• timeout: retransmits single unACKed packet associated with timeout

• maintains (conceptually) “window” over N consecutive seq #s

• limits pipelined, “in flight” packets to be within this window

Selective repeat: sender, receiver windows

Selective repeat: sender and receiver

data from above:

▪ if next available seq # in
window, send packet

timeout(n):

▪ resend packet n, restart timer

ACK(n) in [sendbase,sendbase+N-1]:

▪ mark packet n as received

▪ if n smallest unACKed packet,
advance window base to next
unACKed seq #

sender
packet n in [rcvbase, rcvbase+N-1]

▪ send ACK(n)

▪ out-of-order: buffer

▪ in-order: deliver (also deliver
buffered, in-order packets),
advance window to next not-yet-
received packet

packet n in [rcvbase-N,rcvbase-1]

▪ ACK(n)

otherwise:
▪ ignore

receiver

Selective Repeat in action

send pkt0
send pkt1
send pkt2
send pkt3

(wait)

sender receiver

send pkt2
(but not 3,4,5)

Xloss

pkt 2 timeout

sender window (N=4)

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

rcv ack0, send pkt40 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 rcv ack1, send pkt5

receive pkt0, send ack0
receive pkt1, send ack1

receive pkt3, buffer,
 send ack3

record ack3 arrived

receive pkt4, buffer,
 send ack4
receive pkt5, buffer,
 send ack5

rcv pkt2; deliver pkt2,
pkt3, pkt4, pkt5; send ack2

Q: what happens when ack2 arrives?

Selective Repeat in action

▪Animation here:

https://media.pearsoncmg.com/ph/esm/ecs_kurose_com
pnetwork_8/cw/content/interactiveanimations/selective-
repeat-protocol/index.html

Summary for rdt tools

▪ACK/NAK
• provides receiver feedback

• can also be corrupted or lost

▪Timer
• detects pkt/feedback loss

• may lead to duplicate pkts

▪Sequence number
• detects duplicate pkts
• Has to be a bounded number

of bits

▪Sliding window
• allows for pipelining pkt

• reuses sequence number

	Slide 1: CS 456/656 Computer Networks
	Slide 2: A note on the slides
	Slide 3: Transport layer: roadmap
	Slide 4: Transport layer: roadmap
	Slide 5: Reliable data transfer (rdt)
	Slide 6: Principles of RDT - Agenda
	Slide 7: Principles of RDT - Agenda
	Slide 8: Reliable data transfer (rdt)
	Slide 9: Reliable data transfer (rdt)
	Slide 10: Reliable data transfer (rdt)
	Slide 11: Reliable data transfer protocol (rdt): interfaces
	Slide 12: Reliable data transfer: getting started
	Slide 14: Tools for reliable data transfer (rdt)
	Slide 15: Principles of RDT - Agenda
	Slide 16: Stop and wait approach
	Slide 17: Unreliable channel v1: Channel with bit errors
	Slide 18: Simple stop-and-wait protocol (v1)
	Slide 19: Channel with bit errors
	Slide 20: Example stop-and-wait protocol (v1)
	Slide 21: Example stop-and-wait protocol (v1)
	Slide 22: Corrupted feedback
	Slide 23: Example stop-and-wait protocol (v2)
	Slide 24: Example stop-and-wait protocol (v2)
	Slide 25: Example stop-and-wait protocol (v2+): NAK-free
	Slide 26: Example stop-and-wait protocol (v2+)
	Slide 27: Unreliable channel v2: Channel with errors and loss
	Slide 28: Channel with errors and loss
	Slide 29: Example stop-and-wait protocol (v3)
	Slide 30: Example stop-and-wait protocol (v3)
	Slide 31: Example stop-and-wait protocol (v3)
	Slide 32: Example stop-and-wait protocol (v3)
	Slide 33: Example stop-and-wait protocol (v3+)
	Slide 34: Example stop-and-wait protocol (v3+)
	Slide 35: Principles of reliable data transfer (rdt)
	Slide 36: Stop-and-wait protocol has a problem
	Slide 37: Stop-and-wait protocol has a problem
	Slide 38: Stop-and-wait protocol has a problem
	Slide 39: Pipelined protocols operation
	Slide 40: Pipelining: increased utilization
	Slide 41: Go-Back-N: sender
	Slide 42: Go-Back-N: receiver
	Slide 43: Go-Back-N in action
	Slide 44: Go-Back-N in action
	Slide 45: Selective repeat: the approach
	Slide 46: Selective repeat: sender, receiver windows
	Slide 48: Selective repeat: sender and receiver
	Slide 49: Selective Repeat in action
	Slide 50: Selective Repeat in action
	Slide 53: Summary for rdt tools

