
CS 456/656
Computer Networks

Mina Tahmasbi Arashloo and Bo Sun

Fall 2024

Lecture 5: Transport Layer – Part 1

A note on the slides

Adapted from the slides that
accompany this book.

Computer Networking: A
Top-Down Approach
8th edition
Jim Kurose, Keith Ross
Pearson, 2020

All material copyright 1996-2023
J.F Kurose and K.W. Ross, All Rights Reserved

Transport layer: roadmap

▪ Transport-layer overview

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport layer: roadmap

▪ Transport-layer overview

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Transport layer: overview

▪ Provide service to the application layer
• Transport to Application: “If you give me some data and the ID of the

other communication endpoint (e.g., the (IP, port) for the destination
socket), I will get the data to that communication endpoint.”

▪Using the services of the network layer
• Network to transport: “If you give me some data and the ID of the

computer (host) that is the destination (e.g., the IP address for the
host), I will get the data to that destination host."

Transport layer: in the Internet

Application

Transport

Network (IP)

Link

Host (𝐻1)

Physical

App
1

App
N

…

Application

Transport

Network (IP)

Link

Host (𝐻2)

Physical

App
1

App
M

…

𝑆1 𝑆𝑁
𝑆1 𝑆𝑀

Transport layer: in the Internet

Application

Transport

Network (IP)

Link

Physical

App
1

App
N

…

Application

Transport

Network (IP)

Link

Physical

App
1

App
M

…

I would like to send these 3000B to
Socket 𝑆𝑀 on host 𝐻2

We can all collaborate to try to send
packets of size 1500B from 𝐻1 to 𝐻2, but

they can get lost or reordered.

𝑆1 𝑆𝑁
𝑆1 𝑆𝑀

Host (𝐻1) Host (𝐻2)

Transport layer: in the Internet

Application

Transport

Network (IP)

Link

Physical

App
1

App
N

…

Application

Transport

Network (IP)

Link

Physical

App
1

App
M

…

I would like to send these 3000B to
Socket 𝑆𝑀 on host 𝐻2

Transport-layer protocols bridge this gap

We can all collaborate to try to send
packets of size 1500B from H1 to H2, but

it can get lost or reordered.

𝑆1 𝑆𝑁
𝑆1 𝑆𝑀

Host (𝐻1) Host (𝐻2)

Transport layer: in the Internet

▪Application on host 𝐻1: send these 3000B through socket 𝑆1 to socket
𝑆𝑀 on host 𝐻2

▪ The network layer: I’ll do my best to get packets of size 1500B from
𝐻1 to 𝐻2, but it may get lost or corrupted, or get to 𝐻2 later than some
earlier packets you send from 𝐻1.

▪ Transport-layer protocol:
• How can I distinguish between traffic from different sockets?

• How do I break data into packets and put it back together?

• How do I make sure all bytes are delivered reliably?

Transport layer: in the Internet

▪Application on host 𝐻1: send these 3000B through socket 𝑆1 to socket
𝑆𝑀 on host 𝐻2

▪ The network layer: I’ll do my best to get packets of size 1500B from
𝐻1 to 𝐻2, but it may get lost or corrupted, or get to 𝐻2 later than some
earlier packets you send from 𝐻1.

▪ Transport-layer protocol:
• How can I distinguish between traffic from different sockets? Port numbers,

Multiplexing and Demultiplexing
• How do I break data into packets and put it back together ? Segmentation and

reassembly
• How do I make sure all bytes are delivered reliably? Reliable data transfer

physical

link

network

application

physical

link

network

application

transport

Transport Layer: in the Internet

Sender:

app. msg

▪ is passed an application-layer
message

▪ Attached its own metadata
(header) to help with (de)mux,
segmentation and reassembly,
and reliable data delivery

▪ creates segment (transport
header + data)

▪ passes segment to the
network layer

transport
ThTh app. msg

physical

link

network

application

physical

link

network

application

transport

Transport Layer: in the Internet

transport

Receiver:

app. msg
▪ extracts application-layer

message

▪ use header values to
reassemble bytes if needed

▪ receives segment (transport
header + data) from network layer

Th app. msg

▪ use header values to
demultiplex message up to
application via socket.

Two principal Internet transport protocols

mobile network

home network

enterprise
 network

national or global ISP

local or
regional ISP

datacenter
network

content
provider
network

application

transport

network

data link

physical

application

transport

network

data link

physical

▪TCP: Transmission Control Protocol
• Segmentation and reassembly
• reliable, in-order delivery

▪UDP: User Datagram Protocol
• No segmentation and reassembly
• No reliability or ordering guarantees
• no-frills extension of “best-effort” IP protocol

in the network layer

▪Both do mux and demux between sockets
▪ services not available:

• delay guarantees
• bandwidth guarantees

Transport layer: roadmap

▪ Transport-layer overview

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

Multiplexing/demultiplexing

App

Transport

Network

Link

Transport

Network

Link

Network

Link

HostHost Router

End-to-end communication

Physical Physical Physical

App App App AppApp

handle data from multiple
sockets, add transport header
(later used for demultiplexing)

multiplexing as sender:

multiplexing

?

de-multiplexing

use header info to deliver
received segments to correct
socket

demultiplexing as receiver:

Need an extra identifier!

Multiplexing

How demultiplexing works

▪ host receives datagrams
• each datagram has source network

address, destination network
address (e.g., IP addresses)

• each datagram carries one
transport-layer segment

• each segment has source,
destination port number

▪ host uses network addresses (e.g.,
IP addresses) & port numbers to
direct segments to appropriate
sockets

source port # dest port #

32 bits

application
data

(payload)

other header fields

TCP/UDP segment format

Connectionless demultiplexing

Recall:

▪ when creating socket, must
specify host-local port #:

 serverSocket.bind((‘’, 12000))

▪when receiving host receives
UDP segment:
• checks destination port # in

segment

• directs UDP segment to socket
with that port #

▪ when sending data into UDP
socket, must specify
• destination IP address

• destination port #

IP/UDP datagrams with same dest.
port #, but different source IP
addresses and/or source port

numbers will be directed to same
socket at receiving host

▪ UDP sockets are identified
with a pair of IP and port

Connectionless demultiplexing: an example

serverSocket.bind
((‘’, 6428))

transport

application

physical

link

network

P3
transport

application

physical

link

network

P1

transport

application

physical

link

network

P4

mySocket1.bind
((‘’, 5775))

mySocket2.bind((

‘’, 9157))

source port: 9157
dest port: 6428

source port: 6428
dest port: 9157

source port: ?
dest port: ?

source port: ?
dest port: ?

Connection-oriented demultiplexing

▪ TCP socket identified by
4-tuple:
• source IP address

• source port number

• dest IP address

• dest port number

▪ server may support many
simultaneous TCP sockets:
• each socket identified by its

own 4-tuple

• each socket associated with
a different connecting client

▪ demux: receiver uses all
four values (4-tuple) to
direct segment to
appropriate socket

Connection-oriented demultiplexing: example

transport

application

physical

link

network

P1
transport

application

physical

link

P4

transport

application

physical

link

network

P2

host: IP
address A

host: IP
address C

network

P6P5
P3

source IP,port: A,9157
dest IP, port: B,80

source IP,port: B,80
dest IP,port: A,9157 source IP,port: C,5775

dest IP,port: B,80

source IP,port: C,9157
dest IP,port: B,80

server: IP
address B

Three segments, all destined to IP address: B,
 dest port: 80 are demultiplexed to different sockets

Summary of (de)multiplexing

▪ Multiplexing, demultiplexing: based on transport segment and
network datagram header field values

▪ UDP: demultiplexing at the destination host using destination
IP and port number (only)

▪ TCP: demultiplexing at the destination host using 4-tuple:
source and destination IP addresses, and port numbers

Transport layer: roadmap

▪ Transport-layer overview

▪ Multiplexing and demultiplexing

▪ Connectionless transport: UDP

▪ Principles of reliable data transfer

▪ Connection-oriented transport: TCP

▪ Principles of congestion control

▪ TCP congestion control

▪ Evolution of transport-layer
functionality

UDP – User Datagram Protocol
▪How does UDP distinguish between traffic from different sockets?

• Already covered in (de)multiplexing section

▪How does UDP break data into packets and put it back together ?
• It doesn’t! You can only put as much data into a UDP segment that will fit into a

single packet. Otherwise, it will give the application an error.

▪How does UDP make sure all bytes are delivered reliably?
• It doesn’t!

▪ “no frills,” “bare bones” Internet transport protocol

▪ “best effort” service, UDP segments may be lost or delivered out-of-
order to app

Why do we have UDP again?

UDP: User Datagram Protocol

▪ UDP use:
▪ streaming multimedia apps (loss tolerant, rate sensitive)

▪ HTTP/3

▪ Other network apps or protocols like DNS and SNMP (discussed later)

▪ if reliable transfer needed over UDP:
▪ add needed reliability at application layer

UDP: User Datagram Protocol [RFC 768]

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP sender actions:
app msg▪ is passed an application-

layer message
▪ determines UDP segment

header fields values
▪ creates UDP segment

▪ passes segment to IP

UDPhUDPh app msg

transport

(UDP)

physical

link

network (IP)

application

transport

(UDP)

physical

link

network (IP)

application

UDP: Transport Layer Actions

UDP receiver actions:

app msg
▪ extracts application-layer

message

▪ checks UDP checksum
header value

▪ receives segment from IP

UDPh app msg
▪ demultiplexes message up

to application via socket

UDP segment header

source port # dest port #

32 bits

application
data

(payload)

UDP segment format

length checksum

length, in bytes of
UDP segment,

including header

data to/from
application layer

UDP checksum

Transmitted: 5 6 11

Goal: detect errors (i.e., flipped bits) in transmitted segment

Received: 4 6 11

1st number 2nd number sum

receiver-computed
checksum

sender-computed
checksum (as received)

=

Internet checksum

sender:
▪ treat contents of UDP

segment (including UDP header
fields and IP addresses) as
sequence of 16-bit integers

▪ checksum: addition (one’s
complement sum) of segment
content

▪ checksum value put into
UDP checksum field

receiver:
▪ compute checksum of received

segment

▪ check if computed checksum equals
checksum field value:
• not equal - error detected

• equal - no error detected. But maybe
errors nonetheless? More later ….

Goal: detect errors (i.e., flipped bits) in transmitted segment

Internet checksum: an example

example: add two 16-bit integers

sum

checksum

Note: when adding numbers, a carryout from the most significant bit needs to be
added to the result

* Check out the online interactive exercises for more examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

Internet checksum: weak protection!

example: add two 16-bit integers

sum

checksum

1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1wraparound

1 0 1 1 1 0 1 1 1 0 1 1 1 1 0 0

0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 1

0 1

1 0

Even though
numbers have
changed (bit
flips), no change
in checksum!

Summary: UDP

▪ “no frills” protocol:

• segments may be lost, delivered out of order

• best effort service: “send and hope for the best”

▪ UDP has its benefits:

• no setup/handshaking needed (no RTT incurred)

• helps with reliability (checksum)

• …

▪ build additional functionality on top of UDP in application layer

	Slide 1: CS 456/656 Computer Networks
	Slide 2: A note on the slides
	Slide 3: Transport layer: roadmap
	Slide 4: Transport layer: roadmap
	Slide 5: Transport layer: overview
	Slide 6: Transport layer: in the Internet
	Slide 7: Transport layer: in the Internet
	Slide 8: Transport layer: in the Internet
	Slide 9: Transport layer: in the Internet
	Slide 10: Transport layer: in the Internet
	Slide 11: Transport Layer: in the Internet
	Slide 12: Transport Layer: in the Internet
	Slide 13: Two principal Internet transport protocols
	Slide 14: Transport layer: roadmap
	Slide 15: Multiplexing/demultiplexing
	Slide 16
	Slide 17: How demultiplexing works
	Slide 18: Connectionless demultiplexing
	Slide 19: Connectionless demultiplexing: an example
	Slide 20: Connection-oriented demultiplexing
	Slide 21: Connection-oriented demultiplexing: example
	Slide 22: Summary of (de)multiplexing
	Slide 23: Transport layer: roadmap
	Slide 24: UDP – User Datagram Protocol
	Slide 27: UDP: User Datagram Protocol
	Slide 28: UDP: User Datagram Protocol [RFC 768]
	Slide 29: UDP: Transport Layer Actions
	Slide 30: UDP: Transport Layer Actions
	Slide 31: UDP: Transport Layer Actions
	Slide 32: UDP segment header
	Slide 33: UDP checksum
	Slide 34: Internet checksum
	Slide 35: Internet checksum: an example
	Slide 36: Internet checksum: weak protection!
	Slide 37: Summary: UDP

